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Abstract

Backdoor attack has emerged as a major security threat to deep neural networks1

(DNNs). While existing defense methods have demonstrated promising results on2

detecting and erasing backdoor triggers, it is still not clear if measures can be taken3

to avoid the triggers from being trained into the model in the first place. In this paper,4

we introduce the concept of anti-backdoor learning, of which the aim is to train5

clean models out of backdoor-poisoned data. We frame the overall learning process6

as a dual-task of learning the clean portion of data and learning the backdoored7

portion of data. From this view, we identify two weaknesses from the inherent8

features of backdoor attacks: 1) the models learn backdoored data at a much faster9

rate than learning clean data, and the stronger the attack the faster the models10

converge on the backdoored data; and 2) the backdoor task is tied to a specific class11

(the backdoor target class). Based on these two weaknesses, we propose a general12

learning scheme, Anti-Backdoor Learning (ABL), to automatically break backdoor13

attack during training. ABL introduces a two-stage gradient ascent mechanism into14

standard training to 1) help isolate backdoored data at an early training stage, and15

2) break the correlation between the backdoored data and the target class at a later16

training stage. Through extensive experiments on multiple benchmark datasets17

against 6 state-of-the-art attacks, we empirically show that ABL-trained models on18

backdoor-poisoned data achieve almost the same performance as they were trained19

on purely clean data.20

1 Introduction21

Backdoor attacks are a type of training-time data poisoning attacks that implant backdoor triggers22

into machine learning models by injecting the trigger patterns into a small proportion of the training23

data [1]. The objective of backdoor attacks is to trick the model to learn a strong but task-irrelevant24

correlation between the trigger pattern and a target class, and aim to optimize three objectives:25

stealthiness of the trigger pattern, injection (poisoning) rate and attack success rate. A backdoored26

model performs normally on clean test data yet consistently predicts the target class whenever the27

trigger pattern is attached to a test example. Studies have shown that the widely adopted deep neural28

networks (DNNs) are particularly vulnerable to backdoor attacks [2]. Backdoor triggers are generally29

easy to implant but hard to detect or erase, posing significant security threats to deep learning.30

Existing defense methods against backdoor attacks can be categorized into two types: detection meth-31

ods and erasing methods. Detection methods exploit representation statistics or model properties to32

determine whether the model is backdoored [3, 4], or whether a training/test example is a backdoored33

example [5, 6]. Whilst detection can help identify potential risks, the backdoored model still needs to34

be purified. Erasing methods [7, 8, 9] take one step further and remove triggers from backdoored35

models. While existing defenses have demonstrated promising results, it is still not clear in the36

current literature whether any behavioral differences exist when models learn on backdoored data37
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instead of clean data. The explorations of these aspects lead to a fundamental yet so far overlooked38

question “Is it possible to train a clean model on poisoned data"?39
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Figure 1: Attack success rate (ASR)
of 6 backdoor attacks under different
poisoning rates on CIFAR-10. 4 out of
the 6 attacks can achieve nearly 100%
ASR with only 0.5% poisoning rate.

Intuitively, if the backdoored data can be identified during40

training, measures can be taken to prevent this data from41

being learned. However, we find that this is not an easy42

task. One reason is that we do not know the distribution of43

backdoored data in advance. As shown in Figure 1, a high44

attack success rate can still be achieved on CIFAR-10 by45

different attacks even though the poisoning rate is less than46

1%. This significantly increases the difficulty of backdoor47

data detection as the model’s learning behavior may stay48

the same with or without a few examples. Even worse, the49

dataset might be completely clean and we may accidentally50

remove a lot of valuable data. One more important reason51

is that the backdoor may have already been learned by the52

model even if the backdoor examples are identified at a later53

training stage.54

In this paper, we frame the overall learning process of models on backdoor-poisoned datasets as55

a dual-task learning problem, with the learning of the clean portion as the original task and the56

learning of the backdoored portion as the backdoor task. By investigating the distinctive learning57

behaviors of the model for these two tasks, we identify two inherent features of backdoor attacks58

as their weaknesses. First, the backdoor task is a much easier task compared to the original task.59

