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ABSTRACT

A dynamical system of spiking neurons with only feedforward connections can
classify spatiotemporal patterns without recurrent connections. However, the the-
oretical construct of a feedforward Spiking Neural Network (SNN) for approxi-
mating a temporal sequence remains unclear, making it challenging to optimize
SNN architectures for learning complex spatiotemporal patterns. In this work,
we establish a theoretical framework to understand and improve sequence ap-
proximation using a feedforward SNN. Our framework shows that a feedforward
SNN with one neuron per layer and skip-layer connections can approximate the
mapping function between any arbitrary pairs of input and output spike train on
a compact domain. Moreover, we prove that heterogeneous neurons with vary-
ing dynamics and skip-layer connections improve sequence approximation using
feedforward SNN. Consequently, we propose SNN architectures incorporating the
preceding constructs that are trained using supervised backpropagation-through-
time (BPTT) and unsupervised spiking-timing-dependent plasticity (STDP) algo-
rithms for classification of spatiotemporal data. A Dual Search-space Bayseian
Optimization method is developed to optimize architecture and parameters of the
proposed SNN with heterogeneous neuron dynamics and skip-layer connections.

1 INTRODUCTION

Spiking neural network (SNN) (Ponulak & Kasinski, 2011) uses biologically inspired neurons
and synaptic connections trainable with either biological learning rules such as spike-timing-
dependent plasticity (STDP) (Gerstner & Kistler, 2002) or statistical training algorithms such as
backpropagation-through-time (BPTT) (Werbos, 1990). The SNNs with simple leaky integrate-and-
fire (LIF) neurons and supervised training have shown classification performance similar to deep
neural networks (DNN) while being energy efficient (Kim et al., 2020b; Wu et al., 2019; Srinivasan
& Roy, 2019). One of SNN’s main difference from DNN is that the neurons are dynamical sys-
tems with internal states evolving over time, making it possible for SNN to learn temporal patterns
without recurrent connections. Empirical results on feedforward-only SNN models show good per-
formance for spatiotemporal data classification, using either supervised training (Lee et al., 2016;
Kaiser et al., 2020; Khoei et al., 2020), or unsupervised learning (She et al., 2021). However, while
empirical results are promising, a lack of theoretical understanding of sequence approximation using
SNN makes it challenging to optimize performance on complex spatiotemporal datasets.

In this work, we develop a theoretical framework for analyzing and improving sequence approxi-
mation using feedforward SNN. We view a feedforward connections of spiking neurons as a spike
propagation path, hereafter referred to as a memory pathways (She et al., 2021), that maps an input
spike train with an arbitrary frequency to an output spike train with a target frequency. Conse-
quently, we argue that an SNN with many memory pathways can approximate a temporal sequence
of spike trains with time-varying unknown frequencies using a series of pre-defined output spike
trains with known frequencies. Our theoretical framework aims to first establish SNN’s ability to
map frequencies of input/output spike trains within arbitrarily small error; and next, derive the basic
principles for adapting neuron dynamics and SNN architecture to improve sequence approximation.
The theoretical derivations are then investigated with experimental studies on feedforward SNN for
spatiotemporal classifications. We adopt the basic design principles for improving sequence approx-
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imation to optimize SNN architectures and study whether these networks can be trained to improve
performance for spatiotemporal classification tasks. The key contributions of this work are:

• We prove that any spike-sequence-to-spike-sequence mapping functions on a compact do-
main can be approximated by feedforward SNN with one neuron per layer using skip-layer
connections, which cannot be achieved if no skip-layer connection is used.

• We prove that using heterogeneous neurons having different dynamics and skip-layer con-
nection increases the number of memory pathways a feedforward SNN can achieve and
hence, improves SNN’s capability to represent arbitrary sequences.

• We develop complex SNN architectures using the preceding theoretical observations and
experimentally demonstrate that they can trained with supervised BPTT and unsupervised
STDP for classification on spatiotemporal data.

• We develop a dual-search-space Bayesian optimization process to optimize network archi-
tecture, neuron dynamics, and hyper-parameters of a feedforward SNN considering hetero-
geneity and skip-layer connection to improve learning and classification of spatiotemporal
patterns.

We experimentally demonstrate that our network design principles coupled with the dual-search-
space Bayesian optimization improve classification performance on DVS Gesture (Amir et al.,
2017), N-caltech (Orchard et al., 2015), and sequential MNIST. Results show that the design prin-
ciples derived using our theoretical framework for sequence approximation can improve spatiotem-
poral classification performance of SNN.

2 RELATED WORK

Most theoretical approaches to analyze SNN (Amit & Huang, 2010; Brea et al., 2013) focus on the
storage and retrieval of precise spike patterns, which is different from the approximation of spike-
sequence-to-spike-sequence mappings functions. SNN that incorporates excitatory and inhibitory
signal is shown for its ability to emulate sigmoidal networks (Maass, 1997) and is theoretically
capable of universal function approximation. Feedforward SNN with specially designed spiking
neuron models (Iannella & Back, 2001; Torikai et al., 2008) have been demonstrated for function
approximation, while for networks using LIF neurons, function approximation has been shown with
only empirical results (Farsa et al., 2015). On the other hand, the existing works that has developed
efficient training process for SNN and demonstrated classification performance comparable to deep
learning models, have mostly used simpler and generic LIF neuron models (Lee et al., 2016; Kaiser
et al., 2020; Kim et al., 2020b; Wu et al., 2019; Sengupta et al., 2019; Safa et al., 2021; Han et al.,
2020). Therefore, this paper develops the theoretical basis for function approximation using feed-
forward SNN with LIF neurons, and studies applications of the developed theoretical constructs in
improving SNN-based spatiotemporal pattern classification.

