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Abstract

We study the learning problem of revealed preference in a stochastic setting: a1

learner observes the utility-maximizing actions of a set of agents whose utility2

follows some unknown distribution, and the learner aims to infer the distribution3

through the observations of actions. The problem can be viewed as a single-4

constraint special case of the inverse linear optimization problem. Existing works5

all assume that all the agents share one common utility which can easily be violated6

under practical contexts. In this paper, we consider two settings for the underlying7

utility distribution: a Gaussian setting where the customer utility follows the von8

Mises-Fisher distribution, and a δ-corruption setting where the customer utility9

distribution concentrates on one fixed vector with high probability and is arbitrarily10

corrupted otherwise. We devise Bayesian approaches for parameter estimation and11

develop theoretical guarantees for the recovery of the true parameter. We illustrate12

the algorithm performance through numerical experiments.13

1 Introduction14

The problem of learning from revealed preference refers to the learning of a common utility function15

for a set of agents based on the observations of the utility-maximizing actions from the agents. The16

revealed preference problem has a long history in economics [Sam48, Afr67] (See [Var06] for a17

review). A line of works [BV06, ZR12, BDM+14, ACD+15] formulate the problem as a learning18

problem with two objectives: (i) rationalizing a set of observations, i.e., to find a utility function which19

explains a set of past observations; (ii) predicting the future behavior of a utility-maximization agent.20

Mathematically, the action of the agents is modeled by an optimization problem that maximizes a21

linear (or concave) utility function subject to one linear budget constraint. The learner (decision22

maker) aims to learn the unknown utility function through a set of observations of the constraints23

and the optimal solutions. The problem can be viewed as a single-constraint special case of the24

inverse optimization problem [AO01] which covers a wider range of applications: geoscience [BT92],25

finance [BGP12], market analysis [BHP17], energy [ASS18], etc.26

In this paper, we study the problem under a stochastic setting where the agents have a linear utility27

function randomly distributed according to some unknown distribution. Such a stochastic setting28

is well-motivated by some application context where the agents are customers and the constraint29

models the prices and the customer’s budget. The optimal solution encodes the customer’s purchase30

behavior and the stochastic utility (objective function) captures the heterogeneity of the customer31

preference for the products. The goal of learning in this stochastic setting thus becomes to learn the32

utility distribution through observations of the actions. To the best of our knowledge, we provide the33

first result of learning a stochastic utility for the revealed preference problem and even in the more34

general literature of the inverse optimization problem.35

Related Literature: The existing approaches to the problem can be roughly divided into two36

categories.37
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Query-based: In a query-based model, the learner aims to learn the utility function by querying an38

oracle for the agent’s optimal actions, and the goal is to derive the sample complexity guarantee for39

a sufficiently accurate estimation of the utility function. [BV06] initiates this line of research and40

studies a statistical setup where the input data is a set of observations and the learner’s performance41

is evaluated by sample complexity bounds. [ZR12] studies the case of a linear or linearly separable42

concave utility function, and [BDM+14] generalizes the setting and devises learning algorithms for43

several classes of utility functions. Other than a statistical setup where the observations are sampled44

from some distribution, both of these two works study an “active” learning setting where the learner45

has the power to choose the linear constraint (set the prices of the products). Some subsequent works46

along this line study the associated revenue management problem [ACD+15] and a game-theoretic47

setting [DRS+18] where the agents act strategically to hide the true actions.48

Optimization-based: The optimization-based approach is usually adopted in the literature of inverse49

optimization, and some algorithms developed therein can be applied to the special case of the revealed50

preference problem. [ZL96] and [AO01] study the inverse optimization with one single observation51

and develop linear programming formulations to solve the problem. Later, [KWB11] and [ASS18]52

study the statistical (or data-driven) setting where the observations are sampled from some distribution.53

Specifically, [ASS18] considers a setting where the optimal actions of the agents are contaminated54

with some independent noises, but all the agents still follow a common utility parameter vector.55

[MESAHK18] studies the distributional robust version of the problem and [BFL21] considers a56

contextual formulation. A recent line of works [BMPS18, DCZ18, DZ20, CKK20] cast the inverse57

optimization problem in an online context and develop (online) gradient-based algorithms.58

As we understand, all the existing algorithms and analyses under this topic rely on the assumption59

that all the agents share one common utility function (or a common utility parameter vector), and thus60

can fail in the stochastic setting. In this paper, we formulate the problem in Section 2 and focus on61

the statistical data input where the budget constraint is sampled from some unknown distribution. We62

consider two stochastic settings: a Gaussian setting in Section 3 and a δ-corruption setting in Section63

4. We conclude with numerical experiments and discuss (i) how the results can be generalized to the64

inverse optimization problem and (ii) the implications for the query-based model where the learner65

has the power to choose the budget constraints.66

2 Model Setup67

Consider a customer who purchases a bundle of products subject to some budget constraint. The68

customer’s utility-maximizing action can be modeled by the following linear program:69

