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Abstract

In this paper, we present a policy gradient method that avoids exploratory noise1

injection and performs policy search over the deterministic landscape. By avoiding2

noise injection all sources of estimation variance can be eliminated in systems with3

deterministic dynamics (up to the initial state distribution). Since deterministic pol-4

icy regularization is impossible using traditional non-metric measures such as the5

KL divergence, we derive a Wasserstein-based quadratic model for our purposes.6

We state conditions on the system model under which it is possible to establish a7

monotonic policy improvement guarantee, propose a surrogate function for policy8

gradient estimation, and show that it is possible to compute exact advantage esti-9

mates if both the state transition model and the policy are deterministic. Finally,10

we describe two novel robotic control environments—one with non-local rewards11

in the frequency domain and the other with a long horizon (8000 time-steps)—for12

which our policy gradient method (TDPO) significantly outperforms existing meth-13

ods (PPO, TRPO, DDPG, and TD3). Our implementation with all the experimental14

settings is available at https://anonymous.4open.science/r/code_tdpo-D23A.15

Policy Gradient (PG) methods can be broadly characterized by three defining elements: the policy16

gradient estimator, the regularization measures, and the exploration profile. For gradient estimation,17

episodic [46], importance-sampling-based [38], and deterministic [42] gradients are some of the most18

common estimation oracles. As for regularization measures, either an Euclidean distance within the19

parameter space [46, 42, 28], or dimensionally consistent non-metric measures [38, 19, 40, 20, 47]20

have been frequently adapted. Common exploration profiles include Gaussian [38] and stochastic21

processes [28]. These elements form the basis of many model-free and stochastic policy optimization22

methods successfully capable of learning high-dimensional policy parameters.23

Both stochastic and deterministic policy search can be useful in applications. A stochastic policy24

has the effect of smoothing or filtering the policy landscape, which is desirable for optimization.25

Searching through stochastic policies has enabled the effective control of challenging environments26

under a general framework [38, 40]. The same method could either learn robotic movements or play27

basic games (1) with minimal domain-specific knowledge, (2) regardless of function approximation28

classes, and (3) with less human intervention (ignoring reward engineering and hyper-parameter29

tuning) [8]. Using stochasticity for exploration, although it imposes approximations and variance,30

has provided a robust way to actively search for higher rewards. Despite many successes, there are31

practical environments which remain challenging for current policy gradient methods. For example,32

non-local rewards (e.g., those defined in the frequency domain), long time horizons, and naturally-33

resonant environments all occur in realistic robotic systems [27, 30, 36] but can present issues for34

policy gradient search.35

To tackle challenging environments such as these, this paper considers policy gradient methods36

based on deterministic policies and deterministic gradient estimates, which could offer advantages by37

allowing the estimation of global reward gradients on long horizons without the need to inject noise38

into the system for exploration. To facilitate a dimensionally consistent and low-variance deterministic39
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policy search, a compatible policy gradient estimator and a metric measure for regularization should40

be employed. For gradient estimation we focus on Vine estimators [38], which can be easily applied41

to deterministic policies. As a metric measure we use the Wasserstein distance, which can measure42

meaningful distances between deterministic policy functions that have non-overlapping supports (in43

contrast to the Kullback-Liebler (KL) divergence and the Total Variation (TV) distance).44

The Wasserstein metric has seen substantial recent application in a variety of machine-learning45

domains, such as the successful stable learning of generative adversarial models [3]. Theoretically,46

this metric has been studied in the context of Lipschitz-continuous Markov decision processes47

in reinforcement learning [16, 9]. Pirotta et al. [35] defined a policy gradient method using the48

Wasserestein distance by relying on Lipschitz continuity assumptions with respect to the policy49

gradient itself. Furthermore, for Lipschitz-continuous Markov decision processes, Asadi et al. [4]50

and Rachelson and Lagoudakis [37] used the Wasserstein distance to derive model-based value-51

iteration and policy-iteration methods, respectively. On a more practical note, Pacchiano et al. [33]52

utilized Wasserstein regularization for behavior-guided stochastic policy optimization. Moreover,53

Abdullah et al. [1] has proposed another robust stochastic policy gradient formulation. Estimating54

the Wasserstein distance for general distributions is more complicated than typical KL-divergences55

