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Abstract

The exponential family is well known in machine learning and statistical physics
as the maximum entropy distribution subject to a set of observed constraints [1]],
while the geometric mixture path is common in MCMC methods such as annealed
importance sampling (AIS) [2} 3]. Linking these two ideas, Brekelmans et al. [4]
interpret the geometric mixture path as an exponential family of distributions to
analyse the recent thermodynamic variational objective (TVO) [5].

In this work, we extend likelihood ratio exponential families to include solutions
to rate-distortion (RD) optimization [6, [7], the Information Bottleneck method
(1B) method [8]], and recent rate-distortion-classification (RDC) approaches com-
bining RD and 1B [9, [10]. We provide a common mathematical framework for
understanding these methods using the conjugate duality of exponential families.
Further, we collect existing results [[11H13]] to express intermediate distributions via
a variational representation related to hypothesis testing and the Neyman Pearson
lemma [14, [15], and leverage this perspective to identify the point at which the
TVO integrand, or expected likelihood ratio, matches the log partition function.

1 Introduction

Likelihood Ratio Exponential Family Following Brekelmans et al. [4], we consider the geomet-
ric mixture path between a base distribution 7y(z) and target 7 (z) or posterior 71 (z|x), as an
exponential family. We define the sufficient statistics ¢(z) = log 7 (z)/mo(2) as the log likelihood
ratio [4]), although in practice it is convenient to consider an unnormalized target 7 (z) o 71(z) or
m1(z|x) o< 71 (x, 2) and adjust the normalization constant accordingly. Using a natural parameter 3
and base distribution 7,

75(2) = mo(2) exp(B - B(2) — ()} =m0 ()P (2)° (1)

Zg
:)8 Y(B) :=log Zg =10g/770(2)1_ﬁ7?1(2)ﬁd2 @)

Before discussing examples in Sec. [2] we review background on conjugate duality in exponential
families, which provides insights which are not evident from writing (I)) as a geometric mixture [4].

where ¢(z) := log

Legendre Duality in Exponential Families Since the log partition function ¢(3) of an exponential
family is convex in the natural parameters /3, its gradient will be unique and may be used as a dual
parameterization for g [[16][I7]. This diffeomorphism between the natural parameters 3 = { ﬂj}[ﬂ
and moment parameters, denoted 17 = {);}, also defines the convex conjugate function ¢)*(n), with

fy o _9
w(n)—sgpﬂ n —p(B) = =33

"We allow for multiple sufficient statistics, with 3 - ¢(z) = S ; Bi - ¢;(2) denoting the dot product.

= Ersl0;(z,2)] V j 3)
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With the Lebesgue or counting measure as 7 (z), the conjugate 1)*(n) corresponds to the negative
entropy of the maximum entropy solution 7 (z) with observable constraint 7 [18L[17]. With a general
base measure (e.g. [4] App. A), we have

¥ (np) = Drerlmp(zl)]mo(2)] O]
Since the convex conjugate is an involution, (¢)*)* = v, we can obtain a similar optimization to (3)
in terms of ¢(8) = sup, B -1 — 1" (n). This leads to the canonical expression for Legendre duality,
when the two optimizations are in equilibrium and the vectors 1z and 3 are in correspondence [[18]]

P (ng) +¢(B) =B -1 =0. (&)

Finally, we can construct Bregman divergences from the convex functions (/) or ¢*(n). Using )

and (), Dy[f : B'] :=(B) = ¥(B') — (B — B', V(B')) = Dy~ [ng: : ng] = Dicr[mp[|mg] [16].