LP(u,a, b) := max
x

n∑
i=1

uixi

s.t.
n∑

i=1

aixi ≤ b, 0 ≤ xi ≤ 1, i = 1, ..., n,

where u = (u1, ..., un) ∈ Rn, a = (a1, ..., an) ∈ Rn
+, and b ∈ R+ are the inputs of the LP. Here the70

decision variables x encode the purchase decisions where a partial purchase is allowed, ui denotes71

the customer’s utility for the i-th product, and ai denotes the price or cost of purchasing the i-th72

product. The right-hand-side b denotes the budget of the customer.73

Throughout this paper, we make the following assumption.74

Assumption 1. We assume:75

• The utility vector u follows some unknown distribution Pu.76

• The LP’s input (a, b) follows some unknown distribution Pa,b independent of Pu.77

• There exists a > 0 such that ai ∈ [a, 1] almost surely for i = 1, ..., n.78

Our goal is to infer the distribution through observations of customers’ optimal actions. Mathemati-
cally, we aim to estimate the distribution of Pu through the dataset

DT = {(x∗
t ,at, bt)}Tt=1 .
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Here the t-th sample corresponds to an unobservable ut generated from Pu and x∗
t is one optimal79

solution of LP(ut,at, bt). Due to the scale invariance of the utility vector, we restrict the distribution80

Pu to the unit sphere Sn−1 = {u : ∥u∥2 = 1}. In the following two sections, we consider81

two settings: (i) Gaussian: Pu follows the von Mises–Fisher distribution, i.e., the restriction of a82

multivariate Gaussian distribution to the unit sphere; (ii) δ-corruption: Pu concentrates on one point83

u∗ with probability 1− δ and follows an arbitrarily corrupted distribution with probability δ.84

Figure 1: Visualizing the challenge of the problem in 1-D and 2-D.

The challenge of the problem. Each observation (x∗
t ,at, bt) prescribes a region Ut ⊂ Sn−1,

Ut :=
{
u ∈ Sn−1 : x∗

t is an optimal solution of LP(u,at, bt)
}
.

The set Ut captures all the possible values of ut that is consistent with the t-th observation. The85

following lemma states that the set Ut can be expressed by a group of linear constraints.86

Lemma 1. For each Ut, there exists a matrix Vt and a vector wt such that

Ut =
{
u ∈ Sn−1 : Vtu ≤ wt

}
.

In the deterministic setting of the revealed preference problem, all the ut’s are identical and the87

learning problem is thus reduced to finding one feasible u in the set of ∩Tt=1Ut. But in a stochastic88

setting, it may happen that the set of ∩Tt=1Ut is empty. Figure 1 provides a conceptual visualization89

of this challenge of “empty intersection”. Each blue solid segment denotes one such Ut and the blue90

dashed line represents a value of u that appears most frequently in these Ut’s. We remark that the91

figure is just for illustrative purpose as the problem may not be well-defined in the 1-dimensional92

case.93

From an estimation viewpoint, the goal is to estimate the distribution of Pu without the knowledge94

of the realized samples ut’s, but merely with the knowledge of Ut to which ut belongs. The95

sample efficiency of the estimation procedure is naturally contingent on the dispersion of Ut which is96

essentially determined by the generation of (at, bt). For example, if all the Ut’s coincide with each97

other, then one can hardly learn much about the underlying Pu. In this paper, we aim to pinpoint98

conditions for Pa,b such that the learning of Pu is possible. Also, an alternative way to measure99

the estimation accuracy is to evaluate the predictive performance of the estimated model on new100

observations generated from Pa,b, and such performance bounds generally bear less dependency on101

the distribution of Pa,b. We also provide theoretical guarantees in this sense.102

3 Gaussian Setting103

In this section, we consider a setting where the distribution Pu follows the von Mises-Fisher distribu-
tion parameterized by θ = (µ, κ) with the density function

f(u;θ) :=
exp

(
−κµ⊤u

)∫
u∈Sn−1 exp(−κµ⊤u)du

∝ exp
(
−κµ⊤u

)
.
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Here the vector µ ∈ Rn represents the mean direction and the parameter κ > 0 controls the
concentration of the distribution. The deterministic setting of the revealed preference problem can be
viewed as the case when κ =∞ and then the distribution degenerates to a point-mass distribution
on the unit sphere. Denote the true parameters of the distribution Pu by θ∗ = (µ∗, κ∗). Then the
likelihood of the dataset Dt under a parameter θ is

P(Dt|θ) :=
T∏

t=1

P ((x∗
t ,at, bt)|θ) =

T∏
t=1

∫
u∈Ut

f(u;θ)du.