The effectiveness of heterogeneous neurons (She et al., 2021) and skip-layer connections (Srinivasan
& Roy, 2019; Sengupta et al., 2019) in SNN has been empirically studied in the past. However,
no theoretical approach has been presented to understand why such methods improve learning of
spike sequences, and how to optimize a SNN’s architecture and parameters to effectively exploit
these design constructs. It is possible to search for the optimal SNN configurations through op-
timization algorithms, but the large number of hyper-parameters for spiking neurons and network
structure creates a high-dimensional search space that is long and difficult to solve. Bayesian op-
timization (Snoek et al., 2012) uses collected data points to make decisions on the next test point
that could provide improvement, thus accelerates the optimization process. Prior works (Parsa et al.,
2019; Kim et al., 2020a) have shown that SNN performance can also be effectively improved with
Bayesian optimization. While those works consider a single or a few neuron parameters, the dual-
search-space Bayesian optimization proposed in this work optimizes both network architecture and
neuron parameters efficiently by separating the discrete search spaces from the continuous search
spaces.
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Figure 1: (a) Receiving the given input spike sequence, neuron n1 needs to receive 3 input spikes to
reach threshold thus has neuron response rate γ = 3. Neuron n2 receives spike from neuron n1 with
tnd delay, and has γ = 2. (b) A minimal multi-neuron-dynamic (mMND) network with m layers
and n different neuron dynamics.

3 APPROXIMATION THEORY OF FEEDFORWARD SNN

3.1 DEFINITIONS AND NOTATIONS

Definition 1 Neuron Response Rate γ For a spiking neuron n with membrane potential at vreset and
input spike sequence with period tin, γ is the number of input spike n needs to reach vth.

Definition 2 Neuron Delay tnd The time for a spike from pre-synaptic neuron to arrive at its post-
synaptic neurons.

Definition 3 Minimal-layer-size Network A minimal-layer-size network is a feedforward spiking
neural network with a finite number of layers and one neuron in each layer.

Definition 4 Memory Pathways For a feedforward SNN withm layers, a memory pathway is defined
as a spike propagation path connected by neurons in m-tuple P = {D1, D2, D3, ..., Dm} where Di

is the set of neurons included in layer i. P and P′ are considered to be distinct if

∀Di ∈ P and D′i ∈ P′, ∃ i s.t. Di 6= D′i

Definition 5 Skip-layer Connection For a feedforward SNN with m layers, a skip-layer connection
is defined with source layer and target layer pair (ls, lt), such that ls ∈ {1, 2, 3, ..., (m − 2)}, and
lt ∈ {(ls + 2), (ls + 3), (ls + 4), ...,m}. The output feature map from source layer is concatenated
to the original input feature map of the target layer.

Definition 6 Minimal Multi-neuron-dynamic (mMND) Network A densely connected network in
which each layer has an arbitrary number of neurons that have different neuron parameters. All
synapses from one pre-synaptic neuron have the same synaptic conductance.

For a minimal-layer-size network with two layers as shown in Figure 1(a) receiving an input spike
sequence with certain period tin, the two neurons in the network have γ = 2 and γ = 3, respectively.
An example of mMND network with m layers and n neuron dynamics is shown in Figure 1(b).
SNN with multilayer perceptron (MLP) structure can be considered a scaled-up mMND network
with multiple neurons for each dynamic. A network with convolutional structure can be considered
a scaled-up mMND network with duplicated connections in each layer. We analyze the correlation
of network capacity and structure based on mMND networks, as for MLP-SNN and Conv-SNN
network the analysis can be extended according to the specific layer dimensions.

Notations For the analysis of spike sequence in temporal space, the notation of Tmax and Tmin
are defined as positive real numbers such that Tmax > Tmin. ε > 0 is the error of approximation.
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3.2 MODELING OF SPIKING NEURON

SNN consists of spiking neurons connected with synapses. The spiking neuron model studied in this
work is leaky integrate-and-fire (LIF) as defined by the following equations:

τm
dv

dt
= a+RmI − v; v = vreset, if v > vthreshold (1)

Rm is membrane resistance, τm = RmCm is time constant and Cm is membrane capacitance. a is
a parameter used to adjust neuron behavior during simulation. I is the sum of current from all input
synapses that connect to the neuron. A spike is generated when membrane potential v cross threshold
and the neuron enters refractory period r, during which the neuron maintains its membrane potential
at vreset. The time it take for a pre-synaptic neuron to send a spike to its post-synaptic neurons is tnd.
Neuron response rate γ is a property of a spiking neuron’s response to certain input spike sequence.
We show how the value of γ can be evaluated below.

Remark For any input spike sequence, individual spike can be described with Dirac delta function
δ(t− ti) where ti is the time of the i-th input spike. For the membrane potential of a spiking neuron
receiving the input before reaching spiking threshold, with initial state at t = 0 with v = vreset,
solving the differential equation (1) leads to:

v(t) = vresete
− t
τm + a(1− e−

t
τm ) +

Rm
τm

e−
t
τm

∑
i

G

∫ t

0

δ(t− tin)e
t
τm dt (2)

Here, G is the conductance of input synapses connected to the neuron. From (2), there exists a
timestep u such that vm(t(u−1)) < vthreshold and vm(tu) >= vthreshold. By evaluating (2) for u
given neuron parameters and input spike sequence, the neuron response rate γ can be found.

