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Abstract

We study fair classification in the presence of an omniscient adversary that, given an1

η, is allowed to choose an arbitrary η-fraction of the training samples and arbitrarily2

perturb their protected attributes. The motivation comes from settings in which3

protected attributes can be incorrect due to strategic misreporting, malicious actors,4

or errors in imputation; and prior approaches that make stochastic or independence5

assumptions on errors may not satisfy their guarantees in this adversarial setting.6

Our main contribution is an optimization framework to learn fair classifiers in7

this adversarial setting that comes with provable guarantees on accuracy and8

fairness. Our framework works with multiple and non-binary protected attributes,9

is designed for the large class of linear-fractional fairness metrics, and can also10

handle perturbations besides protected attributes. We prove near-tightness of our11

framework’s guarantees for natural hypothesis classes: no algorithm can have12

significantly better accuracy and any algorithm with better fairness must have lower13

accuracy. Empirically, we evaluate the classifiers produced by our framework for14

statistical rate on real-world and synthetic datasets for a family of adversaries.15

1 Introduction16

It is increasingly common to deploy classifiers to assist in decision-making in applications such as17

criminal recidivism [40], credit lending [21], and predictive policing [30]. Hence, it is imperative18

to ensure that these classifiers are fair with respect to protected attributes such as gender and race.19

Consequently, there has been extensive work on approaches for fair classification [29, 24, 26, 18, 49,20

48, 38, 23, 25, 1, 14]. At a high level, a classifier f is said to be “fair” with respect to a protected21

attribute Z if it has a similar “performance” with respect to a given metric on different groups defined22

by Z. Given a fairness metric and a hypothesis class F , fair classification frameworks consider the23

problem of finding a classifier f? ∈ F that has the optimal accuracy while subject to being fair with24

respect to the given fairness metric (and Z) [9]. To specify the fairness constraints, these approaches25

need the protected attributes of the training data to be known.26

However, the protected attributes can be erroneous for various reasons; there could be uncertainties27

during the data collection or data cleaning process [20, 41], or the attributes could be strategically28

misreported [37]. Further, protected attributes may be missing entirely, as is often the case for racial29

and ethnic information in healthcare [20] or when data is scraped from the internet as with many30

image datasets [22, 50, 31]. In these cases, protected attributes can be “imputed” [19, 32, 17], but31

this can also introduce errors [13]; imputation is known to be fragile to imperceptible changes in the32

inputs [27] and to have correlated errors across samples [39]. Perturbations in protected attributes,33

regardless of origin, have been shown to have adverse effects on fair classifiers, affecting their34

performance on both accuracy and fairness metrics; see e.g., [17, 8].35

Towards addressing this problem, several recent works have developed fair classification algorithms36

for various models of errors in the protected attributes. [35] consider an extension of the “mutually37

contaminated learning model” [42] where, instead of observing samples from the “true” joint38
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distribution, the distribution of observed group-conditional distributions are stochastic mixtures39

of their true counterparts. [7] consider a binary protected attribute and Bernoulli perturbations that are40

independent of the labels (and of each other). [15] consider the setting where each sample’s protected41

attribute is independently flipped to a different value with a known probability. [47] considers two42

approaches to deal with perturbations. In their “soft-weights” approach, they assume perturbations43

follow a fixed distribution and one has access to an auxiliary dataset containing independent draws of44

both the true and perturbed protected attributes. In their distributionally robust (DR) approach, for45

each protected group, its feature and label distributions in the true data and the perturbed data are a46

known total variation distance away from each other. Finally, in an independent work, [34] study fair47

classification under the Malicious noise model [46, 33] in which a fraction of the training samples48

are chosen uniformly at random, and can then be perturbed arbitrarily.49

Our perturbation model. We extend this line of work by studying fair classification under the50

following worst-case adversarial perturbation model: Given an η > 0, after the training samples are51

independently drawn from an true distribution D, the adversary with unbounded computation power52

sees all the samples and can use this information to choose any η-fraction of the samples and perturb53

their protected attributes arbitrarily. This model is a straightforward adaptation of the perturbation54

model of [28] to the fair classification setting and we refer to it as the η-Hamming model. Unlike55

the perturbation models studied before, this model can capture settings where the perturbations are56

strategic or arbitrarily correlated as can arise in the data collection stage or during imputation of57

the protected attributes, and in which the errors cannot be “estimated” using auxiliary datasets. In58

fact, under this perturbation model, the classifiers outputted by prior works can violate the fairness59

constraints by a large amount or have an accuracy that is significantly lower than the accuracy of f?;60

see Section 5 and Supplementary Material H. Taking these perturbed samples as input, the goal is to61

learn a classifier that satisfies a given set of fairness constraints with minimal loss to accuracy, where62

accuracy and fairness are measured with respect to true distribution D.63

Our contributions. Our main contribution is an optimization framework (Definition 4.1) to learn64

fair classifiers for the η-Hamming model, which comes with provable guarantees on accuracy and65

fairness (Theorem 4.3). Our framework works for multiple and non-binary protected attributes, and66

the large class of linear-fractional fairness metrics (that capture most fairness metrics studied in the67

literature); see Definition 3.1 and [14]. The framework provably outputs a classifier whose error is68

at most 2η larger than the error of f? and that additively violates the fairness constraint by at most69

O(η/λ) (Theorem 4.3), under the mild assumption that the “performance” of f? on each protected70

group is larger than a known constant λ > 0 (Assumption 1).71

Assumption 1 is drawn from the work of [15] for fair classification with stochastic perturbations.72

While it is not clear if the assumption is necessary in their model, we show that Assumption 1 is73

necessary for fair classification in the η-Hamming model: If λ is not bounded away from 0, then no74

algorithm can achieve a non-trivial guarantee on both accuracy and fairness (Theorem 4.4). Moreover,75

we prove the near-tightness of our framework’s guarantee under Assumption 1: No algorithm can76

guarantee an accuracy closer than η to that of f? and any algorithm that additively violates the77

fairness constraint by less than η/(20λ) must have at least 1/20 error; Theorems 4.5 and D.1. Finally,78

we also extend our framework’s guarantees to the Nasty Sample Noise model (Remark 2 in Section 4).79