Consequently, the training loss of backdoored portion drops abruptly in early epochs of training,60

whereas the loss of clean examples decreases in a steady pace. We also find that the stronger the attack,61

the faster the loss on backdoored data drops. This finding indicates that the backdoor correlations62

imposed by stronger attacks are easier and faster to learn, and marks one unique learning behavior63

on backdoored data. Second, the backdoor task is tied to a specific class (i.e., the backdoor target64

class). This indicates that the correlation between the trigger pattern and the target class could be65

easily broken by simply randomizing the class target, for instance, shuffling the labels of a small66

proportion of examples with low loss.67

Inspired by the above observations, we propose a principled Anti-Backdoor Learning (ABL) scheme68

that enables the training of clean models without the prior knowledge of the distribution of backdoored69

data in datasets. ABL introduces a gradient ascent based anti-backdoor mechanism into the standard70

training to help isolate low-loss backdoor examples at an early training and unlearn the backdoor71

correlation once backdoor examples are isolated. In summary, our main contributions are:72

• We present a novel view of the problem of robust learning with poisoned data and reveal two73

inherent weaknesses of backdoor attacks: faster learning on backdoored data and target-class74

dependency. The stronger the attack the more easily it can be detected or disrupted.75

• We propose a novel Anti-Backdoor Learning (ABL) method that is capable of training clean models76

on poisoned data. To the best of our knowledge, ABL is the first method of its kind in the backdoor77

defense literature, complementing existing defense methods.78

• We empirically show that our ABL is robust to 6 state-of-the-art backdoor attacks. The models79

trained using ABL are of almost the same clean accuracy as they were directly trained on clean80

data and the backdoor attack success rates on these models are close to random guess.81

2 Related Work82

Backdoor Attack. Existing backdoor attacks aim to optimize three main objectives: 1) making the83

trigger pattern stealthier; 2) reducing the injection (poisoning) rate; 3) increasing the attack success84

rate. Creative design of trigger patterns can help with the stealthiness of the attack. These can be85

simple patterns such as a single pixel [5] and a black-white checkerboard [1], or more complex86

patterns including blending backgrounds [10], natural reflections [11], invisible noise [12, 13, 14, 15],87

and adversarial patterns [16]. Backdoor attacks can be further divided into two categories: dirty-label88

attacks [1, 10, 11] and clean-label attacks [17, 18, 19, 16, 15]. Clean-label attacks are arguably89

stealthier as they do not change the labels. Backdoor attackers can also inject patterns via retraining90
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the victim model on a reverse-engineered dataset without accessing the original training data [20].91

Most of these attacks can achieve a high success rate (e.g., > 95%) by poisoning only 10% or even92

less of the training data. A recent study by Zhao et al.[21] showed that even models trained on clean93

data can have backdoors, highlighting the importance of anti-backdoor learning.94

Backdoor Defense. Most existing backdoor defenses fall under the categories of either detection-95

based methods or erasing-based methods. Detection-based methods aim to detect anomalies in96

input data [6, 5, 22, 23, 24, 25] or whether a model is backdoored [3, 4, 26, 27]. These methods97

typically show promising accuracies; however, the potential impact of backdoor triggers remains98

uncleared in the backdoored models. On the other hand, erasing-based methods take a step further99

and aim to purify the adverse impacts on models caused by the backdoor triggers. The current100

state-of-the-art erasing methods are Mode Connectivity Repair (MCR) [8] and Neural Attention101

Distillation (NAD) [9]. MCR mitigates the backdoors by selecting a robust model in the path of102

loss landscape, while NAD leverages knowledge distillation techniques to erase triggers. Other103

previous methods, including standard finetuning, traditional denoising, and fine-pruning [7], have104

been demonstrated to be insufficient against the latest attacks [28, 29, 11].105

In this paper, we introduce the concept of anti-backdoor learning. Unlike existing methods, our goal106

is to train clean models directly out of the poisoned datasets without altering the models or the input107

data further. This requires a more in-depth understanding of the distinctive learning behaviors on108

backdoored data. However, such information is not available in the current literature. Anti-backdoor109

learning methods may replace the standard training to prevent potential backdoor attacks in real-world110

scenarios where data sources are not 100% reliable, and the distribution or even the existence of111

backdoor examples are unknown.112

3 Anti-Backdoor Learning113

In this section, we first formulate the anti-backdoor learning (ABL) problem, then reveal the distinctive114

learning behaviors on clean versus backdoor examples and introduce our proposed ABL method.115