3.3 APPROXIMATION THEOREM OF FEEDFORWARD SNN

To develop the approximation theorem for feedforward SNN, we first aim to understand the range
of neuron response rate that can be achieved. We show with Lemma 1 that for any input spike
sequence with periods in a closed interval, it is possible to set the neuron response rate γ to any
positive integer. Based on this property, we show with Theorem 1 that by connecting a list of spiking
neurons with certain γ sequentially and inserting skip-layer connections, approximation of spike-
sequence mapping functions can be achieved. To understand whether this capability of feedforward
SNN relies on skip-layer connections, we develop Lemma 2 to prove that skip-layer connections are
indeed necessary. In subsection 3.4 we investigate the correlation between approximation capability
and network structures by analyzing the cutoff property of spiking neurons, which can change the
network’s connectivity. In our analysis, we focus on two particular designs: heterogeneous network
(Lemma 4) and skip-layer connection (Lemma 5), and show their impact on the number of distinct
memory pathways in a network. All lemmas are formally proved in the appendix.

Lemma 1 For any input spike sequence with period tin in range [Tmin, Tmax], there exist a spiking
neuron n with fixed parameters vth, vreset, a, Rm and τm, such that by changing synaptic conduc-
tance G, it is possible to set the neuron response rate γn to be any positive integer.

Proof Sketch. Given an input spike sequence, we can derive the highest possible amount of mem-
brane potential ∆v within an input period as a function of neuron parameters. We show that it is
possible to make ∆v tends to zero by configuring the neuron parameters, so that the number of input
spikes required to reach threshold can be set to any positive integer by changing G.

Theorem 1 For any input and target output spike sequence pair with periods (tin, tout) ∈
[Tmin, Tmax]× [Tmin, Tmax], there exist a minimal-layer-size network with skip-layer connections
that has memory pathway with output spike period function P (t) such that |P (tin)− tout| < ε.

Proof Sketch. With skip-layer connections, there can be multiple memory pathways in a minimal-
layer-size network as neurons can be either included or skipped through. With this property it is
possible to create memory pathways with different delay times for each input spike in a network and
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by connecting the output of those memory pathways to a common output, spike sequence of any
arbitrary period tint such that tint <= tin can be generated within ε. By implementing a spiking
neuron with response rate γ larger than 1, it is possible to take input spike sequence with tint and
create spike sequence with period γ · tint. This way it is possible to achieve a network with output
spike period P (t) such that |P (tin)− tout| < ε.

Lemma 2 With no skip-layer connection, there does not exist a minimal-layer-size network that has
output spike period function P (t) such that for any input and target output spike sequence pair with
periods (tin, tout) ∈ [Tmin, Tmax]× [Tmin, Tmax], |P (tin)− tout| < ε.

Proof Sketch. A minimal-layer-size network without skip-layer connection has only one memory
pathway, and the network can achieve different output spike period only through changing G or
the neuron parameters within for the one memory pathway. For a particular input spike sequence
with period tin, we show that there exists two output spike periods P (tin) and P (tin)′, such that
P (tin) − P (tin)′ is a constant value independent of network or neuron configurations. Therefore,
for any minimal-layer-size network, there exists tout within the range of (P (tin), P (t′in)) such that
|P (tin)− tout| < ε does not hold true.

3.4 NETWORK STRUCTURE AND MEMORY PATHWAYS

Based on Theorem 1, it is possible to approximate an input/output spike sequence mapping function
using a minimal-layer-size network with specific configuration, which can be considered as a mem-
ory pathway. Since any continuous bounded function on a compact interval can be approximated to
arbitrary accuracy using a piece-wise constant function, and it is possible to use a memory pathway
to approximate each of the piece-wise constant function, with increasing number of distinct memory
pathways, a feedforward SNN can achieve approximation of continuous functions with less error.
In this subsection, we show that two SNN structural designs: heterogeneous network i.e. a network
having neurons with different dynamics and adding skip-layer connections, a feedforward SNN has
the capability to achieve more distinct memory pathways.

Cutoff Frequency of a Memory Path We first show the correlation of cutoff period and spiking
neuron parameters with Lemma 3.

Lemma 3 A spiking neuron has cutoff period ωc = τm ln( vreset−a
vreset−a+Rm

τm
G

) above which input spike

sequence cannot cause the spiking neuron to spike.

Remark From Lemma 3, it can be observed that the cutoff period ωc of a neuron can be configured
to any positive real number by changing the neuron parameters and synaptic conductanceG. Further,
with fixed G, ωc can be configured to any positive real number by changing the neuron parameters.
Neurons that are in cutoff change the spike propagation path in a network as they send no output
spikes. This creates different memory pathways without changing the connections in a network.

Heterogeneous Network If an mMND network has the same parameters for all neurons in each
layer, the majority of the neurons are included in the same memory pathway, leading to the upper
bound of number of distinct memory pathways to be limited. With Lemma 4, we show the rela-
tionship between the upper bound of the number of distinct memory pathways and the number of
different neuron dynamics in an mMND network.

Lemma 4 For an mMND network with m layers and {λ1, λ2, ...λm} number of different neuron
dynamics in each layer, the upper bound of the number of distinct memory pathways is

∏m
i=1 λi.

Proof Sketch For an mMND network, it is possible to have neurons with different ωc in each layer,
which creates λi number of different neuron activation states for layer i. Across all network layers
the highest possible number of different neuron activation states is therefore the product of λ of
each layer. Since neurons in cutoff do not propagate spikes, they can be removed from a memory
pathway. This leads to

∏m
i=1 λi as the upper bound of the number of distinct memory pathways.

Compared to a network with homogeneous neuron parameters, in which the upper bound of number
of distinct memory pathways is λm, Lemma 4 indicates that heterogeneous network increases the
maximum achievable number of distinct memory pathways in a feedforward SNN.
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Figure 2: (a) The proposed network with BPTT training, each multi-neuron-dynamic layer contains
a set of neuron dynamics from d1 to dm. (b) The proposed network with STDP training.

Skip-layer Connection We show that adding skip-layer connection increases the upper bound of
the number of memory pathways in a network with Lemma 5.

