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Abstract

Recognition of electroencephalographic (EEG) signals highly affect the efficiency1

of non-invasive brain-computer interfaces (BCIs). While recent advances of deep-2

learning (DL)-based EEG decoders offer improved performances, the development3

of geometric learning (GL) has attracted much attention for offering exceptional4

robustness in decoding noisy EEG data. However, there is a lack of studies on the5

merged use of deep neural networks (DNNs) and geometric learning for EEG de-6

coding. We herein propose a manifold attention network (mAtt), a novel geometric7

deep learning (GDL)-based model, featuring a manifold attention mechanism that8

characterizes spatiotemporal representations of EEG data fully on a Riemannian9

symmetric positive definite (SPD) manifold. The evaluation of the proposed mAtt10

on both time-synchronous and -asyncronous EEG datasets suggests its superiority11

over other leading DL methods for general EEG decoding. Furthermore, analysis12

of model interpretation reveals the capability of mAtt in capturing informative EEG13

features and handling the non-stationarity of brain dynamics.14

1 Introduction and related works15

A brain-computer interface (BCI) is a type of human-machine interaction that bridges a pathway from16

brain to external devices. Electroencephalogram (EEG), a non-invasive neuromonitoring modality17

with high portability and affordability, has been widely used to explore practical applications of BCI18

in the real world [1, 2, 3]. For instance, disabled users can type messages through an EEG-based BCI19

that recognizes the steady-state visual evoked potential (SSVEP) induced by flickering visual targets20

presented on a screen [4, 5, 6]. Stroke patients who need restoration of motor function undergo21

motor-imagery (MI) BCI-controlled rehabilitation as an active training [7, 8]. Most EEG-based BCI22

systems are designed to detect/recognize reproducible time-asynchronous or time-synchronous EEG23

patterns of interest, depending on the schemes of BCI [9]. For example, the MI EEG pattern is an24

endogenous oscillatory perturbation without an explicit onset time sources from the motor cortex25

[10]. On the other hand, a time-synchronous EEG pattern is time-locked to a specific event. For26

example, the pattern of SSVEP is synchronized to the change of brightness on a flickering visual27

target. The efficiency of BCI systems largely relies on the accuracy and robustness of the EEG28

decoder. However, due to the low signal-to-noise ratio (SNR) [11] and non-stationarity [12] of EEG,29

translating perplexing EEG signals into meaningful information has been a grand technology and30

scientific challenge in the field.31

Recent advances in deep learning (DL) have contributed to the rapid development of DL-based EEG32

decoding techniques [13]. DL models are capable of extracting features automatically according to33
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given training data. Convolutional neural network (CNN) is one type of the most common DL models34

and has achieved remarkable performance in tasks such as image recognition and object detection35

[14, 15, 16]. CNN models newly designed for EEG decoding use convolutional kernels that serve36

as spatial and temporal filters but with extra flexibility to optimize the transformation of EEG data37

automatically through model training [17, 18, 19]. In addition to the fast growth of DL-based EEG38

decoders, geometric learning (GL) approaches, mostly based on Riemannian geometry (RG), have39

been adopted in the field of BCI [20]. RG is a type of non-Euclidean geometry that has a different40

interpretation of Euclid’s fifth postulate (i.e. parallel postulate) [21]. In GL, geodesic between points41

on the manifold is a critical feature for classification tasks in BCI. The power and spatial distribution42

of a segment of multi-channel EEG signals can be coded into a covariance matrix that is symmetric43

positive definite (SPD) in general. This allows mapping of EEG data directly onto a Riemannian44

manifold where Riemannian metric is insensitive to extreme outliers and noise [22, 20]. In 2010,45

Barachant et al. [23] proposed Minimum Distance to Mean (MDM) that maps target EEG data46

onto the SPD manifold to find the nearest class center. Later on, they developed TSLDA [24] that47

projects data from the manifold to a specific tangent space where Euclidean classifiers are applicable.48

RG-based classification for EEG decoding has shown extra robustness as the relationship between49

data samples can be stably preserved, leading to success in recent data competitions in the BCI field50

such as ’DecMEG2014’1 and the ’BCI challenge’2.51

The nascent field of geometric deep learning (GDL) has expanded by emerging techniques to52

generalize the use of deep neural networks to non-Euclidean spaces. Efforts have been made53

to transitioning useful operations from Euclidean to Riemannian spaces, including convolution54