Here, we focus on classification tasks with deep neural networks.116

Defense Setting. We assume the backdoor adversary has pre-generated a set of backdoor examples117

and has successfully injected these examples into the training dataset. We also assume the defender118

has full control over the training process but has no prior knowledge of the proportion of backdoor119

examples in the given dataset. The defender’s goal is to train a model on the given dataset (clean or120

poisoned) that is as good as models trained on purely clean data. Moreover, if an isolation method is121

used, the defender may identify only a subset of the backdoor examples. For instance, in the case of122

10% poisoning, the isolation rate might only be 5% or even less.123

Problem Formulation. Consider a standard classification task with a dataset D = Dc ∪ Db where124

Dc denoting the subset of clean data and Db denoting the subset of backdoor data. The standard125

training trains a DNN model fθ by minimizing the following empirical error:126

L = E(x,y)∼D[`(fθ(x), y)] = E(x,y)∼Dc
[`(fθ(x), y)]︸ ︷︷ ︸

clean task

+E(x,y)∼Db
[`(fθ(x), y)]︸ ︷︷ ︸

backdoor task

, (1)

where `(·, ·) denotes the loss function such as the commonly used cross entropy loss. The overall127

learning task is decomposed into two tasks where the first clean task is defined on the clean data Dc128

while the second backdoor task is defined on the backdoor data Db. Since backdoor examples are129

often associated with a particular target class, all data from Db may share the same class label. The130

above decomposition indicates that the standard learning approach tends to learn both tasks, resulting131

in a backdoored model.132

To prevent backdoor examples from being learned, we propose anti-backdoor learning to minimize133

the following empirical error instead:134

L = E(x,y)∼Dc
[`(fθ(x), y)]− E(x,y)∼Db

[`(fθ(x), y)]. (2)

Note the maximization of the backdoor task is defined on Db. Unfortunately, the above objective is135

undefined during training since we do not know the Db subset. Intuitively, Db can be detected and136

isolated during training if the model exhibits an atypical learning behavior on the backdoor examples.137

In the following subsection, we will introduce one such behavior, which we recognize as the first138

weakness of backdoor attacks.139
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Figure 2: The training loss on clean versus backdoor examples crafted by 6 backdoor attacks including
BadNets, Trojan, Blend, Dynamic, SIG, and CL. This experiment is conducted on CIFAR-10 with
poisoning rate 10% and ResNet-18 [32]. ASR: attack success rate.

3.1 Unique Learning Behaviors on backdoor examples140

We apply 6 backdoor attacks including BadNets [1], Trojan [20], Blend [10], Dynamic [30], SIG141

[31], and CL [18] to poison 10% of CIFAR-10 training data. We train a ResNet-18 model [32] on the142

corresponding backdoored dataset using the standard training method by solving equation (1) for143

each attack. Each model is trained following standard settings (see Section 4 and Appendix A.2). We144

plot the average training loss (i.e. cross entropy) on clean versus backdoored training examples in145

Figure 2. Clearly, for all 6 attacks, the training loss on backdoor examples drops quickly to zero at a146

very early stage (i.e., before 5 epochs), while the training loss on clean examples decreases to zero147

until the 20-th epoch. For all attacks except SIG, the training loss reaches almost zero after only two148

epochs of training. Moreover, according to the attack success rate, the stronger the attack the faster149

the training loss on backdoor examples drops.150

The above observation indicates that the backdoor task is much easier than the clean task. This is151

not too surprising. In a typical clean dataset, not all examples are easy examples. Thus, it requires a152

certain number of training epochs to minimize the loss on those examples, even for small datasets like153

CIFAR-10. On the contrary, a backdoor attack adds a direct correlation between the trigger pattern154

and the target class to simplify and accelerate the injection of the backdoor trigger. We argue that this155

is a fundamental requirement and also a major weakness of backdoor attacks. For backdoor attacks156

to work successfully, the triggers should be easily learnable by the models, or else the attack would157

lose its effectiveness or require a much higher injection rate, which goes against its key objectives.158

Therefore, the stronger the attack the faster the training loss on backdoor examples drops to zero, e.g.,159

comparing SIG with other attacks in Figure 2. We also show in Figure 7 in Appendix B.1 that the160

training loss of the backdoor task drops more rapidly as we increase the poisoning rate.161

Based on the above observation, one may wonder if backdoor examples can be easily removed by162

filtering out the low-loss examples at an early stage (e.g., the 5-th epoch). However, we find that163

this strategy is not effective due to two reasons. First, the training loss in Figure 2 is the average164

training loss which means some backdoor examples can still have high training loss. Additionally,165

several powerful attacks such as Trojan and Dynamic can still succeed even with very few (50 or 100)166

backdoor examples. Second, if the training progresses long enough (e.g., beyond epoch 20), many167

clean examples will also have a low training loss, which makes the filtering significantly inaccurate.168