We remark that the maximum likelihood approach cannot be applied here for two reasons. First, the104

integration of f(u;θ) over the region Ut is not closed-form. The first point is not only pertaining to105

the Gaussian parameterization of Pu. The scale-invariant property of the utility vector restricts the106

distribution Pu to a unit sphere or a simplex, and consequently, the likelihood function inevitably107

involves the non-closed-form integration. This issue can be partially resolved by using the Monte108

Carlo method to approximate the integration, and a good thing is that the same integrand is shared109

across all the observations. Second, the likelihood function is not analytical in θ. Thus this prevents110

the usage of gradient-based algorithms to solve the problem and also makes it difficult to derive111

theoretical guarantees for the maximum likelihood estimator.112

We propose a Bayesian perspective for the problem: instead of identifying the parameter that113

maximizes the likelihood function, we directly draw samples from the posterior distribution. We114

will see shortly that the approach can be justified through a concentration property of the posterior115

distribution. Suppose we have a prior distribution P0(θ) and then we can define the posterior116

distribution by117

PT (θ) :=
P0(θ) · P (Dt|θ)

P (Dt)

∝ P0(θ) ·
T∏

t=1

∫
u∈Ut

f(u;θ)du.

With slight abuse of notation, we use PT (·) (or P0(·)) to refer to both the density function and the118

probability measure of the posterior (or prior) distribution. We make the following assumption on the119

prior distribution.120

Assumption 2. We assume the concentration parameter κ∗ ∈ (κ, κ̄) where κ, κ̄ are two known121

positive constants. The prior distribution P0(θ) is a uniform distribution on Sn−1 × (κ, κ̄).122

Theorem 1. Let

ΘT :=

{
θ ∈ Sn−1 × (κ, κ̄) :W (P ((x∗

t ,at, b)|θ) ,P ((x∗
t ,at, b)|θ∗)) ≤ max (9, 9κ̄)

n · log T
T 1/2−α

}
whereW(·, ·) is the Wasserstein distance between two distributions supported on X × Rn

+ × R+

equipped with Euclidean metric. Then, under Assumptions 1-2,

1− PT (ΘT )→ 0 in probability as T →∞,

for any α ∈ [0, 1/2]. Specifically, the following inequality holds

E [PT (ΘT )] ≥ 1− 2

T
− 2

16T 2α log2 T
.

where the expectation is taken with respect to the random distribution PT (·) (essentially, with respect123

to the dataset DT .)124

Theorem 1 justifies the approach of posterior sampling. We first remark that the Bayesian sampling125

approach is just proposed to estimate the parameters, but all the theoretical results are stated in126

frequentist language. The proof of Theorem 1 follows the standard analysis of the convergence of127

the posterior distribution [GGVDV00, CDBW21]. While similar results should also hold for other128

underlying distribution ofPu, the von Mises-Fisher distribution provides much analytical convenience129

in deriving the bound. Each θ, together with the distribution of Pa,b, defines a distribution over the130

space of (x∗
t ,at, b). As we use observations (x∗

t ,at, b)’s to identify the true θ∗, the set ΘT defines a131

set of indistinguishable θ’s based on the Wasserstein distance between distributions of (x∗
t ,at, b).132

4



The set ΘT shrinks as T → ∞. The posterior sampling approach samples from the distribution133

PT (·), and Theorem 1 states that the samples will be concentrated in set ΘT with high probability.134

The posterior distribution PT (·) is dependent on the dataset DT , so it is a random distribution itself135

and the results in Theorem 1 are stated in either convergence in probability or expectation. As a side136

note, the Wasserstein distance in the theorem is not critical and it can be replaced with other distances137

such as the total variation distance and the Hellinger distance.138

Intuitively, Theorem 1 says that for some θ such that the likelihood distribution P ((x∗
t ,at, b)|θ)139

differs from P ((x∗
t ,at, b)|θ∗) to a certain extent, the posterior PT (·) is unlikely to generate such140

θ. In other words, the posterior distribution identifies the true θ∗ up to some “equivalence” in the141

likelihood distribution space. The following corollary formalizes this intuition that if there is an142

equivalence between the likelihood distribution space and the underlying parameter space, then the143

posterior distribution is capable of identifying the true parameter.144

Corollary 1. Suppose

W (P ((x∗
t ,at, b)|θ) ,P ((x∗

t ,at, b)|θ∗)) > 0

for all θ ̸= θ∗ ∈ Sn−1× [κ, κ̄]. Then the posterior distribution PT (·) will converge to the point-mass145

distribution on θ∗ almost surely as T → ∞. Moreover, suppose there exists a constant L > 0146

satisfying147

W (P ((x∗
t ,at, b)|θ) ,P ((x∗

t ,at, b)|θ∗)) ≥ L · ∥θ − θ∗∥2, (1)
for all θ ̸= θ∗ ∈ Sn−1 × [κ, κ̄].148

Under Assumptions 1-2, the following inequality holds with probability no less than 1− 1
8T 2α log2 T