[44]. This fact constitutes and emphasizes the contributions of Abdullah et al. [1] and Pacchiano et al.56

[33]. However, for our deterministic observation-conditional policies, closed-form computation of57

Wasserstein distances is possible without any approximation.58

Existing deterministic policy gradient methods (e.g., DDPG and TD3) use deterministic policies59

[42, 28, 10], meaning that they learn a deterministic policy function from states to actions. However,60

such methods still use stochastic search (i.e., they add stochastic noise to their deterministic actions to61

force exploration during policy search). In contrast, we will be interested in a method which not only62

uses deterministic policies, but also uses deterministic search (i.e., without constant stochastic noise63

injection). We call this method truly deterministic policy optimization (TDPO) and it may have lower64

estimation variances and better scalability to long horizons, as we will show in numerical examples.65

Scalability to long horizons is one of the most challenging aspects for policy gradient methods that66

use stochastic search. This issue is sometimes referred to as the curse of horizon in reinforcement67

learning [29]. General worst-case analyses suggests that the sample complexity of reinforcement68

learning is exponential with respect to the horizon length [21, 25, 24]. Deriving polynomial lower-69

bounds for the sample complexity of reinforcement learning methods is still an open problem [18].70

Lower-bounding the sample complexity of reinforcement learning for long horizons under different71

settings and simplifying assumptions has been a topic of theoretical research [6, 45]. Some recent72

work has examined the scalability of importance sampling gradient estimators to long horizons in73

terms of both theoretical and practical estimator variances [29, 22, 23]. All in all, long horizons are74

challenging for all reinforcement learning methods, especially the ones suffering from excessive75

estimation variance due to the use of stochastic policies for exploration, and our truly deterministic76

method may have advantages in this respect.77

In this paper we focus on continuous-domain robotic environments with reset capability to previously78

visited states. The main contributions of this work are: (1) we introduce a Deterministic Vine79

(DeVine) policy gradient estimator which avoids constant exploratory noise injection; (2) we derive a80

novel deterministically-compatible surrogate function and provide monotonic payoff improvement81

guarantees; (3) we show how to use the DeVine policy gradient estimator with the Wasserstein-based82

surrogate in a practical algorithm (TDPO: Truly Deterministic Policy Optimization); (4) we illustrate83

the robustness of the TDPO policy search process in robotic control environments with non-local84

rewards, long horizons, and/or resonant frequencies.85

1 Background86

MDP preliminaries. An infinite-horizon discounted Markov decision process (MDP) is specified87

by (S,A, P,R, µ, �), where S is the state space, A is the action space, P : S ⇥A ! �(S) is the88

transition dynamics, R : S ⇥A! [0, Rmax] is the reward function, � 2 [0, 1) is the discount factor,89

and µ(s) is the initial state distribution of interest (where �(F) denotes the set of all probability90

distributions over F , otherwise known as the Credal set of F ). The transition dynamics P is defined91

as an operator which produces a distribution over the state space for the next state s0 ⇠ P (s, a).92

The transition dynamics can be easily generalized to take distributions of states or actions as input93
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(i.e., by having P defined as P : �(S)⇥A! �(S) or P : S ⇥�(A)! �(S)). We may abuse94

the notation and replace �s and �a by s and a, where �s and �a are the deterministic distributions95

concentrated at the state s and action a, respectively. A policy ⇡ : S ! �(A) specifies a distribution96

over actions for each state, and induces trajectories from a given starting state s as follows: s1 = s,97

a1 ⇠ ⇡(s1), r1 = R(s1, a1), s2 ⇠ P (s2, a2), a2 ⇠ ⇡(s2), etc. We will denote trajectories as state-98

action tuples ⌧ = (s1, a1, s2, a2, . . .). One can generalize the dynamics (1) by using a policy instead99

of an action distribution P(µs,⇡) := Es⇠µs [Ea⇠⇡(s)[P (s, a)]], and (2) by introducing the t-step100

transition dynamics recursively as Pt(µs,⇡) := P(Pt�1(µs,⇡),⇡) with P0(µs,⇡) := µs, where µs is101

a distribution over S . The visitation frequency can be defined as ⇢⇡
µ
:= (1��)