Therefore, we need a strategy to amplify the difference in training loss between clean and backdoor169

examples. Moreover, we need to unlearn the backdoor since the backdoor examples can only be170

identified when they are learned into the model (i.e., low training loss).171
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3.2 Proposed Anti-Backdoor Learning Method172

Suppose the total number of training epochs is T , we decompose the entire training process into two173

stages, i.e., early training and later training. We denote the turning epoch from early training to later174

training by Tte. Our anti-backdoor learning method consists of two key techniques: 1) backdoor175

isolation during early training; and 2) backdoor unlearning during later training. The turning epoch176

is chosen to be the epoch where the average training loss stabilizes at a certain level.177

Backdoor Isolation. During early training, we propose a local gradient ascent (LGA) technique to178

trap the loss value of each example around a certain threshold γ. We use the loss function LLGA in179

equation (3) to achieve this. The gradient ascent is said to be “local” because the maximization is180

performed only around a fixed loss value γ. In other words, if the loss of a training example goes181

below γ, gradient ascent will be activated to boost its loss to γ; otherwise, the loss stays the same.182

Doing so allows us to effectively prevent clean examples from having a loss value smaller than γ,183

whereas backdoor examples can escape this constraint since their loss values drop significantly faster.184

The choice of an appropriate γ lies in the core of this strategy, as an overly large γ will hurt the185

learning of the clean task, while an overly small γ may not be strong enough to segregate the clean186

task from the backdoor task. We will show the optimal value of γ and its consistency across different187

datasets and models empirically. At the end of early training, we segregate examples into disjoint188

subsets: data with the bottom p percent loss will be isolated into the backdoor set D̂b (p = |D̂b|/|D|),189

and the rest into the clean set D̂c (D = D̂b ∪ D̂c). An important note here is that the isolation rate190

(e.g. p = 1%) is assumed to be much smaller than the poisoning rate (e.g. 10%).191

Backdoor Unlearning. With the clean and backdoor sets, we can then continue with the later training.192

Note that at this stage, the backdoor has already been learned by the model. Given the above low193

isolation rate, an effective backdoor unlearning method is required to make the model unlearn the194

backdoor with a small subset D̂b of backdoor examples while simultaneously learning the remaining195

(unisolated) backdoor examples in the clean set D̂c. We make this possible by exploiting the second196

weakness of backdoor attacks: the backdoor trigger is usually associated with a particular backdoor197

target class. We propose to use the loss LGGA defined in equation (2) for this purpose. In LGGA, a198

global gradient ascent (GGA) is defined on the isolated subset D̂b. Unlike the local gradient ascent,199

it is not constrained to be around a fixed loss value. We will show in Section 4.2 that a low isolation200

rate of 1% is able to effectively unlearn the backdoor trigger against a high poising rate up to 70%.201

The loss functions used by our ABL for two training stages are summarized as follows,202

LtABL =

{
LLGA = E(x,y)∼D

[
sign(`(fθ(x), y)− γ) · `(fθ(x), y)

]
if 0 ≤ t < Tte

LGGA = E(x,y)∼D̂c

[
`(fθ(x), y)

]
− E(x,y)∼D̂b

[
`(fθ(x), y)

]
if Tte ≤ t < T ,

(3)

where t ∈ [0, T − 1] is the current training epoch, sign(·) is the sign function, γ is the loss threshold203

for LGA and D̂b is the isolated backdoor set with isolation rate p = |D̂b|/|D|. During early training204

(0 ≤ t < Tte), the loss will be automatically switched to −`(fθ(x), y) if `(·, ·) is smaller than γ by205

the sign function; otherwise the loss stays the same, i.e., `(fθ(x), y). Note that LLGA loss may also206

be achieved by the flooding loss proposed in [33] to prevent overfitting: |`(fθ(x), y)− b|+ b where207

b is a flooding parameter. Additionally, we will show that a set of other techniques may also achieve208

backdoor isolation and unlearning, but they are far less effective than our ABL.209