The Nasty Sample Noise model is a generalization of the η-Hamming model, that was studied by80

[12] in the context of PAC learning (without any fairness considerations), can choose any η-fraction81

of the samples, and can arbitrarily perturb both their labels and features.82

We implement our approach using the logistic loss function with linear classifiers and evaluate its83

performance on COMPAS [4] and a synthetic dataset (Section 5). We generate perturbations of84

these datasets admissible in the η-Hamming model and compare the performance of our approach to85

key baselines [35, 7, 47, 15, 34] with statistical rate (SR) and false-positive rate (FPR) as fairness86

metrics. On the synthetic dataset we compare against a method developed for fair classification under87

stochastic perturbations [15] and demonstrate the comparative strength of the η-Hamming model; the88

results show that [15]’s framework achieves a significantly lower accuracy than our framework for89

the same SR. Empirical results on COMPAS show that our framework can attain better fairness than90

the unconstrained classifier, with a minimal loss in accuracy. Further, our framework has a similar (or91

better) fairness-accuracy trade-off compared to all baselines we consider (Figure 1 and Figure 7) in a92

variety of settings, and is not dominated by any other approach.93

2



Techniques. The starting point to our optimization framework (Definition 4.1) is Program (1) for fair94

classification in the absence of perturbations. The accuracy guarantee of our framework comes by95

ensuring that f? ∈ F , which is an optimal solution for Program (1), is feasible for our framework.96

However, without modifications, classifiers with higher accuracy than that of f? and much lower97

fairness (with respect to the true distribution D) can also be feasible for our framework. This is98

because our framework can only impose fairness constraints with respect to the perturbed samples Ŝ;99

and the ratio of a classifier’s fairness with respect to Ŝ and with respect to D can be arbitrarily small100

(see Example G.2). To address this, we introduce the notion of s-stability (Definition 4.7). Roughly,101

f ∈ F is said to be s-stable with respect to a fairness metric Ω if, for all η-Hamming perturbations,102

the ratio of fairness of f (as measured Ω) on the true distribution D and the perturbed samples Ŝ103

is between s and 1/s. From this definition, it follows that any s-stable classifier that has fairness τ ′104

with respect to Ŝ (which is ensured by Condition (3)), has fairness at least τ ′ · s with respect to D.105

Thus, if we could ensure that all feasible solutions of our framework are s-stable (for a suitable s)106

and that f? is feasible for our framework, then the classifier output by our framework would satisfy107

the required guarantees (Lemma 4.9). However, it is not possible to enforce s-stability in the absence108

of true samples S. Instead, we give a condition (4) (which f? satisfies under Assumption 1) that can109

be verified with access to the perturbed samples Ŝ, and show that any classifier that satisfies (4) with110

respect to Ŝ is s-stable (Lemma 4.8).111

2 Related work112

In this section, we present the key related works. We defer other related work (e.g., fair classification113

in the absence of protected attributes) to Supplementary Material A due to space constraints.114

As discussed in Section 1, the perturbation model considered in this paper is stronger than those115

considered in [35, 7, 47, 15, 34]. There are several other distinctions between this paper and prior116

work. [35, 7] consider binary protected attributes, while our approach (and that of [47, 15]) can117

handle multiple categorical protected attributes. [7] consider equalized-odds (EO) fairness constraints118

and [35] consider SR and EO fairness constraints. In contrast, our approach (and that of [15]) works119

with multiple linear-fractional metrics (which include SR and can ensure EO fairness constraints).120

[7] identify conditions on the distribution of perturbations under which the equalized-odds post-121

processing algorithm of [29] improves the fairness of the unconstrained optimal. [47], in their122

DR approach, give provable guarantees on the fairness of the output classifiers1 and in their “soft-123

weights” approach, give provable guarantees on the accuracy (with respect to f?) and fairness of the124

output classifier in expectation. In contrast, our work and those of [35, 15] give provable guarantees125

on the accuracy (with respect to f?) and fairness of output classifiers with high probability. The126

Malicious noise model studied by [34], which can modify a uniformly randomly selected subset127

of samples arbitrarily, is weaker than the Nasty Sample Noise model [12, 5], and hence, than the128

model considered in this paper. [34] give an algorithm for a binary protected attribute which, under129

the realizable assumption (i.e., assuming there exists a classifier with perfect accuracy), outputs a130

classifier with guarantees on accuracy and fairness with respect to true-positive rate. In contrast,131

we give a framework for the stronger Nasty Sample Noise model that works without the realizable132

assumption (i.e., in the agnostic setting), can handle multiple and non-binary protected attributes, and133

can ensure fairness for any linear-fractional metrics (which includes true-positive rate).134

Another line of work has studied PAC learning in the presence of adversarial (and stochastic)135

perturbations in the data, without considerations of fairness [33, 2, 12, 16, 6]; see also [5]. In136

particular, [12] study PAC learning (without fairness constraints) under the Nasty Sample Noise137

model. They use the empirical risk minimization framework (ERM) (see, e.g., [43]) run on the138

perturbed samples to output a classifier. In contrast, our framework Program (ErrTolerant) finds139

empirical risk minimizing classifiers that satisfy fairness constraints on the perturbed data, and that140

are also “stable” for the given fairness metric. While both frameworks show that the accuracy of141

the respective output classifiers is within 2η of the respective optimal classifiers when the data is142

unperturbed, the optimal classifiers can be quite different. For instance, while [12]’s framework is143

guaranteed to output a classifier with high accuracy, it can perform poorly on fairness metrics; see144

Section 5 and Example H.1.145

1Remark H.5 in Supplementary Material H gives an example where [47]’s DR approach has an accuracy
arbitrarily close to 1/2.
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3 Model146