,149

ET [∥θT − θ∗∥2] ≤ max (9, 9κ̄) · n · log T
L · T 1/2−α

+
2
√
n

T

where θT is sampled from the posterior distribution PT (·).150

The corollary states that when there is some equivalence between the likelihood distribution space151

and the parameter space as (1), the true parameter is identifiable. The first part of the corollary states152

a consistency result that as long as all the θ ̸= θ∗ are distinguishable from θ∗ through the likelihood153

function, then the posterior sampling will eventually identify the true θ∗. The second part relates to154

the convergence rate with an equivalence parameter L.155

In Assumption 1, we assume the constraint input (at, bt) is generated from some distribution Pa,b.156

We note that Theorem 1 and Corollary 1 hold without any additional assumption on Pa,b, but the157

space topology of the likelihood distribution is highly dependent on Pa,b. Specifically, a different158

distribution of (at, bt) determines the separateness of the parameter space through affecting the value159

of L in (1) or even its existence. The value L of a specific distribution of Pa,b can be examined160

through simulation. So if the learner has some flexibility in choosing the distribution of Pa,b, the161

optimal choice would be the one that corresponds to a larger value of L. If the constraint input (at, bt)162

is not randomly generated but can be actively chosen as the query-based preference learning problem,163

the results in Theorem 1 and Corollary 1 still hold by conditioning on all the (at, bt)’s. Unlike the164

deterministic case where the utility vector u is fixed for all the observations, the stochastic nature of165

the problem setup here makes it generally very complicated to fully extract the benefit of designing166

(at, bt)’s by the learner. We leave it as a future open question.167

Corollary 2. Suppose Pa,b is a discrete distribution with a finite support. Let (a, b) be a new
sample from Pa,b, i.e., independent from the dataset DT , and let θT = (µT , κT ) be a sample
from the posterior distribution PT (·). Denote x̃∗ and x∗ as the optimal solutions of LP(µT ,a, b)
and LP(µ∗,a, b), respectively. Then, under Assumptions 1-2, the following inequality holds with
probability no less than 1− 1

8T 2α log2 T
,

E [∥x̃∗ − x∗∥2] ≤ max (9, 9κ̄)
n · log T
T 1/2−α

+
2
√
n

T
,

where the expectation is taken with respect to both the posterior distribution PT (·) and (a, b).168

Corollary 2 provides an upper bound on the predictive performance of the posterior distribution.169

Specifically, we want to predict the optimal solution of a linear program specified by µ∗ (proportion-170

ally to E[u]) and a new sample of the constraint (a, b), and the prediction x̃∗ is based on a posterior171
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sample. We know from Theorem 1 that the posterior distribution concentrates on those θ’s that are172

indistinguishable from the true θ∗ in terms of the likelihood. Speaking of the predictive performance,173

we only concern the distribution of the optimal solution (equivalently, the likelihood), but do not174

require the identification of exact true θ∗, so Corollary 2 does not require the condition (1) to hold.175

Intuitively, the prediction of the optimal solution on a new observation (a, b) can be viewed as a176

condition distribution of the optimal solution given (a, b). While the definition of ΘT in Theorem 1177

concerns the joint distribution of the optimal solution and (a, b), the finite-support condition on Pa,b178

in Corollary 2 transforms the result on the joint distribution to the conditional distribution.179

4 δ-Corruption Case180

In this section, we consider a setting where the utility vector is specified by181

ut =

{
u∗, w.p. 1− δ,

P ′
u, w.p. δ,

(2)

where u∗ ∈ Sn−1 is a fixed vector, δ ∈ [0, 1], and P ′
u is an arbitrary distribution that corrupts the182

inference of u∗. The deterministic setting of the revealed preference problem in literature can be183

viewed as the case of δ = 0, and the Gaussian setting in the previous section can be viewed as the184

case of δ = 1 and P ′
u being the von-Mises Fisher distribution. In this setting, we do not aim to learn185

the distribution of P ′
u, but rather our goal is to identify the vector u∗ using the dataset DT .186

A natural idea to estimate u∗ is by solving the following optimization problem:

OPTδ := max
u∈Sn−1

T∑
t=1

IUt
(u)

where the indicator function IE(e) = 1 if e ∈ E and IE(e) = 0 otherwise. The rationale for the187

optimization problem is that for the t-th observation, a vector u is consistent with the observation,188

i.e., x∗
t is the optimal solution of LP(u,at, bt), if and only if IUt(u) = 1. Thus the optimization189

problem finds a vector u that is consistent with the maximal number of observations. The objective190

function is discontinuous in u, so we propose the simulated annealing algorithm – Algorithm 2 to191

solve for its optimal solution.192

We first build some connection between the optimization problem OPTδ and that of the deterministic
setting with δ = 0. Let x̄∗

t be the optimal solution of LP(u∗,at, bt) and define

Ūt :=
{
u ∈ Sn−1 : x̄∗

t is an optimal solution of LP(u,at, bt)
}
.