4 Experiments210

Attack Configurations. We consider six backdoor attacks in our experiments, including four dirty-211

label attacks: BadNets [1], Trojan attack [20], Blend attack [10], Dynamic attack [30], and two212

clean-label attacks: Sinusoidal signal attack(SIG) [31] and Clean-label attack(CL) [18]. We follow213

the settings suggested by [9] to configure these attack algorithms. All attacks are evaluated on214

three benchmark datasets, CIFAR-10 [34], GTSRB [35] and an ImageNet subset [36], with two215

classical model structures including WideResNet (WRN-16-1) [37] and ResNet-34 [32]. No data216

augmentations are used for these attacks since they hinder the backdoor effect [11]. We omit some217

attacks on GTSRB and ImageNet datasets due to the failure of reproduction following their original218

papers. The detailed settings of six backdoor attacks are summarized in Table 4 (see Appendix A.2).219

Defense and Training Details. We compare our ABL with three state-of-the-art defense methods:220

Fine-pruning (FP) [7], Mode Connectivity Repair (MCR) [8], and Neural Attention Distillation221
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Table 1: The attack success rate (ASR %) and the clean accuracy (CA %) of 4 backdoor defense
methods against 6 backdoor attacks. None means the training data is completely clean.

Dataset Types No Defense FP MCR NAD ABL (Ours)
ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR-10

None 0% 89.12% 0% 85.14% 0% 87.49% 0% 88.18% 0% 88.41%
BadNets 100% 85.43% 99.98% 82.14% 3.32% 78.49% 3.56% 82.18% 3.04% 86.11%
Trojan 100% 82.14% 66.93% 80.17% 23.88% 76.47% 18.16% 80.23% 3.81% 87.46%
Blend 100% 84.51% 85.62% 81.33% 31.85% 76.53% 4.56% 82.04% 16.23% 84.06%

Dynamic 100% 83.88% 87.18% 80.37% 26.86% 70.36% 22.50% 74.95% 18.46% 85.34%
SIG 99.46% 84.16% 76.32% 81.12% 0.14% 78.65% 1.92% 82.01% 0.09% 88.27%
CL 99.83% 83.43% 54.95% 81.53% 19.86% 77.36% 16.11% 80.73% 0% 89.03%

Average 99.88% 83.92% 78.50% 81.11% 17.65% 76.31% 11.13% 80.35% 6.93% 86.71%

GTSRB

None 0% 97.87% 0% 90.14% 0% 95.49% 0% 95.18% 0% 96.41%
BadNets 100% 97.38% 99.57% 88.61% 1.00% 93.45% 0.19% 89.52% 0.03% 96.01%
Trojan 99.80% 96.27% 93.54% 84.22% 2.76% 92.98% 0.37% 90.02% 0.36% 94.95%
Blend 100% 95.97% 99.50% 86.67% 6.83% 92.91% 8.10% 89.37% 24.59% 93.14%

Dynamic 100% 97.27% 99.84% 88.38% 64.82% 43.91% 68.71% 76.93% 6.24% 95.80%
SIG 97.13% 97.13% 79.28% 90.50% 33.98% 91.83% 4.64% 89.36% 5.13% 96.33%

Average 99.38% 96.80% 94.35% 87.68% 21.88% 83.01% 19.17% 87.04% 7.27% 95.25%

ImageNet
Subset

None 0% 89.93% 0% 83.14% 0% 85.49% 0% 88.18% 0% 88.31%
BadNets 100% 84.41% 97.70% 82.81% 28.59% 78.52% 6.32% 81.26% 0.94% 87.76%
Trojan 100% 85.56% 96.39% 80.34% 6.67% 76.87% 15.48% 80.52% 1.47% 88.19%
Blend 99.93% 86.15% 99.34% 81.33% 19.23% 75.83% 26.47% 82.39% 21.42% 85.12%

Average 99.98% 85.37% 97.81% 81.49% 18.16% 77.07% 16.09% 81.39% 7.94% 87.02%

(NAD) [9]. For FP, MCR and NAD, we follow the configurations specified in their original papers,222

including the available clean data for finetuning/repair/distillation and training settings. The com-223

parison with other data isolation methods are shown in Section 4.3. For our ABL, we set T = 100,224

Tte = 20, γ = 0.5 and isolation rate p = 0.01 (1%) in all experiments. The exploration of different225

Tte, γ and isolation rate p are also provided in Section 4.1. Three data augmentation techniques226

suggested in [9]: random crop (padding = 4), horizontal flipping, and cutout, are applied for all227

defense methods. More details on defense settings can be found in Appendix A.3.228