Let the data domain be D := X × {0, 1} × [p], where X is the set of non-protected features, {0, 1}147

is the set of binary labels, and [p] is the set of p protected attributes. Let D be a distribution over148

D. Let F ⊆ {0, 1}X×[p] be a hypothesis class of binary classifiers. For f ∈ F , let ErrD(f) :=149

Pr(X,Y,Z)∼D[f(X,Z) 6= Y ] denote f ’s error on samples drawn from D. In the vanilla classification150

problem, the goal of the learner L is to find a classifier with minimum error: argminf∈F ErrD(f).151

In the fair classification problem, the learner is restricted to pick classifiers that have a “similar”152

performance conditioned on Z = ` for all ` ∈ [p]. We consider the following class of metrics.153

Definition 3.1 (Linear/linear-fractional metrics [14]). Given f ∈ F and two events E(f) and154

E ′(f), that can depend on f , define the performance of f on Z = ` (` ∈ [p]) as q`(f) := PrD[E(f) |155

E ′(f), Z = `]. If E ′ depends on f , then q`(f) is said to be linear-fractional, otherwise linear.156

Definition 3.1 captures most of the performance metrics considered in the literature. For instance,
for E := (f = 1) and E ′ := ∅, we get statistical rate (a linear metric).2 For E := (Y = 0) and
E ′ := (f = 1), we get false-discovery rate. Given a performance metric q, the corresponding fairness
metric is defined as

ΩD(f) := min`∈[p] q`(f)/max`∈[p] q`(f).

When D is the empirical distribution over samples S, then we use Ω(f, S) to denote ΩD(f). The157

goal of the fair classification problem, given a fairness metric Ω and a threshold τ ∈ (0, 1], is to158

(approximately) solve the following:159

minf∈F ErrD(f) s.t., ΩD(f) ≥ τ. (1)

If samples from D are available, then one could try to solve this program. However, as discussed in160

Section 1, we do not have access to the true protected attribute Z, but instead only see a perturbed161

version, Ẑ ∈ [p], generated by the following adversary.162

η-Hamming model. Given an η ∈ [0, 1], letA(η) denote the set of all adversaries in the η-Hamming163

model. Any adversary A ∈ A(η) is a randomized algorithm with unbounded computation resources164

that knows the true distribution D and the algorithm of the learner L. In this model, the learner165

L queries A for N ∈ N samples from D exactly once. On receiving the request, A draws N166

independent samples S := {(xi, yi, zi)}i∈[N ] from D, then A uses its knowledge of D and L to167

choose an arbitrary η · N samples (η ∈ [0, 1]) and perturb their protected attribute arbitrarily to168

generate Ŝ := {(xi, yi, ẑi)}i∈[N ]. Finally, A gives these perturbed samples Ŝ to L.169

Learning model. Given Ŝ and the η, the learner L would like to (approximately) solve Program (1).170

Definition 3.2 ((ε, ν)-learning). Given bounds on error ε ∈ (0, 1) and constraint violation ν ∈171

(0, 1), a learner L is said to (ε, ν)-learn a hypothesis class F ⊆ {0, 1}X×[p] with perturbation rate172

η ∈ [0, 1] and confidence parameter δ ∈ (0, 1) if for all173

• distributions D over X × {0, 1} × [p] and174

• adversaries A ∈ A(η),175

there exists a threshold N0(ε, ν, δ, η) ∈ N, such that with probability at least 1− δ over the draw of176

N ≥ N0(ε, ν, δ, η) iid samples S ∼ D, given η and the perturbed samples Ŝ := A(S), L outputs177

f ∈ F that satisfies ErrD(f)−ErrD(f?) ≤ ε and ΩD(f) ≥ τ − ν, where f? is the optimal solution178

of Program (1) (f? := argminf∈F ErrD(f), s.t., ΩD(f) ≥ τ ).179

Given finite number of perturbed samples, Definition 3.2 requires the learner to output a classifier180

that violates the fairness constraints additively by at most ν and that has an error at most ε smaller181

than that of f?, with probability at least 1− δ. Like PAC learning [46], for a given hypothesis class182

F , Definition 3.2 requires the learner to succeed on all distributions D.183

Problem 1 (Fair classification with adversarial perturbations in protected attributes). Given a184

hypothesis class F ⊆ {0, 1}X×[p], a fairness metric Ω, a threshold τ ∈ [0, 1], a perturbation rate185

η ∈ [0, 1], and perturbed samples Ŝ, the goal is to (ε, ν)-learn F for small ε, ν ∈ (0, 1).186

2We overload the notation f to denote both the classifier as well as its prediction.
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4 Theoretical results187

In this section, we present our results on learning fair classifiers under the η-Hamming model. Our188

optimization framework (Program (ErrTolerant)) is a careful modification of Program (1). The main189

difficulty is that, unlike Program (1), it only has access to the perturbed samples Ŝ, and the ratio of a190

classifier’s fairness with respect to the true distribution D and with respect to Ŝ can be arbitrarily191

small (see Example G.2). To overcome this, our framework ensures that all feasible classifiers are192

“stable” (Definition 4.7). Then, as mentioned in Section 1, imposing the fairness constraint on Ŝ193

guarantees (approximate) fairness on the true distribution D. The accuracy guarantee follows by194

ensuring that the optimal solution of Program (1), f? ∈ F , is feasible for our framework. To ensure195

this, we require Assumption 1 that also appeared in [15].196

Assumption 1. There is a known constant λ > 0 such that min`∈[p] PrD[E(f?), E ′(f?), Z = `] ≥ λ.197

It can be shown that this assumption implies that λ is also a lower bound on the performances198

q1(f?), . . . , qp(f
?) that depend on E and E ′. We expect λ to be a non-vanishing positive constant199

in applications. For example, if q is SR, the minority protected group makes at least 20% of the200

population (i.e., min`∈[p] PrD[Z = `] ≥ 0.2), and for all ` ∈ [p], Pr[f? = 1 | Z = `] ≥ 1/2, then201