2 Examples

Thermodynamic Variational Objective In the variational autoencoder (VAE) setting, the TVO
[5, 4] uses the approximate posterior as the initial distribution 7y = ¢(z|x) and joint generative
model as the unnormalized target 71 = pg(m z). Masrani et al. [5]] use thermodynamic integration
(Tr) 19, 20] to express ¥ (z; 1) = log Z1(x) = log pe(x) as an integral over the geometric path (2)),

log Z,(z) — log Zo(x / —log Zsdf = / s [6(2)] dB. (6)

where we use the fact that the (partial) denvatwe of the log partition function equals the expected
sufficient statistics in any exponential family [[16}[17]. Since ¢ (z; ) is convex in g for any x, the
left- and right-Riemann sums will provide lower and upper bounds on the log marginal likelihood,

T—1 . T .
;(5t+1 Bt) Bt [ 08 W;SES)} < log 2y < ;(ﬂt - Bt*l) 'E“m [log W;ELZ;)Z)] )

We derive novel insights on TVO curve via hypothesis testing in Sec. [3] Note that TI bounds as in
may be constructed for any one-dimensional likelihood ratio exponential family, such as in RD,
although more care would be required for multiple sufficient statistics as in RDC below [9} [10].

Rate-Distortion Rate-distortion (RD) optimization ([6} 18, 21122} [7] Ch. 13) formalizes the problem
of lossy compression subject to a fidelity constraint. As in Alemi et al. [6][10], we measure the rate
using the KL divergence to a fixed marginal distribution 7o(z) = m(z), which upper bounds the
mutual information in general. The distortion function d(x, z) measures the quality of a code z. RD
optimization seeks the minimum-rate encoding which achieves a desired average distortion D,

R(D) = r(ni‘n) Dirlg(z|z)||m(z)] subj.to Egp[d(z]z)] < D. (8)
q(z|x

We restrict our attention to a reconstruction loss distortion d(x, z) = — log pg(z|2) as in [6]. Intro-

ducing f to enforce the constraint, we obtain the unconstrained Lagrangian
max mqin D [q(z|z)||m(2)] = B(Eqzjm)ld(w, 2)] — D) )
whose solution, for a given m(z), has an exponential family form with ¢(z, z) = —d(x, z) (e.g. [8])

1 1
¢ (2]x) = ———m(z) exp{—f - d(w,2)} = ———m(z) py(|2)” (10)
Zp(x) Zp(x)

From the likelihood ratio perspective, we can choose mo(z) = m(z) and 71 (x, z) = pp(z|z)m(z) x
po(z|z). Absorbing the factor of py(x) into the normalizer Zz(x), we obtain the sufficient statistics

6(z,2) = log 71(x, 2) ~log po(x|z)m(z)
mo(2) m(z)

so that the solution ¢*(z|z) in (I0) matches mg(z|x) in the likelihood ratio family induced by
(T1). The Lagrange multiplier 3 is chosen to enforce the distortion constraint D, which, since
¢(x,z) = —d(z, z), translates to seeking § such that the moment parameters 773 = —D. At this
optimal solution, R(D) simply matches the conjugate ¥*(n) in (33)

R(D) =" (n) = Dgrlms(z|2)[lm(2)] = B-n—¢(8) = —=BD —log Zg(z) . (12)
Huang et al. [22]] use the expression in to estimate the RD curve using AIS [2].

= logpy(x|z) = —d(z, 2), (11)
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Information Bottleneck and RDC When defining ‘relevant information’ via a random variable

such as a label y, the Information Bottleneck (IB) method [8, 23| 24] simplifies to an RD problem

with a learned classifier providing the distortion function ¢(y, z) = — log pg(y|z) (I8] or App[B).

q(z|x

Recent work [9,[10] considers ‘RDC’ optimization using both reconstruction and classification loss,
I(ni‘n) Dirlg(z]z)[[m(z)] subj.to Egm[d(z,2)] <D, Equalcly,2)] <C (14
q(z|x

In this case, we may consider two sufficient statistics in our likelihood ratio exponential family.