Lemma 5 For an mMND network with m layers and {λ1, λ2, ...λm} different neuron dynamics
in each layer, a skip-layer connection made between layer la and lb, s.t. a, b ∈ {1, 2, ...m} and
(b − a) > 1 increases the upper bound of the number of distinct memory pathways to

∏m
i=1 λi +

(
∏a
i=1 λi ·

∏m
i=b λi)

Proof Sketch The main idea is similar to the proof of Lemma 4. By adding skip-layer connection,
there are additional possible neuron activation states in the network that result from the cutoff of
neurons in layers between la and lb. Without layers between la and lb in the spike propagation path,
the number of achievable memory pathways is increased by the upper bound of number of distinct
memory pathways in layers before la and after lb.

4 SNN ARCHITECTURE DESIGN USING APPROXIMATION THEORY

In this section, we discuss design of SNN architectures as inspired by the developed approximation
theory for feedforward SNN.

Network Template for BPTT Training For BPTT training, the network template is shown in Fig-
ure 2(a). Each multi-neuron-dynamic layer, which can either be convolutional or fully connected,
uses different neuron parameters for each feature map. There are two types of synapses between lay-
ers: transferred synapses marked as black dashed arrows and learned synapses marked as red solid
arrows. The conductance of learned synapses is optimized by the BPTT algorithm during train-
ing, and the transferred synapses have the same conductance as the learned synapses from the same
pre-synaptic neuron. For example, the synapses connecting neurons with dynamic dm to neurons
with dynamic {d2, d3, d4, ..., dm−1} in the next layer have conductance transferred from synapses
connecting neurons with dynamic dm to neurons with dynamic d1. The skip-layer connection is
implemented with the output spike matrix from source layer concatenated to the original input spike
matrix of the target layer. The skip-layer connection has the same implementation as the regular con-
nection between consecutive layers, with both learned and transferred synapses (Figure 2(a)). The
last layer the network is a full-connected layer with homogeneous dynamic to generate prediction
labels.

Network Template for STDP Learning For networks trained with STDP, the template is shown
in Figure 2(b). Each layer contains a learner module and a memory module. Learner modules use
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homogeneous neuron dynamic that is suitable for STDP learning, and memory modules consist of
neurons with different dynamics. Similar to BPTT training, there are two types of synapses: trans-
ferred synapses and learned synapses. Between two layers, memory modules are connected with
transferred synapses and memory modules are connected to learner modules with learned synapses.
Leaner modules between layers are not directly connected. STDP training proceeds as a layer-
by-layer process. During training of the first layer, conductance of synapses connecting neurons
in memory module to neurons in learner modules, referred to as learned synapses, is learned with
STDP using all training data without labels. Then, the learned conductance is transferred to the
corresponding transferred synapses. The memory module is then used to perceive input patterns
and generate spikes during training of the next layer. This lay-by-layer process is repeated until the
layer before the final layer finishes learning. The final linear layer is then fine-tuned using stochastic
gradient descent (SGD) based on spike frequency array from the last multi-neuron-dynamic layer
generated based on the labeled data. Skip-layer connection is implemented by connecting the mem-
ory module of the source layer to the target layer. The connections are made with the two types of
synapses and follow the same training process as the consecutive layers.

Dual-search-space Bayesian Optimization Bayesian optimization uses Gaussian process to model
the distribution of an objective function, and an acquisition function to decide points to evaluate. For-
mally, the problem in this work is defined as: for unknown function f : X → R that maps network
configuration x ∈ X to validation accuracy for a certain dataset, find: x∗ ∈ argmaxx∈Xf(x). Since
the configuration of heterogeneous network and skip-layer connection have discrete values for their
configuration while neuron parameters have continuous values, we implement a dual-search-space
optimization process, where the network structural design is first optimized with fixed, manually
selected neuron parameters. After an optimal structure is found, neuron parameters are optimized
for the selected network structure. This separates the search space of network structure, which is
discrete, from the continuous search space of neuron parameters to reduce time consumption for the
Bayesian optimization process. In addition, we further improve optimization efficiency by imple-
menting constraints on the search spaces. Details on the configurations of the optimization process
are listed in the appendix.

To achieve Bayesian optimization with constraints, we implement a modified expected improvement
(EI) acquisition function similar to the one shown by Gardner (Gardner et al., 2014), which uses a
Gaussian process to model the feasibility indicator due to its high evaluation cost. In this work,
since the constraint function can be explicitly defined, we use feasibility indicator that is directly
evaluated. The modified EI function is defined as: Ic(x) = ∆(x) · max{0, P (x) − P (x+)} , where
P (x) is the objective function to maximize. (x+ is the point that provided the highest objective
function value among all tested points. ∆(x) is the explicitly defined indicator function that takes
the value of 1 when all constraints are satisfied and 0 otherwise.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets tested in the experiment include the DVS Gesture dataset (Amir et al., 2017), which
is an event-based human gesture classification dataset captured by DVS cameras, and the N-
Caltech101 (Orchard et al., 2015), which is an event-based version of the Caltech101 dataset. The
proposed method is also tested for MLP-style SNN on the sequential MNIST dataset, in which the
original MNIST images are presented row-by-row sequentially. We also vary the amount of labeled
data used during training ranging from using 100% labeled data for training down to 10% labeled
data (30% for N-Caltech101) during training. Note, during STDP training networks always uses
the entire but un-labeled training dataset; however, only the fraction of the labeled data is used for
supervised fine-tuning of the last layer. Comparison is made for DVS Gesture and N-Caltech101
with prior works including ConvLSNN, which is a combination of convolutional SNN and recurrent
SNN with long and short-term neurons trained with BPTT (Salaj et al., 2020), DECOLLE (Kaiser
et al., 2020), which uses surrogate gradient to train a convolutional feedforward SNN, HATS (Sironi
et al., 2018), which implements time surfaces and SVM for classification and H-SNN (She et al.,
2021) which uses STDP to train a convolutional SNN with two neuron dynamics.
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Figure 3: Validation error over optimization iterations for the proposed dual-search-space Bayesian
optimization compared to the normal single-search-space Bayesian optimization.