λ ≥ 0.1. In practice, λ is not known exactly but it can be set based on the context (e.g., see Section 5202

and [15]). We show that Assumption 1 is necessary for the η-Hamming model (see Theorem 4.4).203

Definition 4.1 (Error-tolerant program). Given a fairness metric Ω and corresponding events E204

and E ′ (as in Definition 3.1), a perturbation rate η ∈ [0, 1], and constants λ,∆ ∈ (0, 1], we define205

the error-tolerant program for perturbed samples Ŝ, whose empirical distribution is D̂, as206

minf∈F ErrD̂(f), (ErrTolerant; 2)

s.t., Ω(f, Ŝ) ≥ τ ·
(

1−(η+∆)/λ
1+(η+∆)/λ

)2

and (3)

∀ ` ∈ [p], PrD̂ [E(f), E ′(f), Ẑ = `] ≥ λ− η −∆. (4)

∆ acts as a relaxation parameter in Program (ErrTolerant), which can be fixed in terms of the207

other parameters; see Theorem 4.3. Equation (3) ensures all feasible classifiers satisfy fairness208

constraints with respect to the perturbed samples Ŝ. Equation (4) ensures that all feasible classifiers209

are (1 − O(η/λ))-stable (see Definition 4.7). As mentioned in Section 1, this suffices to ensure210

that all feasible classifiers are fair with respect to S. Finally, to ensure the accuracy guarantee the211

thresholds in the RHS of Equations (3) and (4) are carefully tuned to ensure that f? is feasible for212

Program (ErrTolerant); see Lemma 4.9. We refer the reader to the proof overview of Theorem 4.3 at213

the end of this section for further discussion of Program (ErrTolerant).214

Before presenting our result we require the definition of the Vapnik–Chervonenkis (VC) dimension.215

Definition 4.2. Given a finite set A, define the collection of subsets FA := {{a ∈ A | f(a) = 1} |216

f ∈ F} .We say that F shatters a set B if |FB | = 2|B|. The VC dimension of F , VC(F) ∈ N, is the217

largest integer such that there exists a set C of size VC(F) that is shattered by F .218

Our first result bounds the accuracy and fairness metric of optimal solution fET of Program (ErrTol-219

erant) for any hypothesis class F with a finite VC dimension using O(VC(F)) samples.220

Theorem 4.3 (Main result). Suppose Assumption 1 holds with constant λ > 0 and F has VC221

dimension d ∈ N. Then, for all perturbation rates η ∈ (0, λ/2), fairness thresholds τ ∈ (0, 1], bounds222

on error ε > 2η and constraint violation ν > 8ητ/(λ−2η), and confidence parameters δ ∈ (0, 1) with223

probability at least 1− δ, the optimal solution fET ∈ F of Program (ErrTolerant) with parameters η,224

λ, and ∆ := O (ε− 2η, ν − 8ητ/(λ−2η), λ− 2η), and N = poly(d, 1/∆, log(p/δ)) perturbed samples225

from the η-Hamming model satisfies ErrD(fET)− ErrD(f?) ≤ ε and ΩD(fET) ≥ τ − ν.226

Thus, Theorem 4.3 shows that any procedure that outputs fET, given with a sufficiently large num-227

ber of perturbed samples, (ε, ν)-learns F for any ε > 2η and ν = O((η·τ)/λ). Theorem 4.3 can228

be extended to provably satisfy multiple linear-fractional metrics (at the same time) and work for229

multiple non-binary protected attributes; see Theorem E.1 in Supplementary Material E.1. Moreover,230

Theorem 4.3 also holds for the Nasty Sample Noise model. The proof of this result is implicit in the231

proof of Theorem 4.3; we present the details in Supplementary Material B.5. Finally, Program (Er-232

rTolerant) only requires an estimate of one parameter, λ. (Since η is known, τ is fixed by the user,233

and ∆ can be set in terms of the other parameters.) If for each ` ∈ [p], we also have estimates of234
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λ` := PrD [E(f?), E ′(f?), Z = `] and γ` := PrD[E ′(f?), Z = `], then we can use this information235

to “tighten” Program (ErrTolerant) to the following program:236

minf∈F ErrD̂(f), (ErrTolerant+; 5)
s.t., Ω(f, Ŝ) ≥ τ · s and ∀ ` ∈ [p], PrD̂ [E(f), E ′(f), Ẑ = `] ≥ λ` − η −∆.

where the scaling parameter s ∈ [0, 1] is the solution of the following optimization program237

minη1,η2,...,ηp≥0 min`,k∈[p]
1−η`/λ`

1+(ηk−η`)/γ` ·
1+(η`−ηk)/γk

1+η`/λk
, s.t.,

∑
`∈[p] η` ≤ η + ∆. (6)

We can show that Program (ErrTolerant+) has a fairness guarantee of (1− s) + 4ητ/(λ−2η) (which238

is always be smaller than 8ητ/(λ−2η)) and an accuracy guarantee of 2η. We prove this result in239

Supplementary Material E.2. Thus, in applications where one can estimate λ1, . . . , λp, γ1, . . . , γp,240

Program (ErrTolerant+) offers better fairness guarantee than Program (ErrTolerant) (up to constants).241

The proof of Theorem 4.3 appears in Supplementary Material B.242

Impossibility results. We now present results complementing the guarantees of Theorem 4.3.243

Theorem 4.4 (No algorithm can guarantee high accuracy and fairness without Assumption 1).244

For all perturbation rates η ∈ (0, 1], thresholds τ ∈ (1/2, 1), confidence parameters δ ∈ [0, 1/2), and245

bounds on the error ε ∈ [0, 1/2) and constraint violation ν ∈ [0, τ − 1/2), if the fairness metric is246

statistical rate, then it is impossible to (ε, ν)-learn any hypothesis class F ⊆ {0, 1}X×[p] that shatters247

a set of 6 points of the form {xA, xB , xC} × [2] ⊆ X × [p] for some distinct xA, xB , xC ∈ X .248