Similarly to multivariate 1B [25} 26]], we use an unnormalized target which factorizes as 71 (z,y, z) =

po(x|2)pe(y|2)m(2), and consider the likelihood ratio sufficient statistics

$alx,z) = log ”;(Efg) — 1022 o aaz) gl s) = log ”;iff;) = log” "p(é’)z) o log py (y]2) = —c(y. 2)

po(z)
(15)

where we again absorb pg(z) and p(y) into the normalization. Introducing Lagrange multipliers
B ={Bp,Pc} to enforce ny(8) = —D, n.(8) = —C at optimality, we obtain the solution of (I4) as
a geometric mixture [9, [10] belonging to the likelihood ratio family with ¢ = {¢q4, ¢}

ma(2lz,y) = m(z) exp {Bp - ¢a(@,2) + Bo - dely, 2) — P(x,y; 8) } (16)

__ 1 B Be
Tty ™) ) o)
With applications in transfer learning, Gao and Chaudhari [9] seek to evolve model parameters 6 and
the approximate posterior ¢(z|x) along an ‘equilibrium surface’ of optimal solutions to (T4). We
interpret their free energy F(8p, B¢ ), where 8p, B¢ are analogous to the intensive variables of a
physical system [10]], as the negative log partition function —(3p, B¢ ). Written using the conjugate
optimization (3], we seek 6, ¢(z|z) yielding the appropriate distortion and classification loss 7p, ¢

—F(Bp,Bc) =¥ (Bp, Bc) = sup Bp na + Bcne — " (1a, ne) (17)
NdsMNe
Similarly, for given extensive variables 1p, 1)c, the optimal rate R(D, C') corresponds to ¥*(1p, nc)
R(D,C) =v¢*(np,nc) = sup —fa D — B.C —¥(Ba, Be) , (18)
dsPec

At optimality on the ‘equilibrium surface’ [9]], we have ¢(z|z) = mg(z|x), which fulfills the con-
straints g = {np,nc} = {—D,—C} for § = {Bp,Bc} and the current decoder and classifier
parameters 6. This corresponds to equality in the canonical Legendre duality equation (3))

Y*(np,nc) +¥(Bp, Bc) — Bonp — Bene = 0. 19)
and leads to the ‘first law of learning’ from [10] when ¢(5p, B¢) is considered as a fixed quantity.

3 Variational Representations and Hypothesis Testing

Grosse et al. [11] note that any distribution along the geometric mixture path can be given a variational
representation as the solution to an expected KL divergence minimization
T, (2) = arg(rr)lin(l — ) D [r(2)ms, (2)] + ¢ Dici[r(2)[|ms, (2)] (20)
r(z
In this section, we intepret (20) as a Bregman information (or gap in Jensen’s inequality) [12]], or as
describing an optimal decision rule for hypothesis testing using the Neyman Pearson lemma.

Bregman Information Banerjee et al. [12] define the Bregman information as the minimum
expected divergence to a representative point in the second argument. Regardless of the diver-
gence considered, the optimal representative corresponds to the mean over the arguments. Since
Dir[r(2)||ms,(2)] = Dy[Bo : Br] for r(z) within the exponential family, we can rewrite (20) as

B = argﬂmin(l — 1) Dy[Bo : Br] + t Dy[B1: Br] where B, = (1—1t)-Bo+1t- 5 21
At this optimum, the expected KL divergence (21)) can be written as a gap in Jensen’s inequality for
the convex function () [12], or, as shown in [27] or App. |Cl as a Rényi divergence with order ¢

(1 =) Dy[Bo : Bi] + t Dy[Br = Bu] = (1 =) 9(Bo) +t9(Br) — ¥(Be) (22)
= (1 - t) Dt[Tr,Bl : ﬂ-ﬁo]
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Neyman Pearson Lemma Suppose we have access to n i.i.d. observations from an unknown
distribution r(z), and are interested in testing the hypotheses that either Hy : 7(z) = mo(z) or
Hj : r(z) = m1(z). The Neyman-Pearson lemma states that the likelihood ratio test is optimal, in the
sense that, for any other decision region with type-1 error Pr(e;) = R, then the type-2 error is no
better than that of the likelihood ratio test ([7]] Ch. 11, [[14]]). The decision rule is given by