P1
t=1 �

t�1Pt�1(µ,⇡).102

Table 2 of the Supplementary Material summarizes all MDP notation.103

The value function of ⇡ is defined as V ⇡(s) := E[
P1

t=1 �
t�1rt | s1 = s;⇡]. Similarly, one can104

define Q⇡(s, a) by conditioning on the first action. The advantage function can then be defined as105

their difference (i.e. A⇡(s, a) := Q⇡(s, a)� V ⇡(s)). Generally, one can define the advantage/value106

of one policy with respect to another using A⇡(s,⇡0) := E[Q⇡(s, a) � V ⇡(s) | a ⇠ ⇡0(·|s)] and107

Q⇡(s,⇡0) := E[Q⇡(s, a) | a ⇠ ⇡0(·|s)]. Finally, the payoff of a policy ⌘⇡ := E[V ⇡(s); s ⇠ µ] is the108

average value over the initial states distribution of the MDP.109

Probabilistic and mathematical notations. Sometimes we refer to
R
f(x)g(x)dx integrals as110

hf, gix Hilbert space inner products. Assuming that ⇣ and ⌫ are two probabilistic densities,111

the Kulback-Liebler (KL) divergence is DKL(⇣|⌫) := h⇣(x), log( ⇣(x)
⌫(x) )ix, the Total-Variation112

(TV) distance is TV(⇣, ⌫) =: 1
2 h|⇣(x) � ⌫(x)|, 1ix, and the Wasserstein distance is W (⇣, ⌫) =113

inf�2�(⇣,⌫)hkx � yk, �(x, y)ix,y where �(⇣, ⌫) is the set of couplings for ⇣ and ⌫. We de-114

fine Lip(f(x, y);x) := sup
x
krxf(x, y)k2 and assume the existence of Lip(Q⇡(s, a); a) and115

kLip(rsQ⇡(s, a); a)k2 constants. Under this notation, the Rubinstein-Kantrovich (RK) duality116

states that the |h⇣(x)� ⌫(x), f(x)ix| W (⇣, ⌫) · Lip(f ;x) bound is tight for all f . For brevity, we117

may abuse the notation and denote sup
s
W (⇡1(·|s),⇡2(·|s)) with W (⇡1,⇡2) (and similarly for other118

measures). For parameterized policies, we definer⇡f(⇡) := r✓f(⇡) where ⇡ is parameterized by119

the vector ✓. Table 1 of the Supplementary Material summarizes all these mathematical definitions.120

Policy gradient preliminaries. The advantage decomposition lemma provides insight into the121

relationship between payoff improvements and advantages [19]. That is,122

⌘⇡2 � ⌘⇡1 =
1

1� �
· E

s⇠⇢
⇡2
µ
[A⇡1(s,⇡2)]. (1)

We will denote the current and the candidate next policy as ⇡1 and ⇡2, respectively. Taking derivatives123

of both sides with respect to ⇡2 at ⇡1 yields124

r⇡2⌘⇡2 =
1

1� �


hr⇡2⇢

⇡2
µ
(·), A⇡1(·,⇡1)i+ h⇢⇡1

µ
(·),r⇡2A

⇡1(·,⇡2)i
�
. (2)

Since ⇡1 does not have any advantage over itself (i.e., A⇡1(·,⇡1) = 0), the first term is zero. Thus,125

the Policy Gradient (PG) theorem is derived as126

r⇡2⌘⇡2

���
⇡2=⇡1

=
1

1� �
· E

s⇠⇢
⇡1
µ
[r⇡2A

⇡1(s,⇡2)]
���
⇡2=⇡1

. (3)

For policy iteration with function approximation, we assume ⇡2 and ⇡1 to be parameterized by ✓2127

and ✓1, respectively. One can view the PG theorem as a Taylor expansion of the payoff at ✓1.128

A brief introduction of the Conservative Policy Iteration (CPI) [19], the Trust Region Policy Opti-129

mization (TRPO) [38], the Proximal Policy Optimization (PPO) [39], the Deep Deterministic Policy130

Gradient (DDPG) [28], and the Twin-Delayed Deterministic Policy Gradient (TD3) [10] policy131

gradient methods is left to the Supplementary Material. Whether using deterministic policy gradients132