[25, 26, 27], activation function [25, 26], batch normalization [28, 29], that facilitate the ongoing55

development of GDL tools. SPDNet [25] is a Riemannian network for non-linear SPD-based learning56

on Riemannian manifolds using bi-linear mapping that mimics Euclidean convolution for visual57

classification tasks. ManifoldNet [26] offers high performance in medical image classification with58

manifold autoencoder. [30] characterizes 3D movement via the manifold polar coordinate with59

a geodesic CNN. [31] performs convolution on the manifold as a generalization of local graph60

or manifold pseudo-coordinate for vertex classification on graph and shape correspondence task.61

In contrast of the vast develop of geometric deep learning (GDL) in many other scientific fields,62

only few studies focus on decoding EEG data with a merge use of GL and DL. [32] proposed a63

network architecture that integrates fusion of Euclidean-based module and manifold-based module64

with multiple LSTM and attention structures to extract spatiotemporal information of EEG. [33]65

proposes a Riemannian-embedding-banks method that separates the entire embeddings into multiple66

sub-problems for learning spatial patterns of MI EEG signals based on the features extracted from67

the SPDNet. [34] combines federated learning and transfer learning on Riemannian manifold using68

the spatial information of EEG. [35] proposes deep optimal transport on the manifold to minimize69

the cost of domain adaptation from the source domain to the target domain. [36] extracts multi-view70

representations of EEG. These studies have established cornerstones toward the field of future GDL71

for EEG decoding, but the increment of performance is yet marginal. Most of the above-mentioned72

techniques can not map the temporal information of EEG onto the manifold, or still rely on Euclidean73

tools to handle EEG features. We herein propose a manifold attention network, a novel GDL74

framework, which maps EEG features on a Riemannian SPD manifold where the spatiotemporal75

EEG patterns are fully characterized. The main contributions of the present study are the following:76

• a manifold attention network proposed for decoding general types of EEG data.77

• a lightweight, interpretable, and efficient GDL framework that is capable of capturing78

spatiotemporal EEG features across Euclidean and Riemannian spaces.79

• an empirical validation of our proposed model demonstrating its generalizable superiority80

over leading DL approaches in EEG decoding.81

• neuroscientific insights interpreted by the model that not only echo prior knowledge but also82

offer a new look into the dynamical brain.83

1DecMEG2014: https://www.kaggle.com/competitions/decoding-the-human-brain/leaderboard
2BCI challenge: https://www.kaggle.com/c/inria-bci-challenge
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This article is organized as follows: we first brief the essential background of RG and manifold84

attention mechanism; next, we describe the proposed mAtt architecture with details of model design85

and training; we then validate our proposed model experimentally; lastly, we interpret our proposed86

model with neuroscientific insights.87

2 Preliminary88

A manifold is considered as the expansion of curve and surface in Euclidean space. It is a topological89

space that can locally regarded as an open set in Hilbert space. Suppose a manifold is endowed with90

a differential structure (i.e. a collection of charts satisfying transition mapping, which is defined91

on the overlap of charts), it is then the so-called differential manifold [37]. Riemannian geometry92

is a differential manifold equipped with Riemannian metric. We consider the Symmetric positive93

definite (SPD) manifold, which allows us to manipulate manifold-valued data on the manifold directly.94

The spatial information of EEG signal can be represented as a specific covariance matrix, which95

records the relationship between channels, and is a critical index for us to understand EEG signal.96

However, the solution of the Riemannian mean doesn’t have a close form, thus we need to calculate97

the approximate mean in an iteration manner [23, 26] until convergence conditions are satisfied.98

Riemannian mean is not suitable for being applied in deep learning because of the high computational99

complexity. Therefore, we have the Log-Euclidean metric below.100

2.1 Notations101

GL(n,R) := {A ∈ Rn×n | determinant(A) ̸= 0} is a general linear group, which is the set of all102

real non-singular sqaure matrices. (M, g) denotes connected Riemannian manifold. Sym(n) :=103

{S ∈ Mn×n(R) | ST = S} is the space of all n× n real symmetric matrices, where Mn×n(R)104

specifies the space of all real square matrices, (.)T is the transpose operator, and Sym+(n) :=105

