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ABSTRACT

Secure inference of deep convolutional neural networks (CNNs) was recently
demonstrated under the RNS-CKKS fully homomorphic encryption (FHE) scheme.
The state-of-the-art solution uses a high-order composite polynomial to approxi-
mate non-arithmetic ReLUs and refreshes zero-level ciphertext through bootstrap-
ping. However, this solution suffers from prohibitively high latency, both due
to the number of levels consumed by the polynomials (47%) and the inference
time consumed by bootstrapping operations (70%). Furthermore, it requires a
hand-crafted architecture for homomorphically evaluating CNNs by placing a boot-
strapping operation after every Conv-BN layer. To accelerate CNNs on FHE and
automatically design a homomorphic evaluation architecture, we propose AutoFHE:
Automated adaption of CNNs for evaluation over FHE. AutoFHE exploits the
varying sensitivity of approximate activations across different layers in a network
and jointly evolves polynomial activations (EvoReLUs) and searches for placement
of bootstrapping operations for evaluation under RNS-CKKS. The salient features
of AutoFHE include: i) a multi-objective co-evolutionary (MOCoEv) search algo-
rithm to maximize validation accuracy and minimize the number of bootstrapping
operations, ii) a gradient-free search algorithm, R-CCDE, to optimize EvoReLU
coefficients, and iii) polynomial-aware training (PAT) to fine-tune polynomial-only
CNNs for one epoch to adapt trainable weights to EvoReLUs. We demonstrate
the efficacy of AutoFHE through the evaluation of ResNets on CIFAR-10 and
CIFAR-100 under RNS-CKKS. Experimental results on CIFAR-10 indicate that in
comparison to the state-of-the-art solution, AutoFHE reduces inference time (50
images on 50 threads) by 1,000 seconds and amortized inference time (per image)
by 28% and 17% for ResNet-20 and ResNet-32, respectively.

1 INTRODUCTION

Fully homomorphic encryption (FHE) is a promising solution for secure inference of neural net-
works (Gilad-Bachrach et al., 2016; Brutzkus et al., 2019; Lou & Jiang, 2021; Lee et al., 2022b;a).
Homomorphically evaluating CNNs on encrypted data is challenging in two respects: 1) the design
of homomorphic evaluation architecture of deep CNNs with arbitrary depth and 2) non-arithmetic
operations like ReLU. Recently, FHE-MP-CNN (Lee et al., 2022a) successfully implemented a ho-
momorphic evaluation architecture of ResNets by using bootstrapping (Cheon et al., 2018a; Bossuat
et al., 2021) to refresh zero-level ciphertext under the full residue number system (RNS) variant of
Cheon-Kim-Kim-Song (RNS-CKKS) scheme (Cheon et al., 2017; 2018b). Since only homomorphic
multiplication and addition are supported by FHE, non-arithmetic operations are approximated by
polynomials (Gilad-Bachrach et al., 2016; Chou et al., 2018; Brutzkus et al., 2019; Lee et al., 2021a;c;
2022a). For example, FHE-MP-CNN adopts a high-precision Minimax composite polynomial (Lee
et al., 2021a;c) with degree {15, 15, 27} to approximate ReLUs (AppReLU).

The state-of-the-art approach FHE-MP-CNN is limited by three main design choices. First, high-
precision approximations like AppReLU only consider function-level approximation and neglect the
potential for end-to-end optimization of the entire network response. As such, the same high-precision
AppReLU is used to replace all the ReLU layers in the network, which in turn necessitates evaluation
of very deep circuits. Secondly, due to the high number of levels required for each AppReLU,
ciphertexts encrypted with leveled HE schemes like CKKS quickly exhaust their levels. Therefore, a
bootstrapping operation is required for each AppReLU to refresh the level of zero-level ciphertexts.
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Collectively, while these design choices are very effective at maintaining the performance of the
plaintext networks under FHE, they require a prohibitively large number of multiplicative levels and,
consequently, numerous bootstrapping operations. Thirdly, due to the constraints imposed by the
cryptographic scheme (RNS-CKKS in this case), inference of networks in FHE requires co-design of
AppReLU and the homomorphic evaluation architecture. These include careful design of AppReLU
(number of composite polynomials and their degrees), cryptographic parameters, placement of
bootstrapping operations and choice of network architectures to evaluate. On the other hand, high-
degree polynomials introduce significant barriers for training/fine-tuning networks towards achieving
high accuracy due to vanishing or exploding gradients. (A more comprehensive discussion of related
work can be found in Appendix B.)

In this paper, we relax these design choices and accelerate the inference of CNNs over homormorphi-
cally encrypted data. The main premise behind our approach is to directly optimize the end-to-end
function represented by the network, instead of optimizing the function represented by the activation
function. This idea allows us to exploit the varying sensitivity of activation function approxima-
tion across different layers in a network. Therefore, theoretically, evolving layerwise polynomial
approximations of ReLUs (EvoReLU) should reduce the total multiplicative depth required by the
resulting polynomial-only networks. To this end, we propose AutoFHE, a search-driven approach to
jointly optimize layerwise polynomial approximations of ReLU and the placement of bootstrapping
operations. Specifically, we propose a multi-objective co-evolutionary (MOCoEv) algorithm that
seeks to maximize accuracy while simultaneously minimizing the number of bootstrapping operations.
AutoFHE jointly searches for the parameters of the approximate activation functions at all layers, i.e.,
degrees and coefficients and the optimal placement of the bootstrapping operations in the network.
Our contributions are three-fold1:

1. AutoFHE automatically searches for EvoReLUs and bootstrapping operations. It provides a
diverse set of Pareto-effective solutions that span the trade-off between accuracy and inference
time under RNS-CKKS.

2. From an algorithmic perspective,

(a) We propose a simple yet effective multi-objective co-evolutionary (MOCoEv) algorithm to
effectively explore and optimize over the large search space (1079 ∼ 10230) and optimize
high-dimensional vectors (114 ∼ 330) corresponding to our formulation.

(b) We design a gradient-free algorithm, regularized co-operative co-evolutionary differentiable
evolution (R-CCDE), to optimize the coefficients of high-degree composite polynomials.

(c) We introduce polynomial-aware training (PAT) to fine-tune EvoReLU DNNs for one epoch.

3. Experimental results on CIFAR-10 indicate that in comparison to FHE-MP-CNN, AutoFHE
reduces inference time (50 images on 50 threads) by 1,000 seconds and amortized inference time
(per image) by 28% and 17% for ResNet-20 and ResNet-32, respectively. For instance, employing
AutoFHE for ResNet-20 results in a model with a Top-1 accuracy of 90.64% with inference time
of 2,699 seconds for 50 images, and another model with accuracy of 91.66% and inference time
of 4,753 seconds. The amortized inference time for ResNet-20 is 54 seconds per image, and the
amortized inference time for ResNet-32 is 95 seconds per image. On CIFAR-100, ResNet-32 with
EvoReLUs can reduce inference time by 1,279 seconds and amortized inference time by 22%,
and has 68.75% Top-1 accuracy.

2 PRELIMINARIES

RNS-CKKS: The full residue number system (RNS) variant of Cheon-Kim-Kim-Song (RNS-
CKKS) (Cheon et al., 2017; 2018b) is a leveled homomorphic encryption (HE) scheme for ap-
proximate arithmetic. Under RNS-CKKS, a ciphertext c ∈ R2

Qℓ
satisfies the decryption circuit

[⟨c, sk⟩]Qℓ
= m + e, where ⟨·, ·⟩ is the dot product and [·]Q is the modular reduction function.