Evaluation Metrics. We adopt two commonly used performance metrics: Attack Success Rate229

(ASR), which is the classification accuracy on the backdoor test set, and Clean Accuracy (CA), the230

classification accuracy on clean test set.231

4.1 Effectiveness of Our ABL Defense232

Comparison to Existing Defenses. Table 1 demonstrates our proposed ABL defense on CIFAR-10,233

GTSRB, and an ImageNet Subset. We consider 6 state-of-the-art backdoor attacks and compare234

the performance of ABL with the other three backdoor defense techniques. It is clear that our ABL235

achieves the best results on reducing ASR against most of backdoor attacks, while maintaining an236

extremely high CA across all three datasets. In comparison to the best baseline method NAD, our237

ABL achieves 4.2% (6.93% vs. 11.13%), 11.9% (7.27% vs. 19.17%) and 8.15% (7.94% vs. 16.09%)238

lower average ASR against the 6 attacks on CIFAR-10, GTSRB and ImageNet subset, respectively.239

This superiority becomes more significant when compared to other baseline methods.240

We notice that our ABL is not always the best when looking at the 6 attacks individually. For instance,241

NAD is the best defense against Blend attack on CIFAR-10 and against SIG attack on GTSRB, while242

MCR is the best against Blend on GTSRB and ImageNet subset. We suspect this is because both243

Blend and SIG attacks mix the trigger pattern (i.e., another image or superimposed sinusoidal signal)244

into the background of the poisoned images, producing an effect of natural artifacts. This makes245

them harder to isolate and unlearn, since even clean data can have such patterns [21]. This is one246

limitation of our ABL that needs further improvement in future works. Note that, for both attacks, our247

defense can still reduce their ASRs to at least below 25% across all three datasets. We also identify248

the Dynamic attack to be the strongest in general. For example, on GTSRB dataset, baseline methods249
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Figure 3: Performance of our ABL with different isolation rate p ∈ [0.01, 0.2] on CIFAR-10 dataset.
Left: attack success rate (ASR); Right: clean accuracy of ABL against 6 backdoor attacks.
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Figure 4: Separation effect of local gradient ascent with different γ on CIFAR-10 against BadNets.
Left: Training loss on the ground truth backdoor (Db) and clean (Dc) subsets; Right: Attack success
rate (ASR) and clean accuracy (CA). The gap between the two lines of the same color becomes wider
for larger γ, i.e., better separation effect.

NAD, MCR and FP can only decrease Dynamic’s ASR to 68.71%, 64.82% and 99.84%, respectively,250

a result that is much worse than the 6.24% of our ABL.251

Clean accuracy is as important as ASR reduction, as the model would completely lose its utility if252

clean accuracy is much sacrificed by the defense. By inspecting the average CA results in Table253

1, one can find that our ABL achieves nearly the same clean accuracy as models trained on 100%254

clean (shown in row None and column ‘No Defense’) datasets. Particularly, our ABL surpasses the255

average clean accuracy of NAD by 6.36% (86.71% vs. 80.35%), 8.21% (95.25% vs. 87.04%) and256

5.63% (87.02% vs. 81.39%) on CIFAR-10, GTSRB and ImageNet subset, respectively. FP defense257

decreases model performance even when training data is clean (the None row). This makes our ABL258

defense more practical for industrial applications where performance is equally important as security.259

Effectiveness with Different Isolation Rates. Here, we study the correlation between isolation260

rate p = |D̂b|/|D| and the performance of our ABL, on CIFAR-10 dataset. We run ABL with261

different p ∈ [0.01, 0.2] and show the attack success rate and clean accuracy in Figure 3. There is a262

trade-off between ASR reduction and clean accuracy. Specifically, high isolation rates can isolate263

more backdoor examples for the later stage of unlearning, producing much lower ASRs. However, it264

also puts more examples into the unlearning mode, which harms clean accuracy. In general, ABL265

with isolation rate < 5% works reasonably well against all 6 attacks, even though the backdoor266

poisoning rate is much higher, i.e., 70% (see Figure 5 in Section 4.2). Along with the results in Table267

1, this confirms that it is indeed possible to break and unlearn the backdoor correlation with only a268

tiny subset of correctly-identified backdoor examples, highlighting one unique advantage of backdoor269

isolation and unlearning approaches.270

Effectiveness with Different Turning Epochs. Here, we study the impact of the timing to switch271

from the learning stage (LLGA) to the unlearning stage (LGGA) on CIFAR-10. We compare four272

different tuning epochs: the 10th, 20th, 30th, and 40th epoch, and record the results of our ABL in273