Suppose that τ = 0.8, say to encode the 80% disparate impact rule [11]. Then, Theorem 4.4 shows249

that for any η > 0, anyF satisfying the condition in Theorem 4.4 is not (ε, ν)-learnable for any ε < 1/2250

and ν < τ − 1/2 = 3/10. Intuitively, the condition on F avoids “simple” hypothesis classes. It is251

similar to the conditions considered by works on PAC learning with adversarial perturbations [12, 33],252

and holds for common hypothesis classes such as decision-trees and SVMs (Remark C.10). Thus,253

even if η is vanishingly small, without additional assumptions, any F satisfying mild assumptions is254

not (ε, ν)-learnable for any ε < 1/2 and ν < 3/10, justifying Assumption 1. The proof of Theorem 4.4255

appears in Supplementary Material C.1.256

Theorem 4.5 (Fairness guarantee of Theorem 4.4 is optimal up to a constant factor). For all257

perturbation rates η ∈ (0, 1], confidence parameter δ ∈ [0, 1/2), and a (known) constant λ ∈ (0, 1/4],258

if the fairness metric is statistical rate and τ = 1, then given the promise that Assumption 1 holds259

with constant λ, for any bounds ε < 1/4− 2η/5 and v < η/(10λ) · (1− 4λ)−O
(
η2/λ2

)
it is impossible260

to (ε, ν)-learn any hypothesis class F ⊆ {0, 1}X×[p] that shatters a set of 10 points of the form261

{xA, xB , xC , xD, xE} × [2] ⊆ X × [p] for some distinct xA, xB , xC , xD, xE ∈ X .262

Suppose that λ < 1/8 and η < 1/2, then Theorem 4.5 shows that for any η > 0, any learner263

L that has a constraint violation bound ν < η/(20λ) − O(η
2
/λ2), must have a large error bound264

ε ≥ 1/20 to (ε, ν)-learn any F satisfying a mild assumption. When η/λ is small, this shows that any265

learner whose fairness guarantee more than a constant amount smaller than the fairness guarantee in266

Theorem 4.3, must have a significantly larger error guarantee. Like Theorem 4.4, the condition on F267

in Theorem 4.5 avoids “simple” hypothesis classes and holds for common hypothesis (Remark C.10).268

Finally, complementing our accuracy guarantee, we prove that for any ε < η, no algorithm can269

(ε, ν)-learnable any hypothesis classes F satisfying mild assumptions (Theorem D.1); its proof270

appears in Supplementary Material D. Thus, the accuracy guarantee in Theorem 4.5 is optimal up to271

constant factors. The proof of Theorem 4.5 appears in Supplementary Material C.2.272

Proof overview of Theorem 4.3. We explain the key ideas behind Program (ErrTolerant) and how273

they connect with the proof of Theorem 4.3. Our goal is to construct error-tolerant constraints274

using perturbed samples Ŝ such that the classifier fET, that has the smallest error on Ŝ subject275

to satisfying these constraints, has accuracy 2η-close to that of f? and that additively violates the276

fairness constraints by at most O(η/λ).277

Step 1: Lower bounding the accuracy of fET. This step relies on Lemma 4.6.278

Lemma 4.6. For any bounded function g : {0, 1}2 × [p] → [0, 1], δ,∆ ∈ (0, 1), and adversaries279

A ∈ A(η), givenN = poly(1/∆,VC(F), log 1/δ) true samples S ∼ D and corresponding perturbed280

samples A(S) := {(xi, yi, ẑi)}i∈[N ], with probability at least 1− δ, it holds that281

∀ f ∈ F ,
∣∣∣ 1
N

∑
i∈[N ] g(f(xi, ẑi), yi, ẑi)− E(X,Y,Z)∼D [g(f(X,Z), Y, Z)]

∣∣∣ ≤ ∆ + η.282
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The proof of Lemma 4.6 follows from generalization bounds for bounded functions (e.g., see [43]) and283

because the η-Hamming model perturbs at most η ·N samples. Let g be the 0-1 loss (i.e., g(ỹ, y, z) :=284

I [ỹ 6= y]), then for all f ∈ F , Lemma 4.6 shows that the error of f on samples drawn from D and285

samples in Ŝ are close: |ErrD(f)− Err(f, Ŝ)| ≤ ∆ + η. Thus, intuitively, minimizing Err(f, Ŝ)286

could be a good strategy to minimize ErrD(f). Then, if f? is feasible for Program (ErrTolerant), we287

can bound the error of fET: Since fET is optimal for Program (ErrTolerant), its error on Ŝ is at most288

the error of f? on Ŝ. Using this and applying Lemma 4.6 we get that289

ErrD(fET) ≤ Err(fET, Ŝ) + η + ∆ ≤ Err(f?, Ŝ) + η + ∆ ≤ ErrD(f?) + 2(η + ∆). (7)
Step 2: Lower bounding the fairness of fET. One could try to bound the fairness of fET using the same290

approach as Step 1, i.e., show that for all f ∈ F : |ΩD(f)− Ω(f, Ŝ)| ≤ O(η/λ). Then ensuring that291

f has a high fairness on Ŝ implies that it also has high fairness on S (up to O(η/λ) factor). However,292

such a bound does not hold for any F satisfying mild assumptions (see Example G.2). The first idea is293

to prove a similar (in fact, stronger multiplicative) bound on a subset of F . Toward this, we define:294

Definition 4.7. A classifier f ∈ F is said to be s-stable for fairness metric Ω, if for all adversaries295

A ∈ A(η), w.h.p. over draw of S ∼ D, it holds that ΩD(f)/Ω(f,Ŝ) ∈ [s, 1/s], where Ŝ := A(S).296

If a s-stable classifier f has fairness τ on Ŝ, then it has a fairness at least τ · s on D w.h.p. Thus,297

if we have a condition such that any feasible f ∈ F satisfying this condition is s-stable, then any298

classifier satisfying this condition and the fairness constraint, Ω(·, Ŝ) ≥ τ/s, must have a fairness at299

least τ on D w.h.p. The key idea is coming up such constraints.300

Lemma 4.8. Any classifier f ∈ F that satisfies min`∈[p] PrD [E(f), E ′(f), Ẑ = `] ≥ λ+ η + ∆, is301