RQℓ
= ZQℓ

[X]/(XN+1) is the residue cyclotomic polynomial ring. The modulus is Qℓ =
∏ℓ

i=0 qℓ,
where 0 ≤ ℓ ≤ L. ℓ is a non-negative integer referred to as level, and it denotes the capacity of homo-
morphic multiplications. sk is the secret key with Hamming weight h. m is the original plaintext
message and e is a small error that provides security. A ciphertext has N/2 slots to accommodate

1An anonymized link to our source code will be provided.
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N/2 complex or real numbers. RNS-CKKS supports homomorphic addition and multiplication:

Homomorphic Addition: Decrypt(c⊕ c′) = Decrypt(c) + Decrypt(c′) ≈ m+m′

Homomorphic Multiplication: Decrypt(c⊗ c′) = Decrypt(c)×Decrypt(c′) ≈ m×m′ (1)

Bootstrapping: Leveled HE only allows a finite number of homomorphic multiplications, with
each multiplication consuming one level due to rescaling. Once a ciphertext’s level reaches zero,
a bootstrapping operation is required to refresh it to a higher level and allow more multiplications.
The number of levels needed to evaluate a circuit is known as its depth. RNS-CKKS with boot-
strapping (Cheon et al., 2018a) is an FHE scheme that can evaluate circuits of arbitrary depth. It
enables us to homomorphically evaluate deep CNNs on encrypted data. Conceptually, bootstrapping
homomorphically evaluates the decryption circuit and raises the modulus from Q0 to QL by using the
isomorphismRq0

∼= Rq0×Rq1×· · ·×RqL (Bossuat et al., 2021). Practically, bootstrapping (Cheon
et al., 2018a) homomorphically evaluates modular reduction [·]Q by first approximating it by a
scaled sine function, which is further approximated through polynomials (Cheon et al., 2018a; Lee
et al., 2020). The refreshed ciphertext has level ℓ = L − K, where K levels are consumed by
bootstrapping (Bossuat et al., 2021) for polynomial approximation of modular reduction.

FHE-MP-CNN (Lee et al., 2022a) is the state-of-the-art framework for homomorphically evaluating
deep CNNs on encrypted data under RNS-CKKS with high accuracy. Its salient features include,
1) Compact Packing: All channels of a tensor are packed into a single ciphertext. Multiplexed
parallel (MP) convolution was proposed to process the ciphertext efficiently. 2) Homomorphic
Evaluation Architecture: Bootstrapping operations are placed after every Conv-BN, except for the
first one, to refresh zero-level ciphertexts. This hand-crafted homomorphic evaluation architecture
for ResNets is determined by the choice of cryptographic parameters, the level consumption of
operations and ResNet’s architecture. 3) AppReLU: It replaces all ReLUs with the same high-
order Minimax composite polynomial Lee et al. (2021a;c) of degrees {15, 15, 27}. By noting
that ReLU(x) = x · (0.5 + 0.5 · sgn(x)), where sgn(x) is the sign function, the approximated
ReLU (AppReLU) is modeled as AppReLU(x) = x · (0.5 + 0.5 · pα(x)), x ∈ [−1, 1]. pα(x)
is the composite Minimax polynomial. The precision α is defined as |pα(x) − sgn(x)| ≤ 2−α.
AppReLU is expanded to arbitrary domains x ∈ [−B,B] encountered by activation functions in
CNNs by scaling it as B · AppReLU(x/B). However, this reduces approximation precision to
B · 2−α. To estimate the maximum dynamic range B (40 for CIFAR-10 and 65 for CIFAR-100) of
ReLUs, FHE-MP-CNN evaluates the pre-trained network on the training dataset. 4) Cryptographic
Parameters: FHE-MP-CNN sets N = 216, L = 30 and Hamming weight h = 192. Please refer
to Lee et al. (2022a) for the detailed implementation of FHE-MP-CNN and other parameters. These
parameters provide 128-bits of security Cheon et al. (2019). 5) Depth Consumption: To reduce
level consumption, FHE-MP-CNN integrates scaling parameter B into Conv-BN. The multiplicative
depth consumption of Bootstrapping (i.e., K), AppReLU, Conv, DownSampling, AvgPool, FC
and BN layers are 14, 14, 2, 1, 1, 1, 0, respectively. Statistically, when using FHE-MP-CNN to
homomorphically evaluate ResNet-18/32/44/56 on CIFAR-10 or CIFAR-100, AppReLUs consume
∼ 47% of total levels and bootstrapping operations consume ∼ 70% of inference time.

FHE-MP-CNN is limited in terms of neglecting layer wise approximation sensitivity and applying
the same high-order polynomial to approximate all ReLUs. Furthermore, the same scaling parameter
B is used for all polynomials, resulting in an approximation precision of B · 2−α. It focuses on
precise function approximation rather than end-to-end objective of networks, e.g., Top-1 accuracy
for classification. Considering different distributions of pre-activations across layers allows us to
use smaller B′ and α′ but with the same precision, i.e., B′ · 2−α′

= B · 2−α, for B′ < B and
α′ < α. However, layerwise lower-degree polynomials cannot adapt to the homomorphic evaluation
architecture designed by FHE-MP-CNN due to differing depth consumption of layerwise polynomials.

3 AUTOFHE: JOINT EVORELU AND BOOTSTRAPPING SEARCH

To minimize the total latency of secure inference dominated by bootstrapping operations induced by
high-degree polynomials and automatically design suitable homomorphic evaluation architecture, we
propose AutoFHE. It is designed to search for layerwise polynomial approximation of ReLU jointly
with placement of bootstrapping. We directly optimize the end-to-end objective to facilitate finding
the optimal combination of layerwise polynomials.
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ResNet Conv BN ReLU

FHE-MP-CNN Conv BN Boot AppReLU

AutoFHE Conv BN Boot EvoReLU

Conv BN + ReLU

Conv BN + Boot AppReLU

Conv BN + Scale Boot EvoReLU

Residual ConnectionChain Connection

Figure 1: Homomorphic evaluation architectures of the chain connection and the residual connection. Upper:
standard ResNet Conv-BN-ReLU triplet He et al. (2016). Middle: FHE-MP-CNN. Bottom: AutoFHE, where
dashed rectangles mean the placement of bootstrapping will be searched.
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Figure 2: Overview of Multi-objective co-evolutionary (MOCoEv) search algorithm.

3.1 EVORELU

EvoReLU is defined as y = EvoReLU(x) = x ·
(
0.5 + pd(x)

)
, x ∈ [−1, 1], y ∈ [0, 1]. The

composite polynomial pd(x) = (pdK

K ◦· · ·◦p
dk

k ◦· · ·◦p
d1
1 )(x), 1 ≤ k ≤ K approximates 0.5 ·sgn(x).

This structure for EvoReLU bears similarity to the Minimax composite polynomial in Lee et al.
(2021c; 2022a). However, the objective for optimizing the coefficients is significantly different.
We represent the composite polynomial pd(x) by its degree vector d = {di}dK

i=1, and each sub-
polynomial pdk

k (x) as a linear combination of Chebyshev polynomials of degree dk, i.e., pdk

k (x) =

βk

∑dk

i=1 αiTi(x), where Ti(x) are the Chebyshev bases of the first kind, αi are the coefficients for
linear combination and βk is a parameter to scale the output. The coefficients αk = {αi}dk

i=1 control
the polynomial’s shape, while βk controls its amplitude. λ = (α1, β1, · · · ,αk, βk, · · · ,αK , βK)
are the learnable parameters of EvoReLU with the degree d.