(e.g., DDPG and TD3) or stochastic policy gradients (e.g., TRPO and PPO), all these methods still133

perform stochastic search by adding stochastic noise to the deterministic policies to force exploration.134

Reinforcement learning challenges. Non-local rewards and soft horizon scalability are two major135

challenges in reinforcement learning. Due to space constraints, we leave the discussion of these136

challenges with simple and intuitive numerical examples to the Supplementary Material. The rest of137

the paper assumes the reader’s familiarity with these concepts.138
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2 Monotonic Policy Improvement Guarantee139

We use the Wasserstein metric because it allows the effective measurement of distances between140

probability distributions or functions with non-overlapping support, such as deterministic policies,141

unlike the KL divergence or TV distance which are either unbounded or maximal in this case. The142

physical transition model’s smoothness enables the use of the Wasserstein distance to regularize143

deterministic policies. Therefore, we make the following two assumptions about the transition model:144

W (P(µ,⇡1),P(µ,⇡2))  L⇡ ·W (⇡1,⇡2), (4)
W (P(µ1,⇡),P(µ2,⇡))  Lµ ·W (µ1, µ2). (5)

Also, we make the dynamics stability assumption sup
P

t

k=1 L̂
(k�1)
µ,⇡1,⇡2

Q
t�1
i=k+1 L̃

(i)
µ,⇡1,⇡2 <1, with145

the definitions of the new constants and further discussion of the implications deferred to the146

Supplementary Material where we also discuss Assumptions 4 and 5 and the existence of other147

Lipschitz constants which appeare as coefficients in the final lower bound.148

The advantage decomposition lemma can be rewritten as149

⌘⇡2 = ⌘⇡1 +
1

1� �
· E

s⇠⇢
⇡1
µ
[A⇡1(s,⇡2)] +

1

1� �
· h⇢⇡2

µ
� ⇢⇡1

µ
, A⇡1(·,⇡2)is. (6)

The h⇢⇡2
µ
� ⇢⇡1

µ
, A⇡1(·,⇡2)i term has zero gradient at ⇡2 = ⇡1, which qualifies it to be crudely called150

“the second-order term”. We dedicate a full section of our Supplementary Material to the theoretical151

derivations and proofs necessary to lower-bound this second-order term into an objective well-suited152

form for practical optimization. Next, we present the theoretical bottom line and the final bound:153

Lsup
⇡1

(⇡2) = ⌘⇡1 +
1

1� �
E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)]� C2 · sup

s


W (⇡2(a|s),⇡1(a|s))2

�

�C1 · sup
s

����rs0W

✓
⇡2(a|s0) + ⇡1(a|s)

2
,
⇡2(a|s) + ⇡1(a|s0)

2

◆����
s0=s

����
2

2

�
. (7)

For brevity, we denote the
��rs0W (· · · )

��
s0=s

��2
2

expression as LG2(⇡1,⇡2; s) in the rest of the paper.154

We have ⌘⇡2 � Lsup
⇡1

(⇡2) and Lsup
⇡1

(⇡1) = ⌘⇡1 . This facilitates the application of Theorem 2.1 as an155

instance of Minorization-Maximization algorithms [17].156

Theorem 2.1. Successive maximization of Lsup
yields non-decreasing policy payoffs.157

Proof. With ⇡2 = argmax
⇡
Lsup
⇡1

(⇡), we have Lsup
⇡1

(⇡2) � Lsup
⇡1

(⇡1). Thus,158

⌘⇡2 � Lsup
⇡1

(⇡2) and ⌘⇡1 = Lsup
⇡1

(⇡1) =) ⌘⇡2 � ⌘⇡1 � Lsup
⇡1

(⇡2)� Lsup
⇡1

(⇡1) � 0. (8)

Successive optimization of Lsup
⇡1

(⇡2) generates non-decreasing payoffs. However, it is impractical159

due to the large number of constraints and statistical estimation of maximums. To mitigate this, we160

take a similar approach to TRPO and replace the maximums with expectations over the observations.161

The coefficients C1 and C2 are dynamics-dependent. In the basic variant of our method, we used162

constant coefficients and a trust region. This yields the Truly Deterministic Policy Optimization163