( 1−(η+∆)/λ
1+(η+∆)/λ )2-stable for fairness metric Ω (defined by events E and E ′).302

Step 3: Requirements for the error-tolerant program. Building on Steps 1 and 2, we prove Lemma 4.9.303

Lemma 4.9. If the following conditions hold then, ErrD(fET) − ErrD(f?) ≤ 2η and ΩD(fET) ≥304

τ −O(η/λ): (C1) f? is feasible for Program (ErrTolerant), and all f ∈ F feasible for Program (Er-305

rTolerant) are (C2) s-stable for s = 1−O(η/λ), and satisfy (C3) Ω(f, Ŝ) ≥ τ · (1−O(η/λ)).306

Thus, it suffices to find error-tolerant constraints that satisfy conditions (C1) to (C3). Condition (C3)307

can be satisfied by adding the constraint Ω(·, Ŝ) ≥ τ ′, for τ ′ = τ · (1−O(η/λ)). From Lemma 4.8,308

condition (C2) follows by using the constraint in min`∈[p] PrD [E(f), E ′(f), Ẑ = `] ≥ λ′, for λ′ ≥309

Θ(λ). It remains to pick τ ′ and λ′ such that condition (C1) also holds. The tension in setting τ ′ and λ′310

is that if they are too large then condition (C1) does not hold and if they are too small then conditions311

(C2) and (C3) do not hold. In the proof we show that τ ′ := τ · ( 1−(η+∆)/λ
1+(η+∆)/λ )2 and λ′ := λ− η −∆312

suffice to satisfy conditions (C1) to (C3) (this is where we use Assumption 1).313

Overall the main technical idea is to identify the notion of s-stable classifiers and sufficient conditions314

for a classifier to be s-stable; combining these conditions with the fairness constraints on Ŝ, ensures315

that fET has high fairness on S, and carefully tuning the thresholds so that f? is likely to be feasible316

for Program (ErrTolerant) ensures that fET has an accuracy close to f?.317

Proof overviews of Theorems 4.4 and 4.5. Our proofs are inspired by [33, Theorem 1] and [12,318

Theorem 1] which consider PAC learning with adversarial corruptions. In both Theorems 4.4 and 4.5,319

for some ε, ν ∈ [0, 1], the goal is to show that given samples perturbed by an η-Hamming adversary,320

(possibly under additional assumptions), no learner L can output a classifier that has accuracy ε-close321

to the accuracy of f? and that additively violates the fairness constraints by at most ν. Say a classifier322

f ∈ F is “good” if it satisfies the required conditions. The approach is to construct two or more323

distributionsD1,D2, . . . ,Dm that satisfy the following conditions: (C1) For any `, k, given a iid draw324

S fromD`, an η-Hamming adversary can add perturbations such that w.h.p. Ŝ is distributed according325

to iid samples from Dk. Thus L, who only sees Ŝ, w.h.p., cannot identify the original distribution of326

S and is forced to output a classifier that is good for all D1, . . . ,Dm. The next condition ensures that327

this is not possible. (C2) No classifier f ∈ F is good for all D1, . . . ,Dm, and for each Di (i ∈ [m]),328

there is at least one good classifier fi ∈ F . (The latter half ensures that requirements are not vacuously329

satisfied.) Thus, for all L there is some distribution in D1,D2, . . . ,Dm for which it outputs a bad330

classifier. (Note that even if the learner is randomized, it must fail with probability at least 1/m.)331

The key idea in the proofs is to come up with distributions satisfying the above conditions. [33, 12]332

follow the same outline in the context of PAC learning, however, as we also consider fairness333

constraints, our constructions end up being very different from their constructions. The assumptions334

on F ensure that condition (C2) is satisfiable. For example, if F has less than m hypothesis, then335

condition (C2) cannot be satisfied. Full details appear in Supplementary Material C.336
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5 Empirical results337

We implement our approach using the logistic loss function with linear classifiers and evaluate its338

performance on real world and synthetic datasets.339

Metrics and baselines. The selection of an appropriate fairness metric is context-dependent and340

beyond the scope of this work [45]; for illustrative purposes we (arbitrarily) consider the statistical341

rate (SR) and compare an implementation of our framework (Program (ErrTolerant+)), Err-Tol, with342

state-of-the-art fair classification frameworks for SR under stochastic perturbations: LMZV [35] and343

CHKV [15]. LMZV and CHKV take parameters δL, τ ∈ [0, 1] as input; these parameters control344

the desired fairness, where decreasing δL or increasing τ increases the desired fairness. We also345

compare against KL [34], which controls for true-positive rate (TPR) in the presence of a Malicious346

adversary, and AKM [7] that is the post-processing method of [29] and controls for equalized-odds347

fairness constraints (EO). We also compare against the optimal unconstrained classifier, Uncons; this348

is the same as [12]’s algorithm for PAC-learning in the Nasty Sample Noise Model without fairness349

constraints. We provide additional comparisons using our framework with false-positive rate (FPR)350

as the fairness metric and additional baselines in Supplementary Material F.351

Implementation details. We use a randomly generated 70-30 train (S) test (T ) split of the352

data, and generate the perturbed dataset Ŝ from S for a (known) perturbation rate η. We train353

each algorithm on Ŝ, and report the accuracy (acc) and statistical rate (SR) of the output clas-354

sifiers on the (unperturbed) test dataset T . Err-Tol is given the perturbation rate η. To advan-355

tage the baselines in our comparison, we provide them with even more information as needed356

by their approaches: LMZV and CHKV are given group-specific perturbation rates: for each357

` ∈ [p], η` := PrD[Ẑ 6= Z | Z = `], and KL is given η and for each ` ∈ [p], the probabil-358

ity PrD[Z = `, Y = 1]; where D is the empirical distribution of S. Err-Tol implements Pro-359

gram (ErrTolerant+) which requires estimates of λ` and γ` for all ` ∈ [p]. As a heuristic, we set360