Homomorphic Evaluation Architecture: The ResNet architecture comprises two types of connec-
tions, a chain and a residual connection, as shown in Figure 1. To extend the domain of EvoReLU from
[−1, 1] to [−B,B] but avoid extra depth consumption for scaling, we scale the plaintext weight and
bias of BatchNorm by 1/B in advance for chain connections. But for residual connections, we cannot
integrate the scale 1/B into BatchNorm’s weight and bias. In this case, we scale the ciphertext output
of the residual connection by 1/B at the expense of one level. Finally, we integrate B into coefficients
of pdK

K (x) to re-scale the output of EvoReLU by B. Given the pre-activation x ∈ [−B,B], the scaled
EvoReLU with the degree d is parameterized by λ:

y = EvoReLU(x,λ;d) = x · (0.5 + pd(x)),where x ∈ [−B,B], y ∈ [0, B] (2)

where we estimate B values for layerwise EvoReLUs on the training dataset. From Figure 1, FHE-
MP-CNN places bootstrapping after every Conv-BN, while AutoFHE will search for placement of
bootstrapping operations by adapting to different depth consumption of layerwise EvoReLUs.

The Depth Consumption of EvoReLU is 1 +
∑K

k=1⌈log2(dk + 1)⌉ when using the Baby-Step
Giant-Step (BSGS) algorithm Lee et al. (2020); Bossuat et al. (2021) to evaluate pd(x).

3.2 MOCOEV: MULTI-OBJECTIVE CO-EVOLUTIONARY SEARCH

Search Objectives: Given a neural network function f with L ReLUs and the pre-trained weights
ω0, our goal is to maximize the accuracy of the network while minimizing its inference latency on
encrypted data. A possible solution to achieve this goal is to maximize validation accuracy while
minimizing the total multiplicative depth of the network with EvoReLUs. This solution does not
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practically accelerate inference since bootstrapping contributes most to latency, and this solution may
not necessarily lead to fewer bootstrapping operations. Therefore, we optimize the parameters of
all the EvoReLUs to maximize accuracy and directly seek to minimize the number of bootstrapping
layers through a multi-objective optimization problem:

min
D

{1−Accval(f(ω
∗);Λ∗(D),D),Boot(D)}

s.t. Λ∗ = argmaxΛ {Accval(f(ω0);Λ(D),D)}
ω∗ = argminωLtrain (f(ω);Λ∗(D),D)

(3)

where Accval is the Top-1 accuracy on a validation dataset val, Boot is the number of bootstrap-
ping operations, D = {d1,d2, · · · ,dL} is the degree vector of all EvoReLUs, the corresponding
parameters are Λ = {λ1,λ2, · · · ,λL}, f(ω0) is the neural network with the pre-trained weights ω0,
Ltrain is the training loss. Given a degree vector D, the number, and placement of bootstrapping
operations can be deterministically determined. Given D, we can optimize Λ to maximize the
validation accuracy. We further fine-tune the network f(·) to minimize the training loss Ltrain.
The objectives in equation 3 guide the search algorithm to, i) explore layerwise EvoReLU in-
cluding its degrees and coefficients; 2) discover placement of bootstrapping to work well with
EvoReLU; 3) trade-off between validation accuracy and inference speed to return a diverse set
of Pareto-effective solutions. In this paper, we propose MOCoEv to optimize the multi-objective
minD{1 − Accval(f(ω

∗);Λ∗(D),D),Boot(D)}. We propose R-CCDE and use an evolution-
ary criterion to maximize Accval(f(ω0);Λ(D),D). We propose PAT to fine tune approximated
networks with EvoReLUs to minimize Ltrain (f(ω);Λ∗(D),D).

Search Space: Our search space includes the number of sub-polynomials (K) in our composite
polynomial, choice of degrees for each sub-polynomial (dk) and the coefficients of the polynomials
Λ. Table 1a shows the options for each of these variables. Note that choice dk = 0 corresponds
to an identity placeholder, so theoretically, the composite polynomial may have fewer than K sub-
polynomials. Furthermore, when the degree of (pdk

k ◦ p
dk−1

k−1 )(x) less than or equal to 31 (maximum
degree of a polynomial supported on RNS-CKKS Lee et al. (2021a;c)), we merge the two sub-
polynomials into a single sub-polynomial pdk

k (p
dk−1

k−1 )(x) with degree dk·dk−1 ≤ 31 before computing
its depth. This helps reduce the size of the search space and lead to smoother exploration. Tab. 1b
lists the number of ReLUs of our backbone models and the corresponding dimension and size of
search space for D.

Variable Option

# polynomials (K) 6
poly degree (dk) {0, 1, 3, 5, 7}
coefficients (Λ) R

(a) Search variables and options.

Backbone #ReLUs Dimension of D Search Space Size

ResNet-20 19 114 1079

ResNet-32 31 186 10130

ResNet-44 43 258 10180

ResNet-56 55 330 10230

(b) AutoFHE search space for ResNets.

MOCoEv: To overcome the challenge of multi-objective search over a high-dimensional D and
explore the massive search space, we propose a multi-objective co-evolutionary (MOCoEv) search
algorithm. Our approach is inspired by the divide-and-conquer strategy of cooperative co-evolution
(CC) Yang et al. (2008); Mei et al. (2016); Ma et al. (2018). The key idea of MOCoEv is to decompose
the high-dimensional multi-objective search problem to multiple low-dimensional sub-problems.
MOCoEv includes: i) Decomposition: given a Pareto-effective solution D = {d1,d2, · · · ,dL},
MOCoEv improves D by locally mutating dℓ, 1 ≤ ℓ ≤ L so that D′ = {d1,d2, · · · ,d′

ℓ, · · · ,dL}
dominates D = {d1,d2, · · · ,dℓ, · · · ,dL} in terms of the validation accuracy and the number of
bootstrapping; and ii) Cooperative Evaluation: we maintain the Pareto front as the context Mei
et al. (2016) so we can evaluate the locally mutated solutions cooperatively with each other dj , j ̸=
ℓ, 1 ≤ j ≤ L. Figure 2 shows a step of one iteration of MOCoEv. During one iteration, we
repeat the step L times until we update all EvoReLUs. We design crossover and co-evolutionary
mutation of MOCoEv to explore and exploit: (1) Crossover: given the current Pareto front, we
select mating individuals to generate offspring and crossover offspring to exchange genes across
EvoReLUs. For example, given two mating individuals D1 and D2, we crossover them to obtain
D′

1 = {bℓ : bℓ ∈ D1 ∪D2, 1 ≤ ℓ ≤ L}, D′
2 = {bℓ : bℓ ∈ (D1 ∪D2)/D

′
1, 1 ≤ ℓ ≤ L}; (2)

Co-Evolutionary Mutation: we mutate the ℓ-th EvoReLU offspring, obtain a new Pareto front from
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mutated offspring and the current population, and finally update the current population. Then, we
move onto the (ℓ+ 1)-th EvoReLU and repeat (1)(2) until L EvoReLUs are updated. Therefore, at
the end of each iteration, we update the Pareto front L times. We design three types of operators to
mutate a composite polynomial function. i) randomly replace one polynomial sub-function with a
new polynomial. ii) randomly remove a sub-function. iii) randomly insert a new polynomial. Please
refer to Appendix C for background on evolutionary search algorithms. The implementation details
of MOCoEv algorithm can be found in Appendix D.1.