(TDPO) as given in Algorithm 1. See the Supplementary Material for practical notes on the manual164

choice of C1 and C2. Alternatively, one could adopt processes similar to Schulman et al. [38] where165

the IS-based advantage estimator used a line search for proper step size selection, or the adaptive166

penalty coefficient setting in Schulman et al. [40]. In the advanced variant of our method, we167

implement such a line search procedure by collecting samples from the environment and picking the168

coefficient yielding the best improvement. This comes at an increase in the sample complexity, but169

the benefits can outweigh the added costs. Furthermore, the exploration scale in the sampling oracle170

is adaptively tuned using the collected payoffs in the advanced variant; by constructing an importance171

sampling derivative estimate for the exploration scale parameter, stochastic gradient descent can be172

used to tune the exploration scale individually.173

2.1 On the interpretation of the surrogate function174

For deterministic policies, the squared Wasserstein distance W (⇡2(a|s),⇡1(a|s))2 degenerates to175

the Euclidean distance over the action space. Any policy defines a sensitivity matrix at a given176
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Algorithm 1 Truly Deterministic Policy Optimization (TDPO)
Require: Initial policy ⇡0.
Require: Advantage estimator and sample collector oracle A⇡ .

1: for k = 1, 2, . . . do
2: Collect trajectories and construct the advantage estimator oracle A⇡k .
3: Compute the policy gradient g at ✓k : g  r✓0A⇡k(⇡0)|⇡0=⇡k

4: Construct a surrogate Hessian vector product oracle v ! H · v such that for ✓0 = ✓k + �✓,

E
s⇠⇢

⇡k
µ


W (⇡0(a|s),⇡k(a|s))2

�
+

C1

C2
E
s⇠⇢

⇡k
µ


LG2(⇡0,⇡k; s)

�
=

1

2
�✓TH�✓ + h.o.t., (9)

where h.o.t. denotes higher order terms in �✓.
5: Find the optimal update direction �✓⇤ = H�1g using the Conjugate Gradient algorithm.
6: (Basic Variant) Determine the best step size ↵⇤ within the trust region:

↵⇤ =argmax
↵

gT (↵�✓⇤)� C2

2
(↵�✓⇤)TH(↵�✓⇤)

s.t.
1

2
(↵⇤�✓⇤)TH(↵⇤�✓⇤)  �2max (10)

7: (Advanced Variant) Determine the best step size ↵⇤ using a line-search procedure and pick the
best one; each coefficient’s performance can be evaluated by sampling from the environment.

8: (Advanced Variant) Update the exploration scale in A⇡ using the collected samples.
9: Update the policy parameters: ✓k+1  ✓k + ↵⇤�✓⇤.

10: end for

Algorithm 2 Deterministic Vine (DeVine) Policy Advantage Estimator
Require: The number of parallel workers K
Require: A policy ⇡, an exploration policy q, discrete time-step distribution ⌫(t), initial state

distribution µ(s), and the discount factor �.
1: Sample an initial state s0 from µ, and then roll out a trajectory ⌧ = (s0, a0, s1, a1, · · · ) using ⇡.
2: for k = 1, 2, · · · ,K do
3: Sample the integer number t = tk from ⌫.
4: Compute the value V ⇡1(st) =

P1
i=t

�t�iR(si, ai).
5: Reset the initial state to st, sample the first action a0

t
according to q(·|st), and use ⇡ for the

rest of the trajectory. This will create ⌧ 0 = (st, a0t, s
0
t+1, a

0
t+1, · · · ).

6: Compute the value Q⇡1(st, a0t) =
P1

i=t
�t�iR(s0

i
, a0

i
).

7: Compute the advantage A⇡1(st, a0t) = Q⇡(st, a0t)� V ⇡(st).
8: end for

9: Define A⇡1(⇡2) :=
1

K

KX

k=1

dim(A) · �tk

⌫(tk)
·
(⇡2(s)� atk)

T (a0
tk
� atk)

(a0
tk
� atk)

T (a0
tk
� atk)

·A⇡1(stk , a
0
tk
).