{P ∈ Mn×n(R) | P = PT , vTPv > 0,∀v ∈ Rn − {0}} is the set of all n× n symmetric positive106

definite(SPD) matrices.< A,B >F means the Frobenius inner product, defined as Tr(ATB), where107

Tr(.) is the trace operator. Log(.) and Exp(.) are the principle logrithm operator for SPD matrix[38]108

and exponential operator for symmetric matrix respectively. Both of them can be computed using109

the orthogonal diagonalization. Log : Sym+(n) 7→ Sym(n) is an operator that maps a SPD matrix110

P ∈ Sym+(n) to Sym(n) by:111

Log(P ) = Udiag(log(σ1), ..., log(σn))U
T (1)

where U is the matrix of eigenvectors of P , since P ∈ Sym+(n), σi > 0, i = 1, ..., n112

The inverse projection is Exp of symmetric matrix: Exp : Sym(n) 7→ Sym+(n), an operator maps113

a symmetric matrix S ∈ Sym(n) to Sym+(n) by:114

Exp(S) = V diag(exp(σ1), ..., exp(σn))V
T115

where V is the matrix of eigenvectors of S.116

2.2 Log-Euclidean metric117

Log-Euclidean metric (LEM) offers a more simple, similar, and efficient generalization to calculate118

the center on the SPD manifold than Affine-invariant metric (AIM) [39, 40]. LEM is a bi-invariant119

metric on the Lie group on the SPD manifold [40]. The geodesic distance from P1 to P2 on the120

Sym+(n) is also given by [40]:121

δL(P1, P2) = ∥Log(P1)− Log(P2)∥F (2)

Furthermore, we can also define the Log-Euclidean mean(G) via the Log-Euclidean distance:122

G(P1, ...Pk) = argmin
P∈Sym+(n)

k∑
l=1

δ2L(P, Pl) where P1, ..., Pk ∈ Sym+(n).123
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(a) (b)

Figure 1: (a) The overview of the proposed model architecture. (b) E2R operation: split latent feature
into several epochs, and convert each one to a specific SPD matrix.

Fortunately, the solution to the formula above has a closed form to follow, given by [41]:124

G = Exp

(
1
k

k∑
l=1

Log(Pl)

)
125

In this work, we are going to use the weighted Log-Euclidean mean that is endowed with different126

weights in different Pl. We denote the weight of each Pl as wl, where ∀l ∈ {1, 2, ..., k}. Here,127

{wl}kl=1 satisfies the convexity constraint definition (i.e.
k∑

l=1

wl = 1, and wl > 0). The definition128

and the corresponding weighted Log-Euclidean mean can be defined and derived as:129

G(P1, ...Pk) = argmin
P∈Sym+(n)

k∑
l=1

wlδ
2
L(P, Pl)130

and131

G = Exp

(
k∑

l=1

wlLog(Pl)

)
132

respectively.133

3 Methodology134

As shown in Figure 1(a), the architecture of mAtt includes components of the feature extraction135

(FE), the manifold attention module, transitioning from Euclidean to Riemannian space (E2R), and136

transitioning from Riemannian to Euclidean space (R2E).137

3.1 Feature extraction of EEG signals138

We use two convolutional layers to extract information of the raw EEG signals, where the first139

convolutional layer performs spatial filtering to the multi-channel EEG signals and the second140

convolutional layer extracts spatiotemporal features. Our parameter setting follows [19].141

3.2 From Euclidean space to SPD manifold(E2R operation)142

As illustrated in Figure1 (b), we convert the embeddings from the feature extraction stage to the SPD143

data and map the feature embeddings from Euclidean space to the SPD manifold. Suppose f̃ denotes144

the embeddings after the feature extraction stage, we divide the whole embeddings into several epochs145

f̃1, f̃2, ..., f̃m, and calculate the sample covariance matrix(SCM) of each f̃i,∀i ∈ {1, 2, ...,m}. By146

doing so, we get a sequence of covariance matrices that present the temporal information of the147

embeddings f̃ in the form of SPD data, called SCMf̃1
, SCMf̃2

, ..., SCMf̃m
. After we get some148

datapoints, we do trace-normalization and add a small number ϵ on each main diagonal element for149
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(a) (b)

Figure 2: (a) The architecture of the proposed manifold attention module. qi, ki, vi refer to the query,
key, and value of the ith input matrix x̃i respectively; v′i stands for the ith output of the proposed
module. (b) Illustration of the operation of Log-Euclidean mean used in proposed module as i = 1
and number of epoch is 3; qi and kj refer to ith query and jth key respectively; dj denotes the
distance between q1 and kj on the SPD manifold M; TI refers to the tangent space based on identity
matrix I.

each SCMf̃i
(i.e.