5.2 EFFECT OF DUAL-SEARCH-SPACE BAYESIAN OPTIMIZATION

We compare the proposed dual-search-space Bayesian optimization with regular Bayesian optimiza-
tion using a single search space for network validation error over 5 runs. The result from the N-
Caltech101 dataset is shown in Figure 3. It can be observed that the two optimization approaches
achieve similar minimum validation error after convergence. By separating the search spaces, the
proposed optimization process reaches convergence faster than regular single-search-space opti-
mization. It is also worth noting that, between the two stages in the optimization process for BPTT
training, the first stage accounts for more reduction in validation error than the second stage. This
indicates that optimizing network structure causes more impact to BPTT training than optimizing
neuron parameters, which is potentially due to the reason that network structures more heavily af-
fects the number of memory pathways in the network than neuron parameters. On the other hand, for
STDP training where learning behavior is sensitive to the dynamic of spiking neurons, the reduction
of validation error is more equally shared between the two optimization stages. Over the 5 runs,
among all network configurations achieved after the dual-search-space optimization converges, we
compare the configuration with the lowest number of trainable parameters against baseline models.
The specific configurations for the optimized networks are listed in Table 1. It can be observed that
for BPTT algorithm, the optimized networks have more layers than the STDP trained networks, and
the optimal values found for neuron parameters are highly distinct for the two training methods.

Table 1: Configuration of optimized network models

Conv. Layer Skip-layer Number of Different Neuron Parameters
Network Number Connection Neuron Dynamics and a τm Rm

BPTT, Gesture 9 (2,7) 4, (-24,-17,-12,-9) 120 340
BPTT, N-Caltech 12 (2,5), (5,8), (8,11) 5, (-23,-16,-14,-11,-8) 70 300

STDP, Gesture 6 (2,4), (4,6) 4, (-26,-24,-15,-9) 110 260
STDP, N-Caltech 8 (3,5), (5,7) 6, (-21,-19,-17,-13,-9,-7) 140 240

5.3 ABLATION STUDIES

To investigate the effect of using multiple neuron dynamics, we apply the same dual-search-space
Bayesian optimization process for networks that have homogeneous neuron dynamic for the same

Table 2: Ablation studies of optimized networks

Model Heterogeneity Skip-layer DVS Gesture N-Caltech101 S-MNIST

Homogeneous-BPTT N Y 95.0 65.3 95.5
No-skip-layer-BPTT Y N 96.5 63.5 94.8
This Work-BPTT Y Y 98.0 71.2 97.3

Homogeneous-STDP N Y 91.3 37.0 94.3
No-skip-layer-STDP Y N 93.1 51.9 95.5
This Work-STDP Y Y 96.6 58.1 96.1

8



Under review as a conference paper at ICLR 2022

Table 3: Accuracy (%) for DVS Gesture (top) and N-Caltech101 (bottom)

Labeled Data % In Training Parameter
Model 100% 50% 30% 10% No.

ConvLSNN (Salaj et al., 2020) 97.1 95.3 92.0 84.3 2.9M
DECOLLE (Kaiser et al., 2020) 97.5 95.0 91.2 83.9 1.3M

HATS (Sironi et al., 2018) 95.2 94.1 91.6 83.7 -
H-SNN (She et al., 2021) 96.2 95.8 93.7 88.2 0.74M

This Work-STDP Training 96.6 96.0 94.1 91.2 0.81M
This Work-BPTT Training 98.0 95.3 91.1 82.4 1.1M

Labeled Data % In Training Parameter
Model 100% 70% 50% 30% No.

ConvLSNN (Salaj et al., 2020) 63.1 58.7 51.3 45.4 3.0M
DECOLLE (Kaiser et al., 2020) 66.9 61.9 56.2 50.6 2.0M

HATS (Sironi et al., 2018) 64.2 61.0 54.3 48.8 -
H-SNN (She et al., 2021) 42.8 41.9 37.0 34.6 1.7M

This Work-STDP Training 58.1 57.8 57.2 54.6 1.4M
This Work-BPTT Training 71.2 65.4 56.0 52.5 1.7M

number of evaluations as the proposed design. Similarly, to study the contribution to performance
gain from skip-layer connections, the Bayesian optimization process is used for network templates
without skip-layer connections. The optimization process runs for the same number of evaluations
as the proposed design. From the results shown in Table 2, it can be observed that compared to
baselines, the proposed networks achieve the best accuracy for all datasets. Specifically, when ho-
mogeneous network is used, the performance of STDP trained network is noticeably lower than
the proposed method for DVS Gesture and N-Caltech101. For BPTT training, using heterogeneous
network and skip-layer connection shows different level of benefit for each dataset. For sequen-
tial MNIST which has less complexity, the improvement from using heterogeneous neurons and
skip-layer connections is not as significant.

5.4 COMPARISON WITH PRIOR WORKS

DVS Gesture With 100% labels available during training, the proposed network trained with BPTT
demonstrates higher accuracy than all tested networks with the less trainable parameters than all
baselines in Table 3 (top). The proposed network trained with STDP has slightly lower accuracy than
ConvLSNN and DECOLLE when 100% labels are used; for reduced-label training it outperforms
all network (including H-SNN).