10: Return A⇡1(⇡2) and r⇡2A⇡1(⇡2) as unbiased estimators for E
s⇠⇢

⇡1
µ
[A⇡1(s,⇡2)] and PG, re-

spectively.

state s, which is the Jacobian matrix of the policy output with respect to s. The policy sensitivity177

term LG2(⇡1,⇡2; s) is essentially the squared Euclidean distance over the action-to-observation178

Jacobian matrix elements. In other words, our surrogate prefers to step in directions where the179

action-to-observation sensitivity is preserved within updates.180

Although our surrogate uses a metric distance instead of the traditional non-metric measures for regu-181

larization, we do not consider this sole replacement a major contribution. The squared Wasserestein182

distance and the KL divergence of two identically-scaled Gaussian distributions are the same up183

to a constant (i.e., DKL(N (m1,�)kN (m2,�)) = W (N (m1,�),N (m2,�))2/2�2). On the other184

hand, our surrogate’s compatibility with deterministic policies makes it a valuable asset for our185

policy gradient algorithm; both W (⇡2(a|s),⇡1(a|s))2 and LG2(⇡1,⇡2; s) can be evaluated for two186

deterministic policies ⇡1 and ⇡2 numerically without any approximations to overcome singularities.187
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Figure 1: Results for the simple pendulum with non-local rewards. Upper panel: training curves
with empirical discounted payoffs. Lower panels: trajectories in both the time domain and frequency
domain, showing target values of oscillation frequency, amplitude, and offset. The basic variant of
our method (non-adaptive exploration scales and update coefficients) was used in this experiment.

3 Model-Free Estimation of Policy Gradient188

The DeVine advantage estimator is formally defined in Algorithm 2. Unlike DDPG and TD3, the189

DeVine estimator allows our method to perform deterministic search by not consistently injecting190

noise in actions for exploration. Under deterministic dynamics and policies, if DeVine samples each191

dimension at each time-step exactly once then in the limit of small exploration scale � it can produce192

exact advantages, as stated in Theorem 3.1, whose proof is deferred to the Supplementary Material.193

Theorem 3.1. Assume a finite horizon MDP with both deterministic transition dynamics P and194

initial distribution µ, with maximal horizon length of H . Define K = H · dim(A), a uniform ⌫, and195

q(s;�) = ⇡1(s) + �ej in Algorithm 2 with ej being the jth basis element for A. If the (j, tk) pairs196

are sampled to exactly cover {1, · · · , dim(A)}⇥ {1, · · · , H}, then we have197

lim
�!0
r⇡2A⇡1(⇡2)

��
⇡2=⇡1

= r⇡2⌘⇡2

��
⇡2=⇡1

. (11)

Theorem 3.1 provides a guarantee for recovering the exact policy gradient if the initial state distri-198

bution was deterministic and all time-steps of the trajectory were used to branch vine trajectories.199

Although this theorem sets the stage for computing a fully deterministic gradient, stochastic ap-200

proximation can be used in Algorithm 2 by randomly sampling a small set of states for advantage201

estimation. In other words, Theorem 3.1 would use ⌫ to deterministically sample all trajectory states,202

whereas this is not a practical requirement for Algorithm 2 and the gradients are still unbiased if a203

random set of vine branches is used.204

The DeVine estimator can be advantageous in at least two scenarios. First, in the case of rewards that205

cannot be decomposed into summations of immediate rewards. For example, overshoot penalizations206

or frequency-based rewards as used in robotic systems are non-local. DeVine can be robust to207

non-local rewards as it is insensitive to whether the rewards were applied immediately or after a long208

period. Second, DeVine can be an appropriate choice for systems that are sensitive to the injection of209

noise, such as high-bandwidth robots with natural resonant frequencies. In such cases, using white210

(or colored) noise for exploration can excite these resonant frequencies and cause instability, making211

learning difficult. DeVine avoids the need for constant noise injection.212
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Figure 2: Results for the leg environment with a long horizon and resonant frequencies due to ground
compliance. Upper panel: training curves with empirical discounted payoffs. Lower panel: partial
trajectories, restricted to times shortly before and after impact with the ground. Note the oscillations
at about 100 Hz that appear just after the impact at 0.2 s—these oscillations are evidence of a resonant
frequency. The basic variant of our method (non-adaptive exploration scales and update coefficients)
was used in this experiment.