Then the deterministic setting of the revealed preference problem solves

¯OPTδ := max
u∈Sn−1

T∑
t=1

IŪt
(u).

By the setup of the problem, u∗ is an optimizer of ¯OPTδ and the optimal objective value is T. The193

following proposition establishes that the optimization problem OPTδ is a contaminated version of194
¯OPTδ and the effect that the contamination has on the objective function can be bounded using δ.195

Proposition 1. Under Assumption 1, the following inequality holds196

P

(
max

u∈Sn−1

∣∣∣∣∣ 1T
T∑

t=1

IUt
(u)− 1

T

T∑
t=1

IŨt
(u)

∣∣∣∣∣ ≤ δ +
log T√

T

)
≤ 1

T
.

When the constraints (at, bt)’s are generated from some distribution Pa,b, it can happen that there
exist some vectors u′ that are indistinguishable from u∗ based on the observations Dt as in the
previous Gaussian case. So, we do not hope for an exact recovery of u∗, but alternatively, we aim to
derive a generalization bound for our estimator û. Specifically, we define and analyze the accuracy

Acc(û) := E [IU (û)] with U :=
{
u ∈ Sn−1 : x∗ is an optimal solution of LP(u,a, b)

}
where û is our estimator of u∗, (a, b) is a new sample from the distribution Pa,b, u is a new sample197

following the law of (2), and x∗ is the optimal solution of LP(u,a, b). In other words, the quantity198
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captures the probability that û is consistent with a new (unseen) observation, and we know that for199

the true parameter, Acc(u∗) ≥ 1− δ, which serves as a performance benchmark.200

The challenge for deriving a bound on Acc(û) arises from the discontinuity of the objective function
OPTδ . The existing methods for deriving generalization bound largely rely on the continuity and the
Lipschitzness of the loss function. To make it worse, from Lemma 1, we know that Ut is specified
by (Vt,wt) and the Vt’s are of different dimensions for different t’s. To overcome these challenges,
we devise the following γ-margin objective function. Specifically, we first define a parameterized
version of Ut by

Ut(γ) :=
{
u ∈ Sn−1 : Vtu ≤ wt − γe

}
where γ is a positive constant and e is an all-one vector. It is obvious that Ut(γ) ⊂ Ut. Accordingly,
we define the γ-margin optimization problem by

OPTδ(γ) := max
u∈Sn−1

T∑
t=1

IUt(γ)(u).

Proposition 2. Under Assumption 1, the following inequality holds with probability no less than
1− ϵ,

max
u∈Sn−1

Acc(u)− 1

T

T∑
t=1

IUt(γ)(u) ≤ 9

√
log(T )

a2γ2T
+ 15

√
log(T/ϵ)

T

for ϵ ∈ (0, 1).201

Proposition 2 relates the generalization accuracy of any arbitrary u with the corresponding objective202

value of the γ-margin optimization problem. As γ increases, the objective function will decrease, so203

the right-hand-side becomes tighter. Importantly, the accuracy is defined by the original indicator204

function (or equivalently, Ut), while the objective value is defined by the γ-margin indicator function205

(or equivalently, Ut(γ)). The implication is that when we optimize the γ-margin objective, we can206

still obtain a bound on the original accuracy Acc(u) for sufficiently large γ.207

Theorem 2. Suppose Pa,b is a continuous distribution and it has a density function upper bounded208

by p̄. Then, under Assumption 1, the following inequality holds209

P
(
Acc(û) ≥ 1− δ − 60n2 log(T )

aT 1/4

)
≥ 1− 3 + 3p̄

min
{i:u∗

i ̸=0}
|u∗

i | · T 1/4

where û is one optimal solution of OPTδ(γ) with γ = a
4n2T 1/4 .210

Theorem 2 states a generalization bound on the accuracy of û for continuous distributions of (a, b).211

From Proposition 2, a larger γ leads to a smaller gap between the accuracy and the γ-margin objective212

function. Meanwhile, a smaller γ leads to a smaller gap between the optimal objective value OPTδ(γ)213

and 1− δ. In the extreme case of γ = 0, E[OPTδ(0)] = Acc(u∗) ≥ 1− δ. Theorem 2 optimizes the214

value of γ to trade off these two aspects. We note that the continuous distribution and the upper bound215

on the density function make it possible to bound the gap of the second aspect. Finally, we remark216

that the design of γ-margin loss function is inspired from the max-margin classifier, but the analysis217

is entirely different. For the max-margin classifier, the introduction of the margin aims to make the218

underlying loss function 1-Lipschitz so that a generalization bound using Rademacher complexity219

can be derived. But for here, our γ-margin objective function is still a discontinuous one.220