Table 5 (see Appendix B.3). We find that delayed turning epochs tend to slightly hinder the defense274

performance. Despite the slight variations, all choices of the turning epoch help mitigate backdoor275

attacks, but epoch 20 (i.e., at 20% - 30% of the entire training progress) achieves the best overall276

results. This tend is consistent on other datasets as well. We attribute these results to the success of277
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LGA in preserving the difference between clean and backdoor samples over time, which enables us278

to select the tuning epoch flexibly. More understandings of LGA are discussed in Section 4.2.279

4.2 Comprehensive Understanding of ABL280

Importance of Local Gradient Ascent. To help understand how LGA works in isolating backdoor281

data, we visualize and compare in Figure 4 the training loss and the model’s performances (ASR282

and CA) under three different settings where γ is set to 0.5, 1.0, and 1.5. It is evident that LGA can283

segregate backdoor examples from clean examples to a certain extent under all three settings of γ284

by preventing the loss of clean examples from converging. Moreover, a larger γ leads to a wider285

difference in training loss as well as ASR and CA. However, we note that this may cause training286

instability, as evidenced by the relatively larger fluctuations with γ = 1.5.287

We also examine the precision of the 1% isolated backdoor set under different γ of 0, 0.5, 1.0, and 1.5288

on CIFAR-10, GTSRB, and the ImageNet subset. We use BadNets attack with poisoning rate 10%289

and set the turning (isolation) epoch of ABL to 20. We report the isolation precision results in Table290

6 (see Appendix B.4). As can be seen, when γ = 0, the detection precision is poor; this indicates that291

it is tough for the model to tell apart backdoor examples from the clean ones without the LGA, which292

is foreseeable because the clean training loss is uncontrolled and overlaps with the backdoor training293

loss. Note that as soon as we set γ > 0, the precision immediately improves on both CIFAR-10 and294

the ImageNets subset. Additionally, the precision of the isolation task is not sensitive to the change in295

γ, which again allows the hyperparameter value to be flexibly chosen.296

In summary, LGD creates and sustains a gap between the training loss of clean and backdoor examples,297

which plays a vital role in extracting an isolated backdoor set.298
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Figure 5: Performance of ABL with
isolation rate 1% against different poi-
soning rates of BadNets on CIFAR-10.

Stress Testing: Fixing 1% Isolation Rate While Increasing299

Poisoning Rate. Now that we know we can confidently ex-300

tract a tiny subset of backdoor examples with high purity, the301

challenge remains whether the extracted set is sufficient for the302

model to unlearn the backdoor. We demonstrate that our ABL303

is a stronger method to defend against backdoor attacks, even304

under this strenuous setting. Here, we experiment on CIFAR-10305

against BadNets with increasing poisoning rate from 10% to306

100% and show the results in Figure 5. Even with a high poi-307

soning rate of 70%, our ABL method can reduce the ASR from308

100% to 5.02%. Note that ABL will break when the poisoning309

rate ≥ 80%, however, in this case, we argue that the dataset310

should not be used to train any models in the first place. As we mentioned before, the correlation311

between the backdoor pattern and the target label exposes a weakness of backdoor attacks. Our ABL312

utilizes the GGA to break this link and achieve defense goals effortlessly.313

4.3 Exploring Alternative Isolation and Unlearning Methods314

Alternative Isolation Methods. In this section, we compare the isolation precision of our ABL with315

two backdoor detection methods, namely Activation Clustering (AC) [6] and Spectral Signature316

Analysis (SSA) [5]. The goal is to isolate 1% of training examples into the backdoor set (D̂b), and317

we provide in Figure 8 (see Appendix B.2) the precision of these methods alongside our ABL in318

detecting the 6 backdoor attacks on CIFAR-10 dataset. We find that both AC and SS achieve high319

detection rates on BadNets and Trojan attacks, however, perform poorly on the other 4 attacks. A320

reasonable explanation is that attacks covering the whole image with complex triggers (e.g., Blend,321

Dynamic, SIG, and CL) give confusing and unidentifiable output representations of either feature322

activation or spectral signature, making these detection methods ineffective. It is worth mentioning323

that our ABL is effective against all backdoor attacks with the highest average detection rate. In324

addition, we find that the flooding loss [33] proposed for mitigating overfitting is also very effective325

for backdoor isolation. We also explore a confidence-based isolation with label smoothing (LS),326

which unfortunately fails on most attacks. More details of these explorations can be found in Figure327

9 and 10 in Appendix B.5.328

Alternative Unlearning Methods. Here we explore several other empirical strategies, including329

image-based, label-based, model-based approaches, to rebuild a clean model on the poisoned data.330
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Table 2: Performance of various unlearning methods against BadNets attack on CIFAR-10.