SCMf̃i

tr
(
SCMf̃i

) + ϵI) where i ∈ {1, 2, ...,m}, I is the identity matrix, and we set ϵ as150

1e-5 in our source code. The resulting SPD sequence is denoted as X̃ = [x̃1, x̃2, ..., x̃m]. We add a151

small identity matrix on them to promise x̃i to be a well-defined SPD matrix.152

3.3 Manifold attention module153

The input of this layer is a sequence of SPD data. The overview of the manifold attention module is154

illustrated in Figure 2 (a). Motivated by [25] and [42], we capture the spatiotemporal information on155

the manifold. Suppose the module takes a sequence of SPD matrices [x̃1, x̃2, ..., x̃m], denoted as X̃ .156

Here we have the query, key, and value in the form of SPD matrices on the manifold [42]. We convert157

the x̃i to the qi, ki, and vi via bilinear mapping and exploit non-linear and valid features from each158

segment. Suppose the shape of x̃i is dc × dc, and hq, hk, and hv is the mapping from x̃i to qi, ki,159

and vi respectively:160

qi = hq(x̃i;Wq) = Wqx̃iW
T
q161

ki = hk(x̃i;Wk) = Wkx̃iW
T
k162

vi = hv(x̃i;Wv) = Wvx̃iW
T
v163

where x̃i ∈ Sym+(dc), Wq,Wk, and Wv ∈ Rdu×dc(du < dc) denotes transformation matrices. To164

make sure the output qi, ki, and vi are also SPD matrices, transition matrices Wq,Wk, and Wv are165

row-full rank matrices.166

After we got qi, ki, and vi by bilinear mapping, we define the similarity for measuring the qi and kj167

SPD matrices. In Euclidean space, there are several ways to define the similarity. A most common168

way is to use dot-product[42] to measure the similarity of query and key. However, our query, key,169

and value are SPD matrices instead of vectors as regular attention. We define the similarity based170

on the Log-Euclidean distance (equation(2)) between query and key. Suppose we have qi and kj ,171

for some i, j ∈ {1, ...,m}. The similarity sim(.) is a strictly decreasing function of distance172

[0,∞) 7→ [0, 1] and is defined as: sim(qi, kj) = 1
1+log(1+δL(qi,kj))

: = αij . Then, the attention173

matrix is:174

A = [αij ]m×m175

We then use Softmax function to shrink the range along the row direction, making values in row176

have convexity constraint property. The final attention probability matrix A′ is:177

A′ = Softmax(A) = Softmax([αij ]m×m) = [α′
ij ]m×m178
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where α′
ij =

exp(αij)∑m
k=1 exp(αik)

,∀i, j ∈ 1, · · · ,m. Finally, we combine the attention probability matrix179

and v1, v2, ..., vm to get the final output v′1, v
′
2, ..., v

′
m and define the output v′i(∀i = 1, 2, ...,m) via180

Log-Euclidean mean as:181

v′i = Exp

(
m∑
l=1

α′
ilLog(vl)

)
182

The whole mAtt procedure is illustarted in Algorithm 1 in appendix.183

As shown in Figure2(b), the output v′1 of our attention module can be comprehended as a projection184

that translates the weighted sum, on the tangent space, of three different matrices encoded by185

three different epochs and corresponding attention scores α′
11, α

′
12, α

′
13 (or weights) to a specific186

representative matrix v′1 on SPD manifold. Herein the weights for the weighted sum on the tangent187

space is assigned by its query matrix q1 and corresponding keys k1, k2, k3 to generate the relevance188

score between q1 and k1, k2, k3 [42, 43].189

3.4 From Riemannian manifold to Euclidean space(R2E) and loss layers190

After passing through attention module, ReEig layer is used to imitate the ReLU function. But it is191