5 Computational Aspects and Discussions221

In the previous section, we developed theoretical results for both Gaussian and δ-corruption settings.222

Now we discuss computational aspects with respect to the sampling of the posterior PT (·) and the223

optimization of OPTδ(γ). As mentioned earlier, the posterior sampling removes the complication of224

optimizing over θ in the maximum likelihood estimation, but still inevitably needs to deal with the225

sampling and numeric approximation of the likelihood function. Algorithm 1 describes a standard226

Metropolis–Hastings algorithm to sample from the posterior distribution PT (·). In the numerical227

experiments, we choose the proposal distribution Q to be a Gaussian random perturbation, i.e.,228

θ′ = Proj(θ(k−1) + ϵ) where ϵ follows a Gaussian distribution and the projection ensures that θ′229
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Algorithm 1 Posterior Sampling for the Gaussian Setting

1: Input: dataset DT = {(x∗
t ,at, bt)}Tt=1, number of iterations K

2: Initialize θ(0) by randomly sampling from the prior distribution P0(θ)
3: for k = 1, ...,K do
4: Draw a random θ′ from a pre-determined proposal distribution Q(θ′|θ(k−1))
5: Compute the acceptance rate:

r = min

{
PT (θ

′)

PT (θ(k−1))
, 1

}
6: Set

θ(k) =

{
θ′, w.p. r
θ(k−1), w.p. 1− r

7:
8: end for
9: Output: θ(K)

Algorithm 2 Simulated annealing algorithm for δ-corruption

1: Input: dataset DT = {(x∗
t ),at, bt}Tt=1, margin γ, number of iterations K, interval length τ

2: Initialize an initial (temperature) η > 0 and the reduction rate c ∈ (0, 1)
3: Randomly generate the first estimate u(0)

4: for k = 1, ...,K do
5: if k mod τ = 0 then
6: Update η ← c · η
7: end if
8: Draw a proposal u′ from a predetermined proposal distribution Q(u′|u(k−1))
9: Compute the acceptance rate:

r = min

{
exp

{
1

η
·

(
T∑

t=1

IUt(γ)(u
′)−

T∑
t=1

IUt(γ)(u
(k−1))

)}
, 1

}
(3)

10: Set

u(k) =

{
u′, w.p. r
u(k−1), w.p. 1− r

11: end for
12: Output: u(K)

stays on the sphere Sn−1. For the acceptance ratio, as the posterior distribution is not in closed form,230

a Monte Carlo subroutine is needed to estimate the ratio.231

Algorithm 2 presents a simulated annealing algorithm to solve the optimization problem OPTδ(γ)232

in Section 4. It takes a similar MCMC routine as Algorithm 1 and we use the same Gaussian233

random perturbation for the proposal distribution Q. As the temperature parameter η decreases, the234

sampling distribution in Algorithm 2 will gradually be more concentrated on the optimal solution set235

of OPTδ(γ). Algorithm 2 can be implemented more efficiently than Algorithm 1 in that the likelihood236

ratio calculation in (3) is analytical.237

Table 1 reports some numerical results for the two algorithms. For both the Gaussian and δ-corruption238

settings, we consider three distributions of Pa,b: (i) a uniform distribution where a ∼Unif([1, 2]n)239

and b ∼Unif([1, n]); (ii) a discrete distribution where Unif({1, 2}n) and b ∼Unif(1, ..., n); (iii) a240

fixed-a distribution where a = (1, ..., 1)⊤ and b ∼Unif(1, ..., n). For the Gaussian case, the true241

parameters (µ∗, κ∗) are uniformly generated from Sn−1 × [1, 10], and the accuracy is calculated242

by (µ∗x∗ − µ∗x̃∗)/µ∗x∗ where x∗ and x̃∗ are defined in Corollary 2. For the Gaussian case,243

u∗ is uniformly generated from Sn−1 and δ is set to be 0.1, and the accuracy is calculated by244
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Acc(û)/Acc(u∗) where Acc(u) is defined in Section 4. The numbers in Table 1 are reported based245

on an average of 20 simulation trials, and we run both Algorithm 1 and Algorithm 2 for K = 1000246

iterations.247

We make the following observations from the numerical experiments. First, we remark that the248

theoretical results in the previous sections provide strong guarantees on the convergence property249

of the posterior distribution. So the deterioration of the algorithm performance for the case when250

n = 25 is solely caused by the inaccuracy of the approximate sampling in either Algorithm 1 or251

Algorithm 2. Such inaccuracy can definitely be mitigated to some extent by a more efficient algorithm252

implementation such as parallel computing. However, we argue that the performance deterioration as253

n grows may point to a curse of dimensionality that is intrinsic to this estimation problem. Essentially,254

we aim to estimate a high-dimensional distribution only through partial information, i.e., the sets255