γ` = λ` := PrD̂[Z = `], where D̂ is the empirical distribution of Ŝ. We find that these estimates361

suffice, and expect that a more refined approach would only improve the performance of Err-Tol.362

Adversaries. We consider two η-Hamming adversaries (which we call ATN and AFN); each one363

computes the “optimal fair classifier” f?, which has the highest accuracy (on S) subject to having SR364

at least τ on S. ATN considers the set of all true negatives of f? that have protected attribute Z = 1,365

selects the η · |S| samples that are furthest from the decision boundary of f?, and perturbs their366

protected attribute to Ẑ = 2. AFN is similar, except that it considers the set of false negatives of f?.367

Both adversaries try to increase the performance of f? on Z = 1 in Ŝ by removing the samples that368

f? predicts as negative; thus, increasing f?’s SR. The adversary’s hope is that choosing samples far369

from the decision boundary would (falsely) give the appearance of a high SR on Ŝ. This would make370

a fair classification algorithms select unfair classifiers with higher accuracy. Note that these are not371

intended to be “worst-case” adversaries; As Err-Tol comes with provable guarantees, we expect it to372

perform well against other adversaries while other approaches may have even worse performance. .373

Simulation on synthetic data. We first show empirically that perturbations by the η-Hamming374

adversary can be prohibitively disruptive for methods that attempt to correct for stochastic noise. We375

consider a synthetic dataset with 1,000 samples from two equally-sized protected groups; each sample376

has a binary protected attribute, two continuous features x1, x2 ∈ R, and a binary label. Conditioned377

on the protected attribute, (x1, x2) are independent draws from a mixture of 2D Gaussians (see378

Figure 4). This distribution and the labels are such that a) one group has a higher likelihood of a379

positive label than the other, and b) Uncons has a near-perfect accuracy (> 99%) and a statistical rate380

of 0.8 on S. Similar to Uncons, we consider a fairness constraint of τ = 0.8. Thus, in the absence of381

noise, this is an “easy case:” where Uncons satisfies the fairness constraints. We generate Ŝ using382

ATN, and compare against CHKV, which was developed for correcting stochastic perturbations.383

Results. The fairness and statistical rate averaged over 50 iterations is reported in Table 1 as a function384

of the perturbation η. At η = 0, both CHKV and Err-Tol nearly-satisfy the fairness constraint385

(SR≥ 0.79) and have a near-perfect accuracy (acc≥ 0.98). However, as η increases, while CHKV386

retains the same statistical rate (∼ 0.8), it loses a significant amount of accuracy (∼ 20%). In contrast,387

Err-Tol has high accuracy and fairness (acc≥0.99 and SR≥0.79) for all η considered. Hence, this388

shows that stochastic approaches may fail to satisfy their guarantees under the η-Hamming model.389

Simulations on real-world data. In this simulation, we show that our framework can outperform390

each baseline with respect to the accuracy-fairness trade-off under perturbations from the adversaries391

we consider, and does not under-perform compared to baselines under perturbations from either392
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Table 1: Simulation on synthetic data: We run CHKV and Err-Tol with τ = 0.8 on a synthetic dataset and
report their average accuracy and statistical rate (std. deviation in parenthesis). The result shows that prior
approaches can fail to satisfy their guarantees under the η-Hamming model.

acc (η = 0%) SR (η = 0%) acc (η = 3%) SR (η = 3%) acc (η = 5%) SR (η = 5%)

Unconstrained 1.00 (.001) .799 (.001) 1.00 (.000) .799 (.002) 1.00 (.001) .800 (.001)
CHKV (τ=.8) 1.00 (.001) .800 (.002) .859 (.143) .787 (.015) .799 (.139) .795 (.049)
Err-Tol (τ=.8) .985 (.065) .800 (.001) 1.00 (.001) .799 (.002) .999 (.002) .799 (.004)

adversary. The COMPAS data in [10] contains 6,172 samples with 10 binary features and a label393

that is 1 if the individual did not recidivate and 0 otherwise; the SR of Uncons on COMPAS is 0.78.)394

We take gender (coded as binary) to be the protected attribute, and set the fairness constraint on the395

SR to be τ = 0.9 for Err-Tol and all baselines. We consider both adversaries ATN and AFN, and a396

perturbation rate of η = 3.5% as 3.5% is roughly the smallest value for η necessary to ensure that the397

optimal fair classifier f? for τ = 0.9 (on S) has a SR less than 0.78 on the perturbed data.398

Results. The accuracy and statistical rate (SR) of Err-Tol and baselines for τ ∈ [0.7, 1] and δL ∈399

[0, 0.1] and averaged over 100 iterations is reported in Figure 1. For both adversaries, Err-Tol attains400

a better SR than the unconstrained classifier (Uncons) for a small trade-off in accuracy. For adversary401

ATN (Figure 1(a)), Uncons has SR (0.80) and accuracy (0.67). In contrast, Err-Tol achieves high402

SR (0.92) with a trade-off in accuracy (0.60). In comparison, AKM has a higher accuracy (0.65) but403

a lower SR (0.87), and other baselines have an even lower SR (≤ 0.84) with accuracy comparable to404

AKM. For adversary AFN (Figure 1(b)), Uncons has SR (0.80) and accuracy (0.67), while Err-Tol405

has a significantly higher SR (0.91) and accuracy (0.61). This significantly outperforms AKM which406

has SR (0.83) and accuracy (0.58). LMZV achieves the highest SR (0.97) with a natural reduction407

in accuracy to (0.57). In this case, Err-Tol has similar accuracy to SR trade-off as LMZV, but408

achieves a lower maximum SR (0.91). Meanwhile, Err-Tol has a significantly higher SR trade-off409

than CHKV at the same accuracy. We further evaluate our framework under stochastic perturbations410

in Supplementary Material F (specifically, against the perturbation model of [15]) and observe similar411

statistical rate and accuracy trade-offs as approaches [15, 35] tailored for stochastic perturbations.412