4 Experiments213

The next three subsections show challenging robotic control tasks including frequency-based non-214

local rewards, long horizons, and sensitivity to resonant frequencies. In Sections 4.1 and 4.2, we use215

the basic variant of our method (i.e., fixed exploration scale and update coefficient hyper-parameters216

throughout the training). This will facilitate a better understanding of our core method’s capabilities217

without any additional tweaks. See the Supplementary Material for a comparison on traditional gym218

environments, where the basic variant of TDPO works similarly to existing methods. Section 4.3219

includes the most difficult setting in our paper, where we use the advanced variant of our method (i.e.,220

with line-search for the update coefficient and adaptive exploration scales).221

4.1 An Environment with Non-Local Rewards 1222

The first environment that we consider is a simple pendulum. The transition function is standard—the223

states are joint angle and joint velocity, and the action is joint torque. The reward function is non-224

standard—rather than define a local reward in the time domain with the goal of making the pendulum225

stand upright (for example), we define a non-local reward in the frequency domain with the goal226

of making the pendulum oscillate with a desired frequency and amplitude about a desired offset.227

In particular, we compute this non-local reward by taking the Fourier transform of the joint angle228

signal over the entire trajectory and by penalizing differences between the resulting power spectrum229

and a desired power spectrum. We apply this non-local reward at the last time step of the trajectory.230

Implementation details and similar results for more pendulum variants are left to the Supplementary231

Material.232

1Non-local rewards are reward functions of the entire trajectory whose payoffs cannot be decomposed into
the sum of terms such as ⌘ =

P
t ft(st, at), where functions ft only depend on nearby states and actions. An

example non-local reward is one that depends on the Fourier transform of the complete trajectory signal.
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Figure 3: The best payoff vs. the Hyper-Parameter Optimization (HPO) iteration on a short-horizon
variant of the legged robotic environment. The HPOs are performed for each of the TRPO, PPO,
and TD3 methods in a separate panel. DDPG is a special case of TD3 with HPO. Since TD3 was
considerably more expensive, we only show Optuna and ProSRS for it.

Figure 4: Post Hyper-Parameter Optimization (HPO) training curves with the best settings found for
TRPO and PPO compared to the advanced variant of our method (TDPO with adaptive exploration
scales and line search). TD3 had a significantly poor performance in the initial parameter sweeps.
Due to resource limitations and poor initial performance, we excluded TD3 from this experiment.

Figure 1 shows training curves for TDPO (our method) as compared to TRPO, PPO, DDPG, and233

TD3. These results were averaged over 25 experiments in which the desired oscillation frequency was234

1.7 Hz (different from the pendulum’s natural frequency of 0.5 Hz), the desired oscillation amplitude235

was 0.28 rad, and the desired offset was 0.52 rad. Figure 1 also shows trajectories obtained by the236

best agents from each method. TDPO (our method) was able to learn high-reward behavior and to237

achieve the desired frequency, amplitude, and offset. TRPO was able to learn the correct offset but238

did not produce any oscillatory behavior. TD3 also learned the correct offset, but could not produce239

desirable oscillations. PPO and DDPG failed to learn any desired behavior.240

4.2 An Environment with Long Horizon and Resonant Frequencies2241

The second environment that we consider is a single leg from a quadruped robot [34]. This leg has242

two joints, a “hip” and a “knee,” about which it is possible to exert torques. The hip is attached to a243

slider that confines motion to a vertical line above flat ground. We assume the leg is dropped from244

some height above the ground and the task is to recover from this drop and to stand upright at rest245

after impact. States given to the agent are the angle and velocity of each joint (slider position and246

velocity are hidden), and actions are the joint torques. The reward function penalizes difference from247

an upright posture, slipping or chattering at the contact between the foot and the ground, non-zero248

joint velocities, and steady-state joint torque deviations. We use the open-source MuJoCo software249

for simulation [43], with high-fidelity models of ground compliance, motor nonlinearity, and joint250

friction. The control loop rate is 4000 Hz and the rollout length is 2 s, resulting in a horizon of 8000251

steps. Implementation details are left to the Supplementary Material.252

2Resonant frequencies are a concept from control theory. In the frequency domain, signals of certain
frequencies are excited more than others when applied to a system. This is captured by the frequency-domain
transfer function of the system, which may have a peak of magnitude greater than one. The resonant frequency
is the frequency at which the frequency-domain transfer function has the highest amplitude. Common examples
of systems with a resonant frequency include the undamped pendulum, which oscillates at its natural frequency,
and RLC circuits which have characteristic frequencies at which they are most excitable. See Chapter 8 of Kuo
and Golnaraghi [27] for more information.
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Figure 2 shows training curves for TDPO (our method) as compared to TRPO, PPO, DDPG and TD3.253