Ut’s. On the positive end, the algorithms work well for n ≤ 10, so if the learner has the power256

of choosing (at, bt), s/he can break up the high-dimensional estimation problem into a number of257

low-dimensional estimation problems by focusing on a handful of dimensions each time. Moreover,258

we provide a visualization of the condition (1) in Figure 2 for n = 5 calculated based on simulation.259

The visualization supports the existence of L and thus the identifiability of the true parameters when260

the posterior sampling can be accurately fulfilled. 0

n = 3 n = 5 n = 10 n = 25

(i) 99.9% 99.9% 98.8% 59.9%
Gaussian (ii) 99.9% 99.3% 96.9% 56.9%

(iii) 99.9% 94.8% 92.6% 68.5%

(i) 99.9% 96.7% 96.0% 55.7%
δ-corru. (ii) 99.6% 97.9% 97.6% 63.1%

(iii) 99.9% 98.7% 87.1% 58.7%

Table 1: Predictive accuracies under two settings.

Figure 2: Visualization of (1).

261

We conclude our discussion with the following remarks.262

Query-based model with learner-chosen (at, bt): In this paper, we have focused on the case where263

the constraints (at, bt)’s are stochastically generated. When the concentration parameter κ is known264

for the Gaussian case, there is an efficient way of learning µ through choosing (at, bt)’s (See the265

Appendix). In addition, the numerical experiments above also inspire a method that dismantles266

the high-dimensional estimation problem into a number of low-dimensional problems. Another267

interesting and important question is whether there exist designs of (at, bt)’s such that the posterior268

sampling can be more efficiently carried out.269

Multiple constraints and nonlinear utility: The results in this paper are presented under the setting of270

a linear objective and a single constraint. We emphasize that the results can be easily generalized to271

the case of multiple constraints and parameterized nonlinear utility. Thus our result can be viewed as272

a preliminary effort to address the problem of stochastic inverse optimization. Our conjecture is that273

when the set Ut corresponds to a multiple-constraint problem, it may feature more structure and thus274

facilitate the learning of the utility distribution.275

Choice modeling: The stochastic utility model in our paper also draws an interesting connection with276

the literature on choice modeling, which is a pillar for the pricing and assortment problems in revenue277

management [TVRVR04, GT+19]. For most of the existing choice models, the learning problem278

can be viewed as a special case of our study by letting a = (1, ..., 1)⊤ and b = 1. The results in our279

paper complement to this line of literature in developing a model where customers can make multiple280

purchases.281

9



References282

[ACD+15] Kareem Amin, Rachel Cummings, Lili Dworkin, Michael Kearns, and Aaron Roth.283

Online learning and profit maximization from revealed preferences. In Proceedings284

of the AAAI Conference on Artificial Intelligence, volume 29, 2015.285

[Afr67] Sydney N Afriat. The construction of utility functions from expenditure data. Inter-286

national economic review, 8(1):67–77, 1967.287

[AO01] Ravindra K Ahuja and James B Orlin. Inverse optimization. Operations Research,288

49(5):771–783, 2001.289

[ASS18] Anil Aswani, Zuo-Jun Shen, and Auyon Siddiq. Inverse optimization with noisy data.290

Operations Research, 66(3):870–892, 2018.291

[BDM+14] Maria-Florina Balcan, Amit Daniely, Ruta Mehta, Ruth Urner, and Vijay V Vazi-292

rani. Learning economic parameters from revealed preferences. In International293

Conference on Web and Internet Economics, pages 338–353. Springer, 2014.294

[BFL21] Omar Besbes, Yuri Fonseca, and Ilan Lobel. Contextual inverse optimization: Offline295

and online learning. Available at SSRN 3863366, 2021.296

[BGP12] Dimitris Bertsimas, Vishal Gupta, and Ioannis Ch Paschalidis. Inverse optimization:297

A new perspective on the black-litterman model. Operations research, 60(6):1389–298

1403, 2012.299

[BHP17] John R Birge, Ali Hortaçsu, and J Michael Pavlin. Inverse optimization for the300

recovery of market structure from market outcomes: An application to the miso301

electricity market. Operations Research, 65(4):837–855, 2017.302

[BMPS18] Andreas Bärmann, Alexander Martin, Sebastian Pokutta, and Oskar Schneider. An303

online-learning approach to inverse optimization. arXiv preprint arXiv:1810.12997,304

2018.305

[BT92] Didier Burton and Ph L Toint. On an instance of the inverse shortest paths problem.306

Mathematical programming, 53(1):45–61, 1992.307

[BV06] Eyal Beigman and Rakesh Vohra. Learning from revealed preference. In Proceedings308

of the 7th ACM Conference on Electronic Commerce, pages 36–42, 2006.309

[CDBW21] Minwoo Chae, Pierpaolo De Blasi, and Stephen G Walker. Posterior asymptotics in310

wasserstein metrics on the real line. Electronic Journal of Statistics, 15(2):3635–3677,311