6 Limitations and conclusion413

This work extends fair classification to real-world settings where perturbations in the protected414

attributes may be correlated or affect arbitrary subsets of samples. We consider the η-Hamming415

model and give a framework that outputs classifiers with provable guarantees on both fairness and416

accuracy; this framework works for categorical protected attributes and a class of linear-fractional417

fairness constraints. We show near-tightness of our framework’s guarantee and extend it to the Nasty418

Sample Noise model, which can perturb both labels and features. Empirically, classifiers produced by419

our framework achieve high fairness at a small cost to accuracy and outperform existing approaches.420

Compared to existing frameworks for fair classification with stochastic perturbations, our framework421

requires less information about the perturbations. However, its efficacy will depend on an appropriate422

choice of parameters; e.g., an overly conservative λ can decrease accuracy and an optimistic λ can423

decrease fairness. A careful assessment both pre- and post-deployment would be important in order424

to avoid negative social implications in a misguided attempt to do good [36].425

Finally, we note that discrimination is a systematic problem and our work only addresses one part of426

it; this work would be effective as one piece of a broader approach to mitigate and rectify biases.427

Unconstrained KL AKM Err-Tol (This work) CHKV LMZV
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Figure 1: Simulations on COMPAS data: Perturbed data is generated using adversary ATN (a) and AFN (b)
as described in Section 5 with η = 3.5%. All algorithms are run on the perturbed data varying the fairness
parameters (τ ∈ [0.7, 1] and δL ∈ [0, 0.1]). The y-axis depicts accuracy and the x-axis depicts statistical rate
(SR); both values are computed over the unperturbed test set. We observe that for both adversaries our approach
Err-Tol, attains a better fairness than the unconstrained classifier with a natural trade-off in accuracy. Further,
Err-Tol achieves a better fairness-accuracy trade-off than each baseline on at least one of (a) or (b). Error bars
represent the standard error of the mean.
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[Yes] Section 6 discusses the importance of identifying the right parameters and using568

this as only one piece of a larger framework for mitigating discrimination.569

(d) Have you read the ethics review guidelines and ensured that your paper conforms to570

them? [Yes] Yes, we discuss potential negative social impacts of our framework in571

Section 6.572

2. If you are including theoretical results...573

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All theo-574

rem statements list the assumptions they require. For example, Theorem 4.3 states575

Assumption 1.576

(b) Did you include complete proofs of all theoretical results? [Yes] The proof of The-577

orem 4.3 appears in Supplementary Material B. The proof of Theorems 4.4 and 4.5578

appear in Supplementary Material C. The formal statement of Theorem D.1 and its579

proof appear in Supplementary Material D. The formal statements and proofs of ex-580

tensions of Theorem 4.3 appear in Supplementary Material E. We also overview the581

proofs of the main theoretical results (Theorems 4.3 to 4.5) in Section 4.582

3. If you ran experiments...583

(a) Did you include the code, data, and instructions needed to reproduce the main experi-584

mental results (either in the supplemental material or as a URL)? [Yes] We submitted585

the code in the supplemental material.586

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they587

were chosen)? [Yes] The hyper-parameters and other implementation details appear in588

Supplementary Material F.1.589

(c) Did you report error bars (e.g., with respect to the random seed after running experi-590

ments multiple times)? [Yes] E.g., Table 1 reports the standard deviations and Figure 1591

reports the standard error of the mean.592

(d) Did you include the total amount of compute and the type of resources used (e.g., type593

of GPUs, internal cluster, or cloud provider)? [Yes] We report the total computational594

resources used for this work in Supplementary Material F.1.4.595

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...596

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the pre-597

processed version of the COMPAS data [3] provided by [10]. We cite both [3] and [10]598

in Section 5.599

(b) Did you mention the license of the assets? [No] To the best of knowledge, the600

COMPAS data is not licensed.601

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]602

We include the code for our simulations in the supplemental material.603

(d) Did you discuss whether and how consent was obtained from people whose data you’re604

using/curating? [N/A]605

(e) Did you discuss whether the data you are using/curating contains personally identifiable606

information or offensive content? [N/A]607

5. If you used crowdsourcing or conducted research with human subjects...608

(a) Did you include the full text of instructions given to participants and screenshots, if609

applicable? [N/A]610

(b) Did you describe any potential participant risks, with links to Institutional Review611

Board (IRB) approvals, if applicable? [N/A]612

13



(c) Did you include the estimated hourly wage paid to participants and the total amount613

spent on participant compensation? [N/A]614

14


	Introduction
	Related work
	Model
	Theoretical results
	Empirical results
	Limitations and conclusion
	Other related work
	Proof of thm:mainresult
	Preliminaries: Generalization bound
	Step 1: Bound on the difference of means of a bounded-function over S"0362S and over D
	Step 2: Feasible solutions of Program (ErrTolerant) is approximately fair w.h.p.
	Step 3: f is feasible for Program (ErrTolerant) w.h.p.
	Generalizing thm:mainresult to the Nasty Sample Noise model

	Proofs of impossibility results (thm:nostableclassifier,thm:impossunderassumptionsr)
	Proof of thm:nostableclassifier
	Proof of thm:impossunderassumptionsr
	Discussion of assumptions on F in thm:nostableclassifier,thm:impossunderassumptionsr

	Impossibility result omitted from sec:theory
	Proof of thm:impossunderassumptionsr2

	Extensions of theoretical results
	Theoretical results with multiple protected attributes and fairness metrics
	Guarantees for Program (ErrTolerant+)

	Implementation details and additional empirical results
	Implementation details
	Simulations and figures omitted from sec:empirics 
	Additional empirical results

	-Hamming model captures prior perturbation models
	Prior frameworks are insufficient under the -Hamming model
	Stochastic-noise tolerant frameworks are insufficient under the -Hamming model
	Proof of thm:controllingstocnoiseisinsufficient