Backdoor Unlearning Methods Method Type Discard Backdoored After Unlearning
D̂b ASR CA ASR CA

Pixel Noise Image-based No 100% 85.43% 57.54% 82.33%
Grad Noise Image-based No 100% 85.43% 47.65% 82.62%

Label Shuffling Label-based No 100% 85.43% 30.23% 83.76%
Label Uniform Label-based No 100% 85.43% 75.12% 83.47%

Label Smoothing Label-based No 100% 85.43% 99.80% 83.17%
Self-Learning Label-based No 100% 85.43% 21.26% 84.38%

Fine-tuning All Layers Model-based Yes 100% 85.43% 99.12% 83.64%
Fine-tuning Last Layers Model-based Yes 100% 85.43% 22.33% 77.65%

Fine-tuning ImageNet Model Model-based Yes 100% 85.43% 12.18% 75.10%
Re-training from Scratch Model-based Yes 100% 85.43% 11.21% 86.02%

ABL Model-based No 100% 85.43% 3.04% 86.11%

These approaches are motivated by the second weakness of backdoor attacks, and are all designed to331

break the connection between the trigger pattern and the target class. We experiment on CIFAR-10332

with BadNets (10% poisoning rate), and fix the backdoor isolation method to our ABL with a hig333

isolation rate 20% (as most of them will fail with 1% isolation). Table 2 summarizes our explorations.334

Our core findings can be summarized as: a) adding perturbations to pixels or gradients is not effective;335

b) changing the labels of isolated examples is mildly effective; c) finetuning some (not all) layers of336

the model cannot effectively mitigate backdoor attacks; d) “self-learning” and “retraining the model337

from scratch” on the isolated clean set are good choices against backdoor attacks; and e) our ABL338

presents the best unlearning performance. Details of these methods are given in Appendix A.3. The339

performance of these methods under the 1% isolation rate is also reported in Table 7 in Appendix B.6.340

5 Conclusion341

In this work, we identified two inherent features of backdoor attacks as their weaknesses: 1) back-342

doored data are easier for models to learn than clean data, and 2) backdoor learning establishes343

a stronger correlation between the trigger and the target label. Based on these two findings, we344

proposed a novel framework - Anti-Backdoor Learning (ABL) - which consists of two stages of345

learning utilizing local gradient ascent (LGA) and global gradient ascent (GGA), respectively. At346

the early learning stage, we use LGA to intentionally maximize the training loss gap between clean347

examples and backdoored examples to isolate out the backdoored data via the low loss value. We348

use GGA to unlearn the backdoored model with the isolated backdoor data at the last learning stage.349

Empirical results demonstrate that our ABL is resilient to various experimental settings and can350

effectively defend against 6 state-of-the-art backdoor attacks. Our work introduces a simple but very351

effective ABL method for industries to train backdoor-free models on real-world datasets, and opens352

up a new research direction for backdoor defense.353

Broader Impact354

Data has been key to the success of deep learning and modern artificial intelligence (AI). However,355

it is hard to guarantee the quality and purity of data in many cases, and even high-quality datasets356

may contain backdoors, especially when they are collected from the internet. By introducing this357

new concept of anti-backdoor learning (ABL), our work opens up a new angle looking into the358

process of learning with data. From a broader perspective, ABL prevents deep learning models from359

learning (or overfitting) to some easy patterns, and further highlights the fact that easy patterns are not360

contributing much to the overall performance. Beyond backdoor defense, ABL should be explored as361

a generic quality-ware learning mechanism in place of traditional quality-agnostic learning. Such362

a mechanism can help prevent many potential data-quality-related risks, for example, the risk of363

overfitting, bias, disruptive noise, and backdoor. Although not our initial intention, our work may364

adversely be exploited to develop more advanced and stealthy backdoor attacks. This essentially365

requires more advanced defense methods to combat.366
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