N-Caltech101 As shown in Table 3 (bottom), the proposed network trained with BPTT outperforms
all baselines with both 70% and 100% training labels and also has less number of trainable param-
eters. The un-supervised learning models i.e., H-SNN and the proposed network with STDP, show
considerably lower performance (more than what was observed for DVS Gesture) than supervised
ones when 100% labels are available; However, the proposed network with STDP shows better
performance than H-SNN, and outperforms all network when available labels are below 50%.

6 CONCLUSION

We develop a theoretical basis to understand and optimize the ability of a feedforward SNN to
approximate a temporal sequence. We analytically show how heterogeneity and skip-layer connec-
tions can improve sequence approximation with SNN, and empirically demonstrate their impact on
spatiotemporal learning. It is well-known in neuroscience that, heterogeneity (De Kloet & Reul,
1987) and irregular connectivity (Eickhoff et al., 2018) are intrinsic properties of human brains. Our
analysis shows that incorporating such concepts within artificial SNN is beneficial for designing
high-performance SNN for classification of spatiotemporal data.
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Wolfgang Maass. Spike-frequency adaptation provides a long short-term memory to networks
of spiking neurons. bioRxiv, 2020. doi: 10.1101/2020.05.11.081513. URL https://www.
biorxiv.org/content/early/2020/05/12/2020.05.11.081513.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

Xueyuan She, Saurabh Dash, Daehyun Kim, and Saibal Mukhopadhyay. A heterogeneous spiking
neural network for unsupervised learning of spatiotemporal patterns. Frontiers in Neuroscience,
14:1406, 2021.

A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman. Hats: Histograms of averaged
time surfaces for robust event-based object classification. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1731–1740, 2018. doi: 10.1109/CVPR.2018.
00186.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Gopalakrishnan Srinivasan and Kaushik Roy. Restocnet: Residual stochastic binary convolutional
spiking neural network for memory-efficient neuromorphic computing. Frontiers in neuroscience,
13:189, 2019.

Hiroyuki Torikai, Atsuo Funew, and Toshimichi Saito. Digital spiking neuron and its learning for
approximation of various spike-trains. Neural Networks, 21(2):140–149, 2008. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2007.12.045. URL https://www.sciencedirect.
com/science/article/pii/S0893608008000051. Advances in Neural Networks Re-
search: IJCNN ’07.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 1311–1318, 2019.

11

https://www.frontiersin.org/article/10.3389/fnins.2015.00437
https://www.frontiersin.org/article/10.3389/fnins.2015.00437
https://www.biorxiv.org/content/early/2020/05/12/2020.05.11.081513
https://www.biorxiv.org/content/early/2020/05/12/2020.05.11.081513
https://www.sciencedirect.com/science/article/pii/S0893608008000051
https://www.sciencedirect.com/science/article/pii/S0893608008000051


Under review as a conference paper at ICLR 2022

A SNN DYNAMICS

Remark For a sequentially connected neuron list with m neurons all with γ = 1 and neuron delay
tnd, an input spike at time t leads the neuron list to generate an output spike at time t+mtnd

Remark For any input sequence with period tin to a spiking neuron with response rate γ such that
γ > 1, if refractory period is set to r < tin, the neuron can exit refractory period before the next
spike arrives.

Lemma 1 For any input spike sequence with period tin in range [Tmin, Tmax], there exist a spiking
neuron n with fixed parameters vth, vreset, a, Rm and τm, such that by changing synaptic conduc-
tance G, it is possible to set the neuron response rate γn to be any positive integer.

Proof. For a given input spike sequence period tin, we consider the maximum value of membrane
potential decay that can happen. From (1), without input spike, dvdt is negative and it’s absolute value
increases with higher v. We therefore consider the decay from v such that v → v−th for period Tmax.
The value of v(t) at t = Tmax can be found by solving the differential equation (1) for v(t) = vth
at t = 0:

v(Tmax) = vthe
−Tmaxτm − ae−

Tmax
τm + a

It is possible to have a spiking neuron with Rm, a and τm such that ∆v, defined as

∆v = v(Tmax)− v(0) = vthe
−Tmaxτm − ae−

Tmax
τm + a− vth

tends to zero. Since the the highest possible decrease of membrane potential is negligible, for any
target γ, it is possible to set G such that G = vth−vreset

γ . The proof is complete.

B PROOF OF THEOREM 1

Theorem 1 For any input and target output spike sequence pair with periods (tin, tout) ∈
[Tmin, Tmax]× [Tmin, Tmax], there exist a minimal-layer-size network with skip-layer connections
that has memory pathway with output spike period function P (tin) such that |P (tin)− tout| < ε.

Proof. For any given (tin, tout), first consider the condition where tin > tout. It is possible to
construct a minimal-layer-size network N connecting m spiking neurons with neuron response rate
γ = 1 sequentially, denoted as a m-tuple of neurons {n1, n2, ..., nm}. Since any configuration
of skip-layer connection with source layer and target layer pair (ls, lt), such that ls ∈ [1,m − 2],
and lt ∈ [ls + 2,m], can be added, it is possible to add a (m − 2)-tuple of skip-layer connections
Ssl = {(i,m) ∀ i ∈ {1, 2, 3, ...,m − 2}}. Denote the synaptic conductance for all the skip-layer
connections as a (m− 2)-tuple SGsl = {Gsl1 , Gsl2 , Gsl3 , ..., Gslm−2}
For any tout < tin, it is possible to find a k-tuple of synaptic conductance S′Gsl =

{Gsli , Gsl2i, Gsl3i, ..., Gslki} such that i = b touttnd
c and k = bm−2i c. Set synaptic conductance in

SGsl \ S′Gsl to 0. Then set the conductance of synapse connecting nm−1 and nm to 0. In such
way, The output spikes from network N has period P (tin) = b touttnd

c · tnd. For given ε, it is possible
to choose tnd such that tnd < 2ε, therefore satisfying |P (tin) − tout| < ε. m can be chosen as
m = Tmax−Tmin

tnd
, or equivalently m = Tmax−Tmin

2ε . Since Tmax−Tmin
2ε is finite, m is finite.