3.3 REGULARIZED COOPERATIVE DIFFERENTIABLE CO-EVOLUTION

To solve Λ∗ = argmaxΛ {Accval(f(ω0);Λ(D),D)} in equation 3 where D = {dℓ|1 ≤ ℓ ≤ L},
Λ = {λℓ|1 ≤ ℓ ≤ L}, we propose regularized co-operative co-evolutionary differentiable evolution
(R-CCDE). Given degree dℓ, it optimizes λℓ for function approximation level. However, the function
approximation solution Λ maybe not the optimal solution for maxΛ {Accval(f(ω);Λ(D),D)}. So,
we use MOCoEv to update the Pareto front in terms of the validation accuracy and the number of
bootstrapping. R-CCDE decomposes λℓ into {α1, β1, · · · ,αK , βK} corresponding to polynomial
sub-functions y1 = pd1

1 (x|α1, β1), y2 = pd2
2 (y1|α2, β2), · · · , y = pdK

K (yK−1|αK , βK) by using
the forward architecture, x 7→ y1 7→ y2 · · · 7→ yK−1 7→ y. We adopt gradient-free differentiable
evolution (DE) Rauf et al. (2021) to learn α and β. DE uses the difference between individuals for
mutation. Given the context vector λ∗, we optimize αk and βk, 1 ≤ k ≤ K alternatively as:

α⋆
k = argmin

αk

L(αk|λ∗), αk|λ∗ = (α∗
1, β

∗
1 , · · · ,αk, · · · ,α∗

K , β∗
K) (4)

β⋆
k = argmin

βk

L(βk|λ∗) + γ · β2
k, βk|λ∗ = (α∗

1, β
∗
1 , · · · , βk, · · · ,α∗

K , β∗
K) (5)

where L(·) is the ℓ1 distance between pd(x) and 0.5 · sgn(x). α⋆
k and β⋆

k are then used to update λ∗.
We introduce a regularization term for optimizing the scale parameters, where γ is the scaling decay.
Scale parameters can prevent polynomials from growing exponentially during the initial iterations.
The decay helps guide the parameters gradually toward a value of one and eventually select promising
coefficients. A detailed description of our R-CCDE algorithm can be found in Appendix D.2.

3.4 PAT: POLYNOMIAL-AWARE TRAINING

Replacing ReLU with EvoReLU in pre-trained neural networks injects small approximation errors,
which leads to performance loss. Fine-tuning can mitigate this performance loss by allowing
the learnable weights to adapt to the approximation error. However, backpropagation through
EvoReLU leads to exploding gradients due to high-degree polynomials. Thanks to precise forward
approximation of EvoReLU, we can use gradients from the original non-arithmetic ReLU function
for backpropagation. Specifically, during forward pass, EvoReLU injects slight errors, which
are captured by objective functions like cross entropy loss. During the backward pass, we bypass
EvoReLU and use ReLU to compute gradients to update the weights of the linear trainable layers (e.g.,
convolution or fully connected). We refer to this procedure, which bears similarity to STE Bengio et al.
(2013) and QAT Jacob et al. (2018), as polynomial-aware training (PAT). The following pseudocode
illustrates this procedure for a simple example, EvoReLU(x) = x(0.5 + (f3 ◦ f2 ◦ f1)(x)). In the
forward function, we first scale the coefficients of f3 by B so that the output range of y is [0, B]. In
backward function, we compute the gradient ∂y/∂ReLU(x) instead of ∂y/∂EvoReLU(x).

def EvoReLU_forward(x, B):
f3 = f3 * B
y = f3(f2(f1(x)))
y = x(0.5 + y)
return y

def EvoReLU_backward(x, grad):
y = ReLU(x)
grad_y = dy/dx
grad = grad * grad_y
return grad

4 EXPERIMENTS

Setup: We benchmark AutoFHE on CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009). Both
datasets have 50,000 training and 10,000 validation images at a resolution of 32× 32. The validation
images are treated as private data and are only used for evaluating the final networks. A randomly
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selected subset of images (5,120 images for CIFAR-10, and 2048 for CIFAR-100) from the training
split are selected as a minival Tan & Le (2021) dataset to guide the search process. The Top-1
accuracy on the minival dataset is used for optimizing equation 3. The training split is used by PAT to
fine-tune polynomial networks for one epoch. Finally, we report the Top-1 accuracy on the encrypted
validation dataset under RNS-CKKS as our final result. To evaluate AutoFHE under RNS-CKKS,
we adopt the publicly available code of FHE-MP-CNN and adapt it for inference with layerwise
EvoReLU. During inference, we simply keep track of the ciphertext levels and call the bootstrapping
operation when the level reaches zero, thanks to the optimal placement of bootstrapping operations
found by AutoFHE. For fair comparison between AutoFHE and the baseline FHE-MP-CNN, we use
the pre-trained network weights provided by FHE-MP-CNN.

Hyperparameters: For MOCoEv, we use a population size of 50 and run it for 20 generations. We
set the probability of polynomial replacement to 0.5, probability of polynomial removal to 0.4 and
probability of polynomial insertion to 0.1. For R-CCDE, we set the search domain of α to [−5, 5]
and that of β to [1, 5]. We set the population size for optimizing β to 20. For α, we set the population
size equal to 10× the number of variables. We set the scaling decay to γ = 0.01 and the number of
iterations to 200. For PAT, we use a batch size of 512 and weight decay of 5× 10−3, and clip the
gradients to 0.5. We use a learning rate of 8× 10−5 for CIFAR-10 and 5× 10−5 for CIFAR-100. On
one NVIDIA RTX A6000 GPU, the entire search process for ResNet-20/32/44/56 on CIFAR-10 took
2 days and 17 hours, 6 days and 5 hours, 9 days and 10 hours, 8 days and 19 hours, respectively. The
search for ResNet-32 on CIFAR-100 took 5 days and 22 hours.
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Figure 3: Trade-off between accuracy and number of bootstrapping operations for AutoFHE on plaintext
CIFAR-10. Orange points denote solutions that are evaluated on encrypted CIFAR-10 under RNS-CKKS.

4.1 PARETO-EFFECTIVE SOLUTIONS

Figure 3 shows Pareto-effective solutions found by AutoFHE on CIFAR-10 for different ResNet
models. The trade-off is between Top-1 validation accuracy on plaintext data and the number of
bootstrapping operations required for the corresponding homomorphic evaluation architecture. By
optimizing the end-to-end network prediction function, AutoFHE adapts to the differing sensitivity of
the activation layers to approximation errors and reduces the number of levels required in comparison
to using the same high-degree AppReLU in all the layers. Thus, AutoFHE significantly reduces the
number of bootstrapping operations. For example, for ResNet-20, AutoFHE reduces the number of
bootstrapping by 22% (compared to FHE-MP-CNN) with the accuracy loss 0.92% (compared to the
original network with ReLUs). Lastly, AutoFHE provides a family of solutions offering different
trade-offs rather than a single solution, thus providing flexible choice for practical deployments.