These results were averaged over 75 experiments. A discount factor of � = 0.99975 was chosen254

for all methods, where (1� �)�1 is half the trajectory length. Similarly, the GAE factors for PPO255

and TRPO were scaled up to 0.99875 and 0.9995, respectively, in proportion to the trajectory length.256

Figure 2 also shows trajectories obtained by the best agents from each method. TDPO (our method)257

was able to learn high-reward behavior. TRPO, PPO, DDPG, and TD3 were not.258

We hypothesize that the reason for this difference in performance is that TDPO better handles the259

combination of two challenges presented by the leg environment—an unusually long time horizon260

(8000 steps) and the existence of a resonant frequency that results from compliance between the foot261

and the ground (note the oscillations at a frequency of about 100 Hz that appear in the trajectories262

after impact). Both high-speed control loops and resonance due to ground compliance are common263

features of real-world legged robots to which TDPO seems to be more resilient.264

4.3 Practical Training and Hardware Implementation265

For the most realistic setting, we take the environment from the previous section and make it highly266

stochastic by (a) injecting noise into the transition dynamics P , and (b) making the initial state267

distribution µ as random as physically possible. We also systematically perform Hyper-Parameter268

Optimization (HPO) on all methods to allow the most fair comparison.269

Figure 5: The simulation-to-
real transfer of the best TDPO
agent to perform a successful
drop test at 4 kHz control rate.

The choice of the HPO method can have a significant impact on the270

RL agent’s performance. We consider a list of five off-the-shelf HPO271

implementations and run them in their default settings: Optuna [2],272

BayesianOptimization [32], Scikit-Optimize [14], GPyOpt [12], and273

ProSRS [41]. These implementations include a range of HPO meth-274

ods, including Gaussian processes and tree Parzen estimators. For275

better performance, HPO methods need a reasonable set of initial276

hyper-parameter guesses. For this, we perform a one-variable-at-277

a-time parameter sweep along every hyper-parameter near the RL278

method’s default hyper-parameters. These parameter sweep results279

are then input to each HPO method for full optimization. Using all280

HPO algorithms for all RL methods in the long-horizon environment281

(where each full training run takes 5 billion samples) is computa-282

tionally infeasible. To pick the best HPO method, we benchmark a283

short-horizon environment with only 200 time-steps in a trajectory.284

The result is shown in Figure 3 (see the Supplementary Material for285

full details on the HPO methods). Overall, we found that Optuna286

and ProSRS are the best HPO methods on the test problem. Since Optuna is widely-test and arguably287

the most popular HPO library, we pick it as the main HPO method for our long-horizon environment.288

We repeat the same HPO procedure on the long-horizon environment using Optuna, and pick the289

best hyper-parameters found in the course of HPO for a final training. Figure 4 shows this final290

training. TDPO shows superior performance in this highly stochastic environment, and such benefits291

cannot be obtained by merely performing HPO on other methods. To showcase the practicality of our292

method, we picked the best TDPO trained agent, and implemented it on the physical hardware. The293

transferred agent was able to successfully perform drop-and-catch tests on the robot system at 4 kHz,294

with both global control and suppression of high-frequency transients. Figure 5 shows a glimpse of295

this test, and a short video is also included in the code repository.296

5 Discussion297

We proposed a deterministic policy gradient method (TDPO: Truly Deterministic Policy Optimization)298

based on the use of a deterministic Vine (DeVine) gradient estimator and the Wasserstein metric.299

We proved monotonic payoff guarantees for our method, and defined a novel surrogate for policy300

optimization. We showed numerical evidence for superior performance with non-local rewards301

defined in the frequency domain and a realistic long-horizon resonant environment. This method302

enables applications of policy gradient to customize frequency response characteristics of agents.303

Our work assumed continuous environments, and future work should include the adaptation of our304

method to environments with discrete state and action spaces.305
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