1 — :
An(’”l;n) = { Z1:n ﬁ Zlog Z;Ei; Z 7]} (23)

=1

for some threshold 7. Let a type-1 error occur when 7 i.i.d. draws {2;}¥ | from 7o (2) will yield
empirical expectations exceeding the threshold 7. Sanov’s Theorem and large deviation theory ([7]
Ch. 11, [28L[15]) states that the asymptotic error exponent corresponds to a KL divergence

lim %Pr(el) — exp{—Dg[r*(2)||m0(2)]} wherer*(z) = min Dgr[r(2)||mo(z)] (24)

n— oo r(z)eM,

and feasibile set M,, := {r(z) | E, log :;8 = n} reflects a moment constraint. With ¢*(n) =
Dy rlmp, (2)||mo(2)] as in (33), this corresponds exactly to the conjugate or maximum entropy
optimization for a given expected likelihood ratio threshold, and thus r*(2) lies within our exponential

family,

() = mal2) exp{ - log X5~ 0(3)) e3)

As shown in Fig. [T} Sanov’s Theorem implies a similar expression for the asymptotic type-2 error,

when draws from 7 (z) achieve a lower expected likelihood ratio than 7). Expressing the conditions
of the Neyman Pearson lemma using these asymptotic error probabilities E], we can write

Pr(es) = Iréil)l Dgr[r(2)||m1(2)] subj.to Dgp[r(z)||mo(z)] =R (26)

Using a Lagrange multiplier A = % to enforce the constraint, we obtain the variational form (20)
1 .

gr(e2) =min(l = B)Dicr[r(2)llmo(2)] + BDrcr [r(2)]lm(2)] 7

Thus, any distribution in our likelihood ratio exponential family corresponds to a likelihood ratio test
with decision threshold 7, which is optimal for a type-1 error region of size ¥*(n) = R.

Chernoff Information While each choice of 3, determines a likelihood ratio test and error region,
how should we choose this parameter? Regardless of the prior probabilities pg, p1 which we might
assign to each hypothesis in a Bayesian setting, the Chernoff information provides the best achievable
error exponent in the large sample limit ([13]], [7] Ch. 11).

€* = —min log [ m(2)!7m () dz = max (1 B)0(0) + Fu(D) ~ w(5)  (8)
At this optimum, denoted the Chernoff point [13], we show in[Appendix D]that

Dxrlmg(2)||m0(2)] = D rlmp-(2)]|m1(2)] (29)
mz) ),

wo(z)

and the optimal decision rule is given by a threshold of 75« = E .. log

Chernoff Point on the TVO Integrand For the unnormalized likelihood ratio log 71 (2)/mo(2),
we can intepret the Chernoff point using thermodynamic integration bounds

— 71(x, 2) d m(x, z)
> (Biy1 = Bi) - Eny, [log — 5 ] <logZ <Y (B —Bi-1) - Eny, [log ——

1
pare mo(z — mo(2)

With 7o(2) = ¢(z|z) as in TVO [5 4], we note that the integrand at 5 = 0 corresponds to the familiar
71 (x,z)
mo(z)
at § = 1, the integrand E, [] = log Z1(x) + D [m1(2|z)||m0(2)] provides an upper bound. The
Chernoff point determines where the moment parameters switch from an lower bound to an upper
bound, or 3* such that g« = E .. [] = log ps(x). We visualize this in Fig. [2| noting that the shaded

regions corresponding to the KL divergence (see [4]) will have equal area due to (29).