4.2 SECURE INFERENCE OF AUTOFHE UNDER RNS-CKKS

Due to the high computation cost of validating networks performance on RNS-CKKS ciphertexts,
we select 4 solutions each for ResNet-20/32/44/56 (orange points in Figure 3) for evaluation on a
machine with AMD EPYC 7H12 64-Core Processor and 1000 GB RAM. We perform inference on
1000 images, evaluating 50 images at a time using 50 CPU threads. We estimate the inference time
for 50 images by averaging over the 20 total evaluation runs. Figure 4 shows the trade-off between
Top-1 accuracy over the 1000 images and average inference time for 50 images. We observe that
AutoFHE can find Pareto-effective solutions that trade-off accuracy and inference time. The results
validate our assumption that directly reducing the number of bootstrapping operations can effectively
accelerate inference speed. For shallower networks (ResNet-20 and ResNet-32), AutoFHE reduces
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Figure 4: Evaluate AutoFHE on encrypted CIFAR-10 under the RNS-CKKS scheme. We report the inference
time of 50 images on 50 CPU threads. See Appendix A for amortized inference time for each image.

Dataset Backbone FHE-MP-CNN AutoFHE
Network Top-1 Boot Top-1∗ Inference Amortized Boot Top-1 Inference Amortized #Images

CIFAR-10

ResNet-20 91.86 18 91.31 3, 731± 117 75± 2 14 90.64 2, 699± 59 54± 1 10,000
ResNet-32 92.80 30 92.40 5, 759± 156 115± 3 26 91.66 4, 753± 159 95± 3 10,000
ResNet-44 93.02 42 92.65 7, 863± 219 157± 4 38 92.15 7, 239± 114 145± 2 5,000
ResNet-56 93.49 54 93.07 9, 980± 243 200± 5 52 92.66 9, 674± 209 193± 4 5,000

CIFAR-100 ResNet-32 69.38 30 69.43 5, 846± 127 117± 3
23 67.31 4, 363± 73 87± 1 3,500
25 68.75 4, 567± 85 91± 2 10,000
28 68.97 5, 468± 129 109± 3 3,500

Table 2: AutoFHE under the RNS-CKKS scheme. Top-1∗ accuracy for FHE-MP-CNN, as reported in Lee et al.
(2022a). The inference time for 50 images is evaluated on AMD EPYC 7H12 64-core processor using 50 threads.

inference time by > 1, 000 seconds while preserving performance, and for deeper networks it can
still accelerate inference but at the cost of a small drop in accuracy.

We benchmark a select few AutoFHE models on a much larger portion of encrypted CIFAR-10 and
CIFAR-100 validation dataset. We estimate inference time for FHE-MP-CNN and AutoFHE on the
same hardware platform. We compare AutoFHE models with FHE-MP-CNN in terms of the accuracy
and inference time (mean and standard deviation) in Table 2. We also report the number of encrypted
validation images used and the corresponding Top-1 accuracy. We observe that, for ResNet-20 and
ResNet-32, AutoFHE provides significant acceleration for a small drop in accuracy. Specifically,
inference on ResNet-20 and ResNet-32 is lower by 1,032 and 1,006 seconds, respectively. This
translates to an amortized inference time reduction of 28% (75 secs. to 54 secs.) for ResNet-20, and
17% (115 secs. to 95 secs.) for ResNet-32. In summary, AutoFHE can achieve a Top-1 accuracy of >
90% (90.64%) on encrypted CIFAR-10 under the RNS-CKKS at an amortized inference latency of
under one minute (54 secs) per image, which brings us closer towards practically realizing secure
inference of deep CNNs under RNS-CKKS. The bottom row in Table 2 shows experimental results
on CIFAR-100 for ResNet-32. Here, by reducing the number of bootstrapping operations from 30
to 28, 25 and 23, our inference time reduces by 378, 1279, 1483 seconds, respectively. Especially,
the solution with 25 bootstrapping operations reduces inference time by 22% i.e., 1,279 seconds
with accuracy loss of 0.68% compared to FHE-MP-CNN. These results indicate that, i) reducing
the number of bootstrapping operations through layerwise mixed-precision EvoReLU is effective in
accelerating inference under RNS-CKKS, and 2) AutoFHE can trade off between inference speed
and accuracy and provide a portfolio of solutions.

5 ANALYSIS

Depth Distribution of Layer wise EvoReLU: Figure 5 shows the distribution of depth consumption
(top) for AutoFHE version of ResNet-56 and the distribution of scaling parameters (bottom), i.e.,
B. We show three different Pareto-effective solutions corresponding to three solutions in Figure 3
with different number of bootstrapping operations. Chain EvoReLU and residual EvoReLU refer
to EvoReLU in the chain connection and the residual connection shown in Figure1. And, since we
estimate the dynamic range of the activations on the training dataset, we scale it by ×1.5 as a safety
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margin. We make two observations; (i) Residual EvoReLUs consistently consume more levels than
chain EvoReLUs, suggesting that residual ReLU layers have less tolerance to approximation errors.
(ii) Since pre-activations of chain EvoReLUs are normalized, they follow a tighter distribution and
need smaller scaling values. However, since the input to the residual ReLU is a superposition of
activations from two branches, they are not normalized and thus need much larger scaling values. We
plot EvoReLUs of ResNet-56 in Appendix G.
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Figure 5: (Top) Distribution of layerwise EvoReLU’s depth consumption for ResNet-56 with 36, 44 and 52
bootstrapping operations (distributions for other models can be found in Appendix G). (Bottom) Distribution of
scaling parameters (B) for layerwise EvoReLU. Gray dashed lines correspond to AppReLU in FHE-MP-CNN.

Evaluating Co-evolution: To evaluate the effectiveness of co-evolution in MOCoEv, we compare
MOCoEv with NSGA-II Deb et al. (2002), a standard multi-objective evolution algorithm. Figure 6
(left) shows the trade-off front on for ResNet-20/32 on plaintext CIFAR-10. The results show that
co-evolution explores the optimization landscape of high-dimensional variables more effectively.
Please refer to Appendix E for more details.
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Figure 6: Evaluation of co-evolution (left) and layerwise approximation (right) on CIFAR-10.

Evaluating Layerwise Approximation: To evaluate the effectiveness of adaptive layerwise approxi-
mation of AutoFHE, we compare it with uniformly distributed Minimax composite polynomials Lee
et al. (2021a;c). Since we cannot design homomorphic evaluation architectures for Minimax poly-
nomials at different precision, we compare Pareto fronts between accuracy and depth consumption
(see Appendix F for more details). For fair comparison, we disable PAT fine-tuning for AutoFHE.
Figure 6 (right) shows that AutoFHE, by virtue of exploiting the varying approximation sensitivity of
different layers, has better trade-off than uniformly distributed Minimax polynomials. By minimizing
the number of bootstrapping operations, AutoFHE intrinsically reduces overall depth consumption.

6 CONCLUSION

This paper introduced AutoFHE, an automated approach for accelerating CNNs on FHE and automat-
ically design a homomorphic evaluation architecture. AutoFHE seeks to approximate the end-to-end
function represented by the network instead of approximating each activation function. We exploited
the varying sensitivity of approximate activations across different layers in a network to jointly evolve
composite polynomial activation functions and search for placement of bootstrapping operations for
evaluation under RNS-CKKS. Experimental results over multiple ResNet models on CIFAR-10 and
CIFAR-100 indicate that AutoFHE can reduce the amortized inference time (per image) by 28% and
17% for ResNet-20 and ResNet-32, respectively, with negligible loss of accuracy. Although our focus
in this paper was on ResNets, and consequently ReLU, AutoFHE is a general purpose algorithm that
is agnostic to the network architecture or the type of activation function.
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APPENDIX

In this appendix, we include the following:

1. Amortized inference trade-offs for secure inference in Section A
2. An expanded discussion of related work for secure inference in Section B.
3. Background and related work for evolutionary algorithms in Section C.
4. Detailed description of the MOCoEv and R-CCDE algorithms in Section D.1 and Section D.2,

respectively.
5. Experimental details for evaluating co-evolution in Section E.
6. Experimental details for evaluating layerwise comparison in Section F.
7. EvoReLUs of ResNet-56 on CIFAR-10 in Section G.