different from the ReLU function that sets the threshold to the value of input, ReEig sets a threshold192

to the eigenvalue of the input, can be defined in [25]. R2E operation aims to map the SPD data193

back to the Euclidean space for executing the final classification, which is composed of a Log layer194

and regular flatten layer in [25] sequentially. Log layer is the most common skill in geometric deep195

learning to project the SPD data to the Euclidean space. By doing so, we reduce the manifold to a flat196

space by Log(.) operation. We take Log(.) operation on the output from the attention module layer197

v′1, v
′
2, ..., v

′
m ∈ Sym+(du). Denote the whole R2E operation as hL : Sym

+(du) 7→ Rdu×(du+1)/2:198

hL(v
′
i) = flatten (Log(v′i)) = flatten

(
S(diag(log(σ1), · · · , log(σdu

)))ST
)

199

where S is the eigenvector-matrix of v′i, and σ1, · · · , σdu are the eigenvalues of v′i. The Log(.)200

operation is the same as equation(1), and the flatten(A) operation flatten the upper triangle of the201

arbitrary symmetric matrix A .202

Finally, we set a fully connected layer and regular softmax operation on embeddings after R2E203

operation. Suppose the output from the whole model stream is ŷ, the groundtruth is y, we define the204

loss L as the cross-entropy loss of ŷ and y.205

4 Experiments206

Here we evaluate the proposed mAtt using both time-asynchronous and time-synchronous EEG207

data to give empirical evidence of the advantages. The performance in a general use for EEG208

decoding is compared against leading DL-based techniques. We incorporate the BCI Competition209

IV 2a Dataset (BCIC-IV-2a) [44] to assess the performance on time-asynchronous motor-imagery210

(MI) EEG decoding , the MAMEM EEG SSVEP Dataset II (MAMEM-SSVEP-II) [45] and the211

BCI challenge error-related negativity (ERN) dataset (BCI-ERN) [46] to assess the performance on212

time-synchronous SSVEP and ERN EEG decoding. Previous and current state-of-the-art DL-based213

models listed for comparison with mAtt include MBEEGSE [47], TCNet-Fusion [48], EEG-TCNet214

[49], FBCNet[50], SCCNet[19], EEGNet[17], and ShallowConvNet[18].215

A series of experiments were conducted to evaluate the performances of the mAtt against other216

EEG decoders with the context of real-world BCI usage taken into account. In the real-world usage217

of BCI, a user usually needs to go through a training session for collecting a sufficient amount of218

individual EEG data for training the decoding model before executing the BCI system. To stick with219

the practical scenario, we performed an individual training scheme where a chunk of trials within a220

subject are assigned to the training set and the left-over trials within the same subject are used for221

testing [19, 50]. For the BCIC-IV-2a dataset, we used the first session of a subject to the training set222
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where one out of eight was used for validation for mAtt with m = 3. The model with the lowest223

validation loss within 350 iterations was used for testing on the second session of the same subject.224

For the MAMEM-SSVEP-II/BCI-ERN dataset, we assigned the first four sessions of a subject to the225

training set where one out of four was used for validation for mAtt with m = 7/m = 3. The model226

with the lowest validation loss within 180/130 iterations was used for testing on the fifth session of227

the same subject. The classification performances for BCIC-IV-2a and MAMEM-SSVEP-II datasets228

were estimated by the mean accuracy across ten repeats for each subject. On the other hand, we229

use the same criterion as [17], herein the AUC score [51] is adopted to estimate the performance of230

BCI-ERN dataset due to the imbalanced issue.231

4.1 Performance comparison232

We validate the performance of mAtt against other leading methods. The criteria of selecting the233

baseline model collection here is based on: 1) code availability and completeness and 2) solid234

evaluation (e.g. cross-session) without additional auxiliary procedures (e.g. manual feature extraction,235

data augmentation, pre-trained model, etc). As shown in Table 1, mAtt outperforms all other leading236