], 30

evidence lower bound (ELBO), Er, [ log | =log Zi(z) — Dxplmo(2)||m (2|z)]. Similarly,

2While Neyman-Pearson is often obtained via the method of types [7], Csiszar [29] treat the continuous case.
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mo(2) m(z) "B 0 - o

[ 4 >

. ./Vln ng = Dicrge|Im]
R r—.., log po () |75 L[mp-[|mo] e,
- P*(ng~), H
log po(x)
My = {r<z)| E,.(;)[é(2)] = 77} »(B*) i 1/)(5) -
. = [ medf B =max (1 - £)¥(0) + B¥(1) — ()

Figure 1: Sanov’s Theorem. - > v ’

(See [18] Sec. 1.6, 2.8 for an 0 Ch 1
interpretation in terms of pro-
jection and a generalization

of the Pythagorean Theorem) Figure 2: Chernoff point on g = V(3). Figure 3: Chernoff point on ()
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A Conjugate as a KL Divergence

When considering an exponential family of the form

m(2) = mo(2) exp{f - ¢(2) =¥ (P)} . €2

we show that ¢)* (1) takes the form of a KL divergence when considering a base measure 7o(z).
P (n) = Sl;pﬁ 0 —¥(B) (32)

=By —v(By)
= Em,, [ﬁn 9(2)] — w(ﬁn)
71'[3 [ #(2 )] - 1/)(ﬁ77) + Emn [log 770(2)]
na, 10873, () — log mo(2)]
:DKL[ﬂ'ﬁn( z)|| mo(2)] (33)

where we have added and subtracted a factor of Ex, logo(z) in the fourth line. When mo(z) is
constant with respect to z, D, [ms, (2)|| mo(2)] reduces to the familiar definition of the conjugate
function ¢)* as the negative entropy E, logms, (z) [17].

B Information Bottleneck as Rate-Distortion

The Information Bottleneck (IB) method [8] defines the ‘relevant information’ in a representation,
I(Y : Z), via another variable of interest Y, often taken to be a label. The IB objective then seeks a
minimal encoding Z which maintains a given level of predictive ability about the target.

I(mln) I,(X;Z) subj. to. I,(Y;Z) > I, (34)

where we let I, reflect the exact mutual information for the true data and label distributions g()g(y|z)
with a given encoding function ¢(z|z).

When the desired information constraint equals the total information I, = I,(X;Y") that the data
source contains about the label, (34) corresponds to the problem of finding the minimal sufficient
statistics z for y with respect to x. The IB objective generalizes this optimization for smaller values
of I..

Since 1,(Y;Z) = H,(Y) — H,(Y|Z) = —E,logq(y) + E,log q(y|#), we can ignore the label
entropy as a constant with respect to z. While it may be difficult to obtain the true posterior g(y|z) of
the labels given latent variables , we can instead optimize a variational classifier p(y|z). This provides
an lower bound on the mutual information since D [q(y|2)||p(y|z)] > 0 and is also known as the
‘test channel’ in rate-distortion theory ([7] Ch. 13). Applying this inequality within the unconstrained
IB Lagrangian,

L1p =max min ,(X;Z) - B (—Eqlogq(y) +Eqlogq(ylz) — L)

> max min I,(X;2) — B (—Eqlogq(y) + Eqlogp(y|z) — 1)
B alzlz).p(ylz)

=max min I,(X;Z) = BEp(y(a),2)[P(y]2)] + const (35)
B a(zlz),p(ylz)

where y(x) indicates the label of a given data point.

As shown in Tishby et al. [8]], the Information Bottleneck is a special case of rate-distortion with

c(y(z), 2) = Drrlq(ylz)|lq(y|2)] = Eqla(y|x)] — Eqla(y]2)] (36)

Comparing (@3) with (@6), note that E,[g(y|z)] is a constant, leaving c(y(z),z) =
—Eq(y@)12)[a(y|2)] as the effective distortion measure. If this quantity is intractable, we can in-
stead define the distortion function using p(y|z) as above.



25 C  Rényi Divergence as a Jensen Gap

216 We consider the Rényi « divergence between any two distributions 7g, and 7g, in our exponential
217 family, so that m5(z|z) = mo(2)! P71 (2)? /Zs(x). Noting that the scaling factor o — 1 < 0, we
218 proceed to show that the scaled divergence is equal to a gap in Jensen’s inequality:

(1 = a)Da[ms, (2) : wp, (2)]