A ADDITIONAL RESULTS

Figure 7 shows the trade-offs of AutoFHE evaluated on encrypted CIFAR-10 under the RNS-CKKS
scheme. We report the amortized inference time (per image).
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Figure 7: Evaluate AutoFHE on encrypted CIFAR-10 under the RNS-CKKS scheme. We report the amortized
inference time (per image).

B RELATED WORK

Secure Inference: Secure inference is a promising solution for resolving the safety and privacy
concerns in applications driven by deep learning as a service (DLaaS). Fully homomorphic encryption
(FHE) and secure multiparty computation (MPC) are becoming de-facto standards of secure inference
of deep learning. Secure inference based FHE Gilad-Bachrach et al. (2016); Brutzkus et al. (2019);
Lou & Jiang (2021); Lee et al. (2022b;a) better takes advantage of the Cloud service provider’s
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infrastructure. Customers only need to encrypt their private data, sent ciphertexts to the Cloud
and decrypt the encrypted result. Secure MPC Liu et al. (2017); Juvekar et al. (2018); Mishra
et al. (2020); Lou et al. (2020); Ghodsi et al. (2021); Knott et al. (2021); Rathee et al. (2021)
requires regular communication between customers and the Cloud. Regarding the evaluation of non-
arithmetic ReLU, FHE cannot directly evaluate ReLU because it only allows arithmetic homomorphic
addition and multiplication. However, secure MPC is able to evaluate ReLU using Garbled Circuits
(GC) Yao (1986); Bellare et al. (2012) but suffers from high online computation and communication
costs Mishra et al. (2020). Adaption of CNNs to secure inference by polynomial approximation of
non-arithmetic functions is a necessary pre-processing stage. Polynomial approximation enables
us to homomorphically evaluate encrypted data on FHE, while it also can greatly reduce online
computation and communication costs of secure MPC.

Polynomial Approximation of ReLU: A simple square activation function x2 is used in Cryp-
toNets Gilad-Bachrach et al. (2016), LoLa Brutzkus et al. (2019) and Deiphi Mishra et al.
(2020). Faster CryptoNets Chou et al. (2018) exploits more accurate low-degree approximation
2−3x2+2−1x+2−2. SAFENet Lou et al. (2020) adopts a1x3+a2x

2+a3x+a4 or b1x2+ b2x+ b3
and uses SGD to train coefficients. When apply SGD to train low-degree polynomial coefficients
and network weights simultaneously, polynomials easily lead to gradient exploding problem. On
the other hand, low-degree polynomials need train approximated networks from scratch, cannot use
pre-trained weights and also has a big accuracy gap comparing with ReLU networks. More recently,
AESPA Park et al. (2022) proposes basis-wise normalization to address gradient exploding problem
of low-degree polynomial approximated networks. Deiphi and SAFENet apply population-based
training (PBT) Jaderberg et al. (2017) to search for placement of polynomials. Because Deiphi
and SAFENet are evaluated under secure MPC, they maintain some ReLUs to preserve accuracy.
SAFENet also observed layer-wise and channel-wise mixed-precision approximation can better
take advantage of varying sensitivity of different layers. Minimax composite polynomials Lee et al.
(2021a;c) are especially designed to approximate ReLU under FHE with high precision using com-
posite polynomials. FHE-MP-CNN Lee et al. (2022a) applies the Minimax composite polynomial
with degree {15, 15, 27} and proves it can maintain performance of pretrained ResNets under the
RNS-CKKS FHE scheme. Unlike aforementioned methods learn trainable weights including coef-
ficients of polynomial-only networks by optimizing cross Entropy loss, Minimax is function-level
approximation by optimizing the polynomial interpolation of ReLU. Given depth, Minimax uses
dynamic programming to optimize degrees of composite polynomials and applies improved multi-
interval Remez algorithm Lee et al. (2021b) to solve coefficients. So, Minimax can achieve high
approximation precision given depth. However, it neglects i) the learning ability of neural networks
to adapt to polynomial approximation; 2) the layer-wise varying sensitivity; and 3) the combination
of all polynomial activations in a network. In this paper, we take into account both high-precision
approximation and network performance. MOCoEv searches for degrees across all layers and directly
optimize validation accuracy. We take into account function-level approximation by using R-CCDE
to minimize the ℓ1 distance. We use pre-trained ResNets and propose PAT to fine-tune network
trainable weights to adapt to EvoReLUs for just one epoch.

C EVOLUTIONARY SEARCH ALGORITHMS

Evolutionary Algorithms (EAs) are a type of search algorithms inspired by Darwin’s natural
selection. Each candidate solution is a individual. NP individuals constitute the population with the
population size NP . Individuals are assigned fitness related to the objective, like validation accuracy
for image classification. Based on fitness, we randomly select mating individuals. Crossover combine
mating individuals to generate offspring. Offspring can be further mutated to better exploit current
knowledge. Finally, offspring is used to update the current population. We can iteratively repeat
this process many times. Each iteration is called generation. The number of generations is a simple
criterion for stopping EA search.

Multi-Objective EA (MOEA): Given two d-dimensional vectors x1 and x2 for a minimization
problem, if x1,i ≤ x2,i,∀i ∈ {1, 2, · · · , d} and x1,j < x2,j ,∃j ∈ {1, 2, · · · , d}, x1 dominates
x2 Srinivas & Deb (1994). It means x1 is better than x2. It is denoted as x1 ≺ x2. Pareto front or
Pareto-effective solutions are referred to those not dominated by others. Deiphi Mishra et al. (2020)
and SAFENet Lou et al. (2020) combine two objectives (accuracy and ReLU replacement ratio) to
a single objective by weighted sum. It is a widely-used trick to release multi-objective problems
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to single objective. However, it only obtains a single solution balancing multiple objectives and
cannot get Pareto-effective solutions. This is the reason why we apply multi-objective search to
obtain Pareto-effective solutions that can be used to different accuracy and latency requirements. EA
is naturally well suited for multi-objective search due to population-based optimization. It allows
us to obtain the entire set of Pareto-effective solutions in a single run. NSGA-II Deb et al. (2002)
is the most well known evolutionary multi-objective algorithm. The proposed MOCoEv adopts
nondominated sorting and crowding distance from NSGA-II. The nondominated sorting can return
all Pareto fronts, while crowding distance is used to select the uniformly distributed of individuals
within a Pareto front.

Differentiable Evolution (DE) is a gradient-free evolutionary algorithm used to optimize continuous
variables Rauf et al. (2021). Given population X = {x1,x2, · · · ,xNP }, where each individual
xπ ∈ Rd, 1 ≤ π ≤ NP , the mutation, crossover and selection of DE are defined as:

Mutation: v = xπ1
+ F · (xπ2

− xπ3
) , 1 ≤ π1, π2, π3 ≤ NP

Crossover: uj =

{
vj , U(0, 1) ≤ CR

xπ1,j , Otherwise
, 1 ≤ j ≤ d

Selection: u =

{
u, F(u) ≥ F(xπ1

)

xπ1
, Otherwise

(6)

where F is scaling factor, CR is crossover rate, F(·) is the fitness evaluation function, and U(0, 1) is
the uniform distribution between 0 and 1.