DL methods on both time-synchronous (SSVEP) and -asynchronous (MI) EEG decoding. However,237

for ERN dataset, mAtt won the second place, only 1% lower than the EEG-TCNet but at least 7%238

higher than EEG-TCNet on other two kinds of EEG decoding tasks. Nowadays a variety of DL239

methods employed in EEG classification focus on a specific type of EEG decoding task due to high240

variability between different types of EEG data [50, 49, 19]. It is difficult to design a DL architecture241

for decoding various type of EEG data. The table attests the robustness of proposed mAtt, which242

has strong generalization capacity to adapt general types of EEG data compared to other leading243

DL models. There are about 3% leap forward the best baseline models on both MI and SSVEP task.244

The rigorous cross-session training scheme and the preprocessing step that will highly decrease the245

time resolution of each EEG data we adopted to validate the performance for each model and dataset246

maybe a reason why some of baseline models may not decode EEG dynamics successfully. Moreover,247

the rarity of the EEG data may cause arduous overfitting issue for baseline models. We conclude that248

mAtt has a generalizable superiority in decoding EEG for various types of BCI systems.249

4.2 Ablation study250

We assess the significance of each of the major component in mAtt via a series of ablation analysis.251

As shown in Table 2, the accuracy reduces if we only use one component in our mAtt to do the252

classification. However, the combination of our proposed manifold attention module and feature253

extractor (FE+MA) achieves the best accuracy on all datasets. This implies that there is no redundant254

component in our proposed mAtt, and each part is needed for its non-negligible functions. The255

feature extractor aims to denoise and preprocess the EEG signals, and the attention module focus on256

integrating the preprocessed EEG signals and capturing underlying dynamics in the latent features.257

Table 1: Performance comparison between mAtt and baseline DL methods on MI (BCIC-IV-2a),
SSVEP (MAMEM-SSVEP-II), and ERN (BCI-ERN)
datasets. Bold fonts mark the highest overall performance (MI, SSVEP: accuracy, ERN: AUC). We

adopted Wilcoxon-sign rank test with Bonferroni correction to perform the multiple comparison
between all models. The statistical test result is available in the appendix A.9.

Models MI SSVEP ERN
ShallowConvNet [18] 61.84±6.39 56.93±6.97 71.86±2.64

EEGNet [17] 57.43±6.25 53.72±7.23 74.28±2.47
SCCNet [19] 71.95±5.05 62.11±7.70 70.93±2.31

EEG-TCNet [49] 67.09±4.66 55.45±7.66 77.05±2.46
TCNet-Fusion [48] 56.52±3.07 45.00±6.45 70.46±2.94

FBCNet [50] 71.45±4.45 53.09±5.67 60.47±3.06
MBEEGSE [47] 64.58±6.07 56.45±7.27 75.46±2.34

mAtt 74.71±5.01 65.50±8.20 76.01±2.28
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Table 2: Overall accuracy (%) on BCIC-IV-2a and MAMEM-SSVEP-II, and overall auc score on
BCI-challenge-ERN (%) with parts within the model appended. FE: feature extractor; MA: manifold
attention module; SA: self-attention module.

Parts appended BCIC-IV-2a MAMEM-SSVEP-II BCI-challenge

FE 26.08±0.70 20.18±1.11 73.40±2.27
MA 60.73±5.80 30.51±2.57 59.47±3.56

FE+SA 49.19±2.72 22.91±2.00 63.77±1.71
FE+MA (proposed) 74.71±5.01 65.50±8.20 75.71±2.31

We can further compare the result between FE+SA and FE+MA to check the necessity of MA:258

the performance of FE+MA significantly outperform the regular self-attention based FE+SA on all259

validation EEG datasets.260

4.3 Model interpretation261

Through analysis for the interpretation of the proposed model, mAtt, we are able to uncover the262

underlying characteristics learnt from the data. Figure 3 illustrates the gradient response for MI EEG263

decoding across channel and across time. We can see left/right hand MI responses are strong at264

C4 and C3 corresponding to right/left motor cortices that control the lateral motor functions of the265

contralateral side of the body [54]. Both feet and tongue MI, that are not lateral movements, presents266

strong responses at CPz above the midline of motor cortex. The spatial distribution clearly exhibit267

Fz

FC3  FC1 FCz FC2  FC4

C5 C3 C1 Cz C2 C4  C6

CP3  CP1 CPz CP2  CP4
P1 Pz P2

POz

Figure 3: Spatial topomaps for the mean absolute gradient response (computed as in [52, 53])
across time from the visualization of the model S3 in the BCIC-IV-2a dataset for the four

motor-imagery classes (left hand, right hand, feet, and tongue). Dark red marks the brains region
presenting strong gradient activation at C4 (over right motor cortex) for the left hand, C3 (over left
motor cortex) for the right hand, CPz (over motor cortex) for the feet and the tongue motor imagery.