Now we consider tin < tout. UsingN as described above, it is possible to achieve output spike with
period within ε of any period in (0, tin]. For a given tout, assume the configuration in neuron list N
has output spike interval t′int such that kt′int = tout, where k is a positive integer. From Lemma 1,
it is possible to set G for a neuron nm+1 such that, with input spike period t′int, its neuron response
delay is γnm+1

= k. By connecting nm+1 to the output of N , the new network, denoted as N ′, has
output spike with period P (tin) = t′int/k = tout. Therefore, for a given ε, need to have neuron list
N with actual output spike interval tint such that,

|tint − t′int| <
ε

k
(3)
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Since k is finite, (3) can be achieved. Now, for tin >= tout, the network N ′ can be configured such
that tint satisfies |tint − tout| < ε, and the value of γnm+1

set to 1. |P (tin)− tout| < ε can then be
achieved. The proof is complete.

C PROOF OF LEMMA 2

Lemma 2 With no skip-layer connection, there does not exist a minimal-layer-size network that has
output spike period function P (tin) such that for any input and target output spike sequence pair
with periods (tin, tout) ∈ [Tmin, Tmax]× [Tmin, Tmax], |P (tin)− tout| < ε.

Proof. A minimal-layer-size network N with m layers has a m-tuple of neurons {n1, n2, ..., nm}
connected sequentially. Since no skip-layer connection is present, there is only one memory path-
way, which contains all neurons {n1, n2, ..., nm}. Denoted the neuron response rate correspond-
ing to each neuron in N as Γ = {γ1, γ2, ..., γm}. Consider the output spike sequence when
γi = 1 ∀ γi ∈ Γ. For a given input sequence with tin that has the first spike at time t1, the first output
spike has timing of t1 + mtnd, and the second output spike has timing of t1 + tin + mtnd. It can
be easily derived that the period of the output spike sequence is t1. Now consider the output spike
sequence when γj = 2 for any j ∈ {1, 2, 3, 4, ...,m} and γi = 1 ∀ i ∈ ({1, 2, 3, 4, ...,m} \ {j}).
Following the same process, the period of the output spike sequence is t1

2 . Since the smallest in-
crease to any γ is by 1, there are no set of values for Γ such that the resulting output spike sequence
has period between (tin, 2tin). Therefore, within the range (tin, 2tin), there exists values of tout
such that |P (tin)− tout| < ε does not hold. The proof is complete.

D MEMORY PATHWAYS IN SNN

In this section we analyze the increase to the upper bound of the number of memory pathways in a
network by using heterogeneous networks and skip-layer connections.

Lemma 3 A spiking neuron has cutoff period ωc = τm ln( vreset−a
vreset−a+Rm

τm
G

) above which input spike

sequence cannot cause the spiking neuron to spike.

Proof. Consider (2), since the membrane potential increases at time of ti and decays otherwise,
solving for t = ti and the equation can be expanded:

vm(ti) = vresete
ti

τm + a(1− e
ti

τm ) +
Rm
τm

Ge
ti−t1
τm +

Rm
τm

Ge
ti−t2
τm + ...+

Rm
τm

G

For input with frequency f , ti+1 − ti = ∆t = 1
f , subtracting membrane potential values at two

consecutive ti provides:

∆vm = vm(ti+1)− vm(ti) = vreset(e
ti+1

τm − e
ti

τm )− a(e
ti+1

τm − e
ti

τm ) +
Rm
τm

Ge
ti+1−t1
τm (4)

setting time of first input spike t1 to zero leads to:

∆vm = e
ti

τm ((e
∆t
τm − 1)(vreset − a) +

Rm
τm

Ge
∆t
τm )

As e
ti

τm > 0, and the term ((e
∆t
τm )−1)(vreset−a)+Rm

τm
Ge

∆t
τm ) does not depend on ti, the polarity of

∆vm does not change with time. vm is either strictly increasing, staying the same or decreasing with
higher ti. This indicates that, when ∆vm ≤ 0 the post-synaptic neuron can never spike regardless
of how many pre-synaptic spike it receives. ∆vm ≤ 0 when input spike period tin satisfies

tin ≥ τm ln(
vreset − a

vreset − a+ Rm
τm
G

)

Therefore, the cutoff period of the neuron is ωc = τm ln( vreset−a
vreset−a+Rm

τm
G

). The proof is complete.
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In the following proof, we consider cutoff frequency, fc = 1
ωc

of spiking neurons.

Lemma 4 For an mMND network with m layers and {λ1, λ2, ...λm} number of different neuron
dynamics in each layer, the upper bound of the number of memory pathways is

∏m
i=1 λi.

Proof. For each layer of the mMND network, since each neuron has different parameters and there
are λi neurons in layer i, according to Lemma 3, there can be at most λi different cutoff frequencies
among all neurons in layer i. We consider the case where the maximum number of different cutoff
frequencies, i.e. λi, exists for all layers i ∈ {1, 2, 3...m} in the mMND network.

For layer 1, it is possible to sort cutoff frequencies of all neurons {f1c , f2c , ...fλ1
c } into an ordered

list. For simplicity, assume the neuron indices already put the list in ascending order: f1c < f2c <
f3c , ...f

λ1−1
c < fλ1

c . For a particular input spike sequence to layer 1 with frequency fin s.t. fµc <
fin < fµ+1

c , neurons with indices from 1 to µ receive input sequence above their cutoff frequencies
and can be activated.