Cooperative Co-Evolution (CC) algorithms are been proposed to address the challenging to optimize
high-dimensional variables Yang et al. (2008); Mei et al. (2016); Ma et al. (2018). Co-evolution
decomposes the high-dimensional optimization problem to low-dimensional sub-problems. Then,
we can apply EAs or DE to solve sub-problems for discrete or continuous variables, respectively.
CC includes two major stages, decomposition and cooperative evaluation. Decomposition refers
to grouping variables. Simple grouping strategies include random grouping or interaction-based
(gradient-based) grouping Mei et al. (2016). When the proposed R-CCDE searches for parame-
ters λ = (α1, β1, · · · ,αK , βK) of EvoReLU(x,λ|d), we decompose λ to α1, β1, · · · ,αK , βK

corresponding to polynomial sub-functions y1 = pd1
1 (x|α1, β1), y2 = pd2

2 (y1|α2, β2), · · · , y =

pdK

K (yK−1|αK , βK). Because the scaling parameter β is used to adjust the amplitude of polynomials,
we evolve β followed by α. We maintain 2K populations for α1, β1, · · · ,αK , βK , separately. These
populations are referred as sub-populations or species in CC. This decomposition of R-CCDE takes
advantage of the forward architecture of composited polynomials, x 7→ y1 7→ y2 · · · 7→ yK−1 7→ y.
When the proposed MOCoEV searches for D = {d1,d2, · · · ,dL} to minimize the objective
{1 − Accval(f(ω

∗);Λ∗(D),D),Boot(D)}, we evolve sub-populations for d1,d2, · · · ,dL, sep-
arately. It decomposes original problems with dimension 114 ∼ 330 to dimension 6 and greatly
reduces the search space size from 1079 ∼ 10230 to 104. Cooperative evaluation refers to coop-
eratively evaluate the fitness of an individual of a sub-population. We should take into account
other sub-populations when evaluate the individual. R-CCDE is a single objective optimization, so
we maintain a context vector Mei et al. (2016) λ∗ = (α∗

1, β
∗
1 , · · · ,α∗

K , β∗
K). When evaluate αk

or βk, we just need to replace the corresponding α∗
k or β∗ and assign αk or β with the fitness of

(α∗
1, β

∗
1 , · · ·αk · · · ,α∗

K , β∗
K) or (α∗

1, β
∗
1 , · · ·βk · · · ,α∗

K , β∗
K). At the beginning, the context vector

is randomly initialized. Finally, R-CCDE outputs the context vector as the searched result. We extend
the context vector for multi-objective optimization. MOCoEv maintain context vectors that are the
current Pareto Front. Therefore, MOCoEv can effectively improve the Pareto Front using CC.

D THE PROPOSED SEARCH ALGORITHMS

D.1 MULTI-OBJECTIVE COOPERATIVE EVOLUTION

Algorithm 1 shows the details of our proposed MOCoEv search algorithm. MOCoEv takes as input a
neural network f with L ReLUs that will be replaced by EvoReLUs, the number of sub-functions a of
a composite polynomial K, the population size NP , the number of iterations T , the initial population
size N0. N0 ≫ N because random initialization will generate invalid individuals. Invalid individuals
refer to those will led to negative levels. The dataset, like CIFAR-10, with training and validation
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datasets will be used. We will randomly sample a subset from the training dataset as minival dataset
used for search. The training dataset will be used for fine-tuning. During search and fine-tuning, the
validation dataset is strictly unseen. We will report the Top-1 validation accuracy on the validation
dataset as final result. MOCoEv will output the Pareto front, namely the population. The population
is composed of non-dominated individuals with varying numbers of bootstrapping.

Algorithm 1: MOCoEv
input :The Network f with L ReLUs, the number of sub-functions of a composite polynomial

K, the population size NP , the number of iterations T , the initial population size
N0 ≫ NP , the replace probability Preplace, the remove probability Premove, the insert
probability Pinsert, the training dataset Training, the mini-validation dataset Minival;

output :The Pareto front Population;
initial :Population {D1,D2, · · · ,DN0

} ← LHS(N0, L,K) where D = {d1, · · · ,dL};
foreach d in D do λ← R-CCDE(d);
foreach D in Population do Acc← Evalaute(f(D,Λ), Minival);
Population← Pareto(Population, Acc, NP)
foreach D in Population do ω ← PAT(f(D,Λ), Training);
foreach D in Population do Acc← Evalaute(f(ω,D,Λ), Minival);

for t← 1 to T do
for i← 1 to L do

Offspring← Select(Population);
Offspring← Crossover(Offspring);
Offspring← Mutate(Offspring [:, i]);
foreach d in Offspring [:, i] do λ← R-CCDE(d);
foreach D in Offspring do ω ← PAT(f(D,Λ), Training);
foreach D in Offspring do Acc← Evalaute(f(ω,D,Λ), Minival);
Population← Pareto(Population +Offspring, Acc, NP);

In the initialization, we randomly initialize the population with N0 individuals, {D1,D2, · · · ,DN0
}

where Dj = {d1, · · · ,dL} ∈ ZL×K , 1 ≤ j ≤ N0. di, 1 ≤ i ≤ L is the degrees of a composite
polynomial and is randomly sampled using Latin hypercube sampling (LHS) method. The composite
polynomials with the layer index i constitute the i-th sub-populations of CC. The proposed R-CCDE
searched for coefficients of composite polynomials. The Pareto function is first to use nondominated
sorting to find Pareto fronts and then use crowding distance to select individuals given the population
size NP . In iteration t, we sequentially evolve EvoReLUs one by one. Given i-th EvoReLU, we first
randomly select mating individuals from population based on their accuracy on the minival dataset.
We crossover mating individuals to generate offspring. Crossover operates at the network level. Then,
we mutate the i-th sub-population. We randomly replace, remove and insert polynomials of the i-th
sub-population with the probability Preplace, Premove and Pinsert, respectively. So, we need apply
R-CCDE to search coefficients of the i-th sub-population and also use PAT to fine-tune the network.
We evaluate the fine-tuned networks on the minival dataset. Finally, we use Pareto function to obtain
the new Pareto front given the population size NP . Individuals in the Pareto front will be used to
replace population.

D.2 REGULARIZED CO-OPERATIVE DIFFERENTIAL CO-EVOLUTION

Algorithm 2 details the proposed R-CCDE searches for coefficients of a composite polynomial.
R-CCDE takes as input a composte polynoimal pd(x), the target non-arithmetic function q(x), the
number of iterations T and scaling decay parameter γ. In this paper, q(x) = 0.5 · sgn(x). R-CCDE
will output the context vector λ∗ as result. The composite polynomial pd(x) = (pdK

K ◦ pdK−1

K−1 ◦
· · · ◦ pd1

1 )(x) has learnable parameters λ = {α1, β1, · · · ,αK , βK}. αk = {α1, · · · , αdk
} and

βk, 1 ≤ k ≤ K satisfy pdk

k (x) = βk

∑dk

i=1 αiTi(x). We apply LHS to initialize sub-populations of
each αk and βk. The population size of αk sub-populations is equal to 10 × ⌊dk + 1⌉/2, where
βk is 20. We set βK = 1 and not learnable. Given iteration t and sub-population index k, we
apply DE to solve argminαk