Figure 4: Time-frequency spectrograms from the gradient-based visualization (computed as in
[52, 53]) of the model S3 in the BCIC-IV-2a dataset for the four motor-imagery classes (left hand,
right hand, feet, and tongue). Strong response of motor imagery is marked by dark red at specific
frequency bands and time intervals. Increased response of motor imagery is found at mu band ( 10
Hz) for all classes. The strong response of left/right hand motor imagery occurs at 1-2 seconds, the
feet motor imagery is most vivid at 0.5-1 seconds, and the tongue motor imagery induced two peaks
at 1 second and 3 seconds.
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(a) (b) (c)

Figure 5: (a) The distribution of attention scores across three epochs within a trial gained from the
model interpretation of the S3 in the BCIC-IV-2a dataset. (b) The distribution of attention scores
across seven epochs within a trial gained from the model interpretation of the S11 in the MAMEM-
SSVEP-II dataset. (c) The distribution of attention scores across three epochs within a trial gained
from the model interpretation of the S7 in the BCI challenge dataset.

asymmetric pattern for left/right hand MI and symmetric pattern for feet/tongue MI. The temporal268

information is available in Figure 4, where all four types of MI induce strong response at mu band269

around 10 Hz. This result is in line with the well-known association between motor function and270

mu rhythm in EEG recordings [54]. The visualization of our model for SSVEP decoding is exhibit271

in the appendix. Figure 5 depicts the distribution of attention scores across epochs between the (a)272

MI, (b) SSVEP, and (c) ERN EEG signals. Here, the attention score refers to the average of the273

relevance score of an attention network, as described in [42], and has been applied to interpreting274

an attention-based EEG decoder [43]. For MI EEG signals, attention score is the highest at the first275

epoch and decreases in the following epochs, which implies that the beginning of the motor imagery276

may contribute a higher importance determined by the manifold attention module. The profile of277

attention score for SSVEP EEG signals presents a similar traits that the earlier epochs relate to higher278

importance. For ERN EEG signals, attention score is the highest on the first two epochs. As we279

observe a consistency cross EEG datasets that higher attention scores lie in earlier epochs, this may280

infers that the attention module relies largely on the similarity to the early stage of a trial, which is281

analogous to baseline correction, a major common procedure in conventional EEG signal processing282

[55]. This analysis reveals the capability of mAtt in handling the non-stationarity of the dynamical283

brain activity.284

4.4 Limitation285

In our framework, vacuum permittivity ϵ is added on all main diagonal elements of covariance cxix
T
i286

to ensure the rigor of SPD matrix. But the operation may cause the repeated singular value ϵ in Si.287

Therefore, we proposed possible solutions for this issue: 1) Let m < n when dividing the embeddings288

into several time segments, reducing the possibility of getting low-rank Si; 2) Let ϵ be randomly289

drawn from a specific distribution, such as Uniform (1e− 8, 1e− 4) to solve this issue, which is290

also a practicable solution; 3) Use the derivative of a low-rank matrix[56] to cope with this issue.291

Conclusion292

We propose a manifold attention network as a novel GDL framework for decoding both time-293

synchronous and -asynchronous EEG decoding. Using back propagation based on the Stiefel294

manifold, the proposed mAtt is capable of mapping EEG features onto a Riemannian manifold,295

where spatiotemporal EEG patterns are captured and characterized, within a lightweight architecture.296

The experimental results suggest the superiority of mAtt over current leading DL methods for both297

time-synchronous and -asynchronous EEG decoding. With the interpretability of mAtt, we visualize298

the spatial and temporal EEG patterns, which are in line with prior neuroscientific knowledge and299

shed light on potential possibility of tracking the brain dynamics. In sum, our privileged method,300

mAtt, improves the SOTA performance of EEG decoding, and is expected to impact on GDL-based301

EEG processing with generalizable efficiency and robustness for future development of various BCI302

systems.303
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