Therefore, among all input spike sequence with frequency fin > f1c , there can be a total of λ1
possible neuron activation states in the first layer. The same property also applies to layer 2, which
creates λ1λ2 possible neuron activation states across layer 1 and 2. Repeat this to the last layer, the
number of different neuron activation states throughout the network is

∏m
i=1 λi. As inactive neuron

does not send information to its post-synaptic neurons, the network output will not be affected if the
connections between inactive neurons and their corresponding post-synaptic neurons are removed.
This means that, there are equivalently

∏m
i=1 λi possible memory pathways with different connec-

tivity in the mMND network. While we consider the condition where all layers have the maximum
number of different cutoff frequencies, for any mMND networks with m layers, the number of dif-
ferent cutoff frequencies nfc in all layers satisfies nfci ≤ λi ∀ i ∈ {1, 2, 3...,m}. Therefore, the
upper bound of the number of distinct memory pathways is

∏m
i=1 λi. The proof is complete.

Lemma 5 For a mMND network with m layers and {λ1, λ2, ...λm} different neuron dynamics in
each layer, a skip-layer connection made between layer la and lb, s.t. a, b ∈ {1, 2, ...m} and (b−a) >
1 increases the upper bound of the number of memory pathways to

∏m
i=1 λi + (

∏a
i=1 λi ·

∏m
i=b λi)

Proof. For the mMND network with skip-layer connection between layer la and layer lb, denoted as
P ′, we consider the case where the maximum number of different cutoff frequencies, i.e. λi, exists
for all layers i ∈ {1, 2, 3...m} in the mMND network, and network output feature vector is non-zero.
The set of all neuron activation states in P ′ that generates non-zero network output feature vector
can be partitioned into two subsets denoted as A and B. Set A contains all states where the input
frequency to any layer li such that a < i < b is below cutoff frequencies of all neurons in layer li.
B contains all states where all layers receive input frequency higher than cutoff frequency of at least
one neuron in each layer.

For all states in A, no spike signal is sent from layer b− 1 to layer b, thus the network output is not
affected if connections between layer li and li+1, such that i ∈ {a, a + 1, ...b − 1}, are removed.
The network is equivalent to network P ′′ that contains layers {l1, l2, ...la, lb, lb+1, ...lm} connected
sequentially. Similar to the proof for Lemma 4, it can be determined that the number of memory
pathways of P ′′ is

∏a
i=1 λi ·

∏m
i=b λi for all states in setA. For all states in setB, since the activation

of neurons in the source layer of the skip-layer connection is already accounted for when considering
layer la, the number of memory pathways is the same as network P ′ without skip-layer connection,
which is

∏m
i=1 λi according to Lemma 4.

For the set of memory pathways from states in A, denoted as MA, and the set of memory pathways
from states in B, denoted as MB , it satisfies that MA ∩MB = ∅, since all elements in MA have
(m− (b− a− 1)) layers, and all elements in MB have m layers. Therefore, the number of memory
pathways of network P ′, under all circumstances where the network has non-zero output vector, is
|MA∪MB | =

∏m
i=1 λi+ (

∏a
i=1 λi ·

∏m
i=b λi). While we consider the specific network in which all

layers have the maximum possible number of different cutoff frequencies, for any mMND networks
withm layers and skip layer connection between la and lb, the number of different cutoff frequencies
nfc in all layers satisfies nfci ≤ λi ∀ i ∈ {1, 2, 3...,m}. Therefore, the upper bound of the number
of memory pathways is

∏m
i=1 λi + (

∏a
i=1 λi ·

∏m
i=b λi). The proof is complete.
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E DETAILS ON THE BAYESIAN OPTIMIZATION PROCESS

During the first stage of the dual-search-space optimization process, the parameters to optimize
include: Nlayer, Lstart, Lend, Nskip, Ndynamic, all of which are positive integers. Specifically,
Nlayer is the number of convolutional layers. For skip-layer connection, there are three configura-
tion parameters to optimize: starting layer Lstart, which is the source layer of the first skip-layer
connection; ending layer Lend, which is the target layer of the last skip-layer connection; skip-layer
connection number Nskip, which defines how many connections to implement. The source layer of
the Nskip skip-layer connections are placed evenly between Lstart and Lend, each with skip length
of b(Lend − Lstart)/Nskipc, in case ((Lend − Lstart)/Nskip) 6= b(Lend − Lstart)/Nskipc, the
value of Lend is reduced to the maximum value that satisfies ((Lend − Lstart)/Nskip) = b(Lend −
Lstart)/Nskipc. For heterogeneity, the number of different dynamic Ndynamic in all layers are opti-
mized jointly. The constraint for the parameters is that,Nlayer ∈ [4, 15], 2 ≤ Lstart < (Nlayer−1),
(Lstart + 1) < Lend ≤ Nlayer, and 0 ≤ Nskip ≤ (Lend − Lstart)/2 and Ndynamic ∈ [1, 10]. The
manually configured neuron parameters are, τm = 100 and Rm = 300 for all neuron dynamics, and
a ∈ [−30,−5] is distributed evenly for each neuron dynamics.

Due to the exponential increase of search space with the number of neuron dynamics in each layer,
it is highly inefficient to search for every neuron parameters in each dynamic. In the second stage
of the optimization process, we choose to apply Bayesian optimization for the parameter a of each
neuron dynamic separately, while τm and Rm are optimized jointly with the same values shared by
all neuron dynamics. a values are taken to the precision of 100, and τm and Rm values are taken to
the precision of 101. The constraints are a ∈ [−30,−5], τm ∈ [50, 200] and Rm ∈ [200, 400]. The
value of tnd for all networks is set to 1. The parameters of each optimized networks are shown in
Table 1. Note, the skip-layer connections are listed as source and target layer pairs.
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