2021.312

[CKK20] Violet Xinying Chen and Fatma Kılınç-Karzan. Online convex optimization313

perspective for learning from dynamically revealed preferences. arXiv preprint314

arXiv:2008.10460, 2020.315

[DCZ18] Chaosheng Dong, Yiran Chen, and Bo Zeng. Generalized inverse optimization316

through online learning. Advances in Neural Information Processing Systems, 31,317

2018.318

[DRS+18] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven319

Wu. Strategic classification from revealed preferences. In Proceedings of the 2018320

ACM Conference on Economics and Computation, pages 55–70, 2018.321

[DZ20] Chaosheng Dong and Bo Zeng. Expert learning through generalized inverse multiob-322

jective optimization: Models, insights, and algorithms. In International Conference323

on Machine Learning, pages 2648–2657. PMLR, 2020.324

[GGVDV00] Subhashis Ghosal, Jayanta K Ghosh, and Aad W Van Der Vaart. Convergence rates325

of posterior distributions. Annals of Statistics, pages 500–531, 2000.326

[GT+19] Guillermo Gallego, Huseyin Topaloglu, et al. Revenue management and pricing327

analytics, volume 209. Springer, 2019.328

10



[KWB11] Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective329

function. In 2011 IEEE international symposium on intelligent control, pages 613–330

619. IEEE, 2011.331

[MESAHK18] Peyman Mohajerin Esfahani, Soroosh Shafieezadeh-Abadeh, Grani A Hanasusanto,332

and Daniel Kuhn. Data-driven inverse optimization with imperfect information.333

Mathematical Programming, 167(1):191–234, 2018.334

[Sam48] Paul A Samuelson. Consumption theory in terms of revealed preference. Economica,335

15(60):243–253, 1948.336

[TVRVR04] Kalyan T Talluri, Garrett Van Ryzin, and Garrett Van Ryzin. The theory and practice337

of revenue management, volume 1. Springer, 2004.338

[Var06] Hal R Varian. Revealed preference. Samuelsonian economics and the twenty-first339

century, pages 99–115, 2006.340

[ZL96] Jianzhong Zhang and Zhenhong Liu. Calculating some inverse linear programming341

problems. Journal of Computational and Applied Mathematics, 72(2):261–273,342

1996.343

[ZR12] Morteza Zadimoghaddam and Aaron Roth. Efficiently learning from revealed prefer-344

ence. In International Workshop on Internet and Network Economics, pages 114–127.345

Springer, 2012.346

Checklist347

The checklist follows the references. Please read the checklist guidelines carefully for information on348

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or349

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing350

the appropriate section of your paper or providing a brief inline description. For example:351

• Did you include the license to the code and datasets? [Yes]352

• Did you include the license to the code and datasets? [N/A]353

• Did you include the license to the code and datasets? [N/A]354

Please do not modify the questions and only use the provided macros for your answers. Note that the355

Checklist section does not count towards the page limit. In your paper, please delete this instructions356

block and only keep the Checklist section heading above along with the questions/answers below.357

1. For all authors...358

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s359

contributions and scope? [Yes]360

(b) Did you describe the limitations of your work? [Yes]361

(c) Did you discuss any potential negative societal impacts of your work? [N/A]362

(d) Have you read the ethics review guidelines and ensured that your paper conforms to363

them? [Yes]364

2. If you are including theoretical results...365

(a) Did you state the full set of assumptions of all theoretical results? [Yes]366

(b) Did you include complete proofs of all theoretical results? [Yes] In the Appendix.367

3. If you ran experiments...368

(a) Did you include the code, data, and instructions needed to reproduce the main experi-369

mental results (either in the supplemental material or as a URL)? [Yes]370

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they371

were chosen)? [Yes]372

(c) Did you report error bars (e.g., with respect to the random seed after running experi-373

ments multiple times)? [No]374

11



(d) Did you include the total amount of compute and the type of resources used (e.g., type375

of GPUs, internal cluster, or cloud provider)? [Yes]376

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...377

(a) If your work uses existing assets, did you cite the creators? [N/A]378

(b) Did you mention the license of the assets? [N/A]379

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]380

381

(d) Did you discuss whether and how consent was obtained from people whose data you’re382

using/curating? [N/A]383

(e) Did you discuss whether the data you are using/curating contains personally identifiable384

information or offensive content? [N/A]385

5. If you used crowdsourcing or conducted research with human subjects...386

(a) Did you include the full text of instructions given to participants and screenshots, if387

applicable? [N/A]388

(b) Did you describe any potential participant risks, with links to Institutional Review389

Board (IRB) approvals, if applicable? [N/A]390

(c) Did you include the estimated hourly wage paid to participants and the total amount391

spent on participant compensation? [N/A]392

12


	Introduction
	Model Setup
	Gaussian Setting
	-Corruption Case
	Computational Aspects and Discussions