Lpd,q(αk|λ∗) where Lpd,q is the ℓ1 distance between pd(x) and q(x).
αk|λ∗ means to use the current context vector λ∗ but only search for the corresponding αk. The
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Algorithm 2: R-CCDE

input :A composite polynomial pd(x) = (pdK

K ◦ pdK−1

K−1 ◦ · · · ◦ p
d1
1 )(x) with parameters

λ = {α1, β1, · · · ,αK , βK}, the target non-arithmetic function q(x), the number of
iterations T , the scaling decay γ;

output :The context vector λ∗;
initial :λ∗ ← LHS

for t← 1 to T do
for k ← 1 to K do

α⋆
k = argminαk

Lpd,q(αk|λ∗), αk|λ∗ = (α∗
1, β

∗
1 , · · ·αk, · · · ,α∗

K , β∗
K);

λ∗ ← (α∗
1, β

∗
1 , · · ·α⋆

k, · · · ,α∗
K , β∗

K);
β⋆
k = argminβk

Lpd,q(βk|λ∗) + γ · β2
k, βk|λ∗ = (α∗

1, β
∗
1 , · · · , βk, · · · ,α∗

K , β∗
K);

λ∗ ← (α∗
1, β

∗
1 , · · ·β⋆

k , · · · ,α∗
K , β∗

K);
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Figure 8: Comparison between AutoFHE with Co-evolution and NSGA-II.

solution α⋆
k evolved by DE is used to update the context vector λ∗ = (α∗

1, β
∗
1 , · · ·α⋆

k, · · · ,α∗
K , β∗

K).
Similarly, we also evolve βk. After obtain λ∗, we can scale αk by βk and obtain the coefficients of
the composite polynomial in terms of the first kind of Chebyshev basis.

E COMPARISON OF SEARCH ALGORITHMS

To solve the high-dimensional search problem minD{1−Accval(f(ω
∗);Λ∗(D),D),Boot(D)},

we propose MoCoEv by using cooperative co-evolution to decompose high-dimensional optimization
problem to low-dimensional sub-problems. Because we adopt non-dominated sorting and crowding
distance from NSGA-II Deb et al. (2002) to obtain Pareto-effective solutions. NSGA-II is a fair
comparison to demonstrate the efficacy of MoCoEv. We conduct the search experiments of ResNet-20
and ResNet-32 on plaintext CIFAR-10. When we use NSGA-II, we set the same hyper-parameters
except for increasing the population size by the number of ReLUs. However, we cannot control
the number of polynomial being evaluated, the number of evaluation on the minival dataset, and
the number of fine-tunning on the training dataset. So, we use the wall-clock search time to make
computation comparable, as shown in Table 3.
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Backbone NSGA-II Deb et al. (2002) AutoFHE
Network Top1 HV Time #Iter #Poly #Eval #Tune HV Time #Iter #Poly #Eval #Tune

ResNet-20 91.86 55.13 2 days 17 hrs 12 219k 9k 8k 72.98 2 days 17 hrs 20 24k 18k 18k
ResNet-32 92.28 74.92 6 days 14 hrs 15 713k 14k 14k 92.89 6 days 5 hrs 20 36k 30k 30k

Table 3: The ablation experiment of search algorithms on plaintext CIFAR-10.
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Figure 9: Evaluation of AutoFHE and layerwise Minimax.

The upper row of Figure 8 shows the Pareto fonts of NSGA-II and AutoFHE. In terms of the trade-off
of the Top-1 validation accuracy (> 80%) versus the number of bootstrapping operations, NSGA-II is
inferior than AutoFHE. It proves the effectiveness of co-evolution. Hypervolume (HV) Fonseca et al.
(2006) is used to quantitatively compare NSGA-II and AutoFHE. Hypervolume denotes the volume
dominated by the Pareto front. The bigger is HV, the better is the Pareto Front. The bottom row of
Figure 8 shows the trade-off between the Top-1 validation error and the number of bootstrapping. We
compute the HV with respect the reference points, (18.00, 18.56) for ResNet-20 and (30.00, 16.06)
for ResNet-32, respectively. Table 3 shows AutoFHE has better HV values than NSGA-II. These
ablation experiments prove that co-evolution facilitate the high-dimensional multi-objective search.

F EVALUATION OF LAYERWISE RELU APPROXIMATION

To demonstrate the efficacy of layerwise approximation of EvoReLUs, we compare AutoFHE with the
uniformly approximated networks. We adopt the Minimax composite polynomials Lee et al. (2021a;c)
from precision 4 to 14 and use them to replace ReLUs uniformly. However, the Minimax polynomials
require re-design of homomorphic evaluation architecture for all composite polynomials with different
precision. For example, FHE-MP-CNN uses the polynomial with precision 13 and designs the
suitable homomorphic evaluation architecture. To fairly compare the layerwise EvoReLUand the
uniformly distributed Minimax polynomial, we use the number of depths consumed by polynomials
rather the number of bootstrapping as the criterion. We report the Top-1 validation accuracy on
CIFAR-10 as the estimated performance under the RNS-CKKS. Hence, we used the search objective
minD{1 − Accval(f(ω

∗);Λ∗(D),D),Depth(D), where Depth(·) is the total number of depth
consumed by polynomials. On the other hand, in this ablation, we do NOT use PAT to fine-tune
networks to make the comparison fair.

The upper row of Figure 9 shows Pareto fronts of Minimax and AutoFHE in terms of Top-1 validation
accuracy and the number of depth. From the bottom row of Figure 9, we compute the hypervolume
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Figure 10: Depth consumption distribution of EvoReLUs of ResNet-56. Upper: depth consumption distributions
of layerwise EvoReLUs of different bootstrapping consumption. Bottom: the distribution of scaling parameters
(B) of layerwise EvoReLUs. The gray dashed lines show the depth consumption or B of AppReLUs of FHE-
MP-CNN.

values with respect to the reference point (285, 90) for ResNet-20 and the reference point (372, 90)
for ResNet-32, respectively. AutoFHE has HV 1.58 × 104 better than Minimax HV 1.06 × 104

on ResNet-20, while AutoFHE HV is 1.84× 104 compared with Minimax HV 1.00× 104. These
experimental results prove: 1) the layerwise approximation is better than uniform approximation; 2)
the approximation of AutoFHE is also precise and AutoFHE’s performance is not simply because of
fine-tuning.

G EVORELUS OF RESNET-56

Figure 10 shows distributions of depth consumption of EvoReLUs of Pareto-effective solutions
with varying numbers of bootstrapping operations. From the upper panel of Figure 10, MoCoEv
exploits the layerwise varying approximation sensitivity and assigns different depth to each EvoReLU.
So, AutoFHE can reduce depth consumption, save the number of bootstrapping operations and
further accelerate inference. From the bottom panel of Figure 10, it shows different distributions
of pre-activatoins. It proves we can use smaller B values and lower-degree polynomials to have the
same precesion, namely B′ · 2−α′

= B · 2−α, where B′ < B and α′ < α. The pre-activations of
residual EvoReLU are not normalized so its B values are bigger than chain EvoReLU. So, residual
EvoReLUs prefer higher-degree polynomial approximation with more depth consumption to maintain
approximation precision.

Figure 11 and Figure 12 show EvoReLUs of different layers of ResNet-56. We include Pareto-
effective solutions with the number of bootstrapping operations from 26 to 52. From Figure 11 and
Figure 12, high precision solutions consume more depth and approximate ReLUs precisely. Low
precision solutions use low-degree polynomials to reduce the depth consumption. From EvoReLU ap-
proximation, we learn how AutoFHE can trade-off accuracy and inference speed.
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Figure 11: EvoReLUs of ResNet-56 from layer 0 to 26.
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Figure 12: EvoReLUs of ResNet-56 from layer 27 to 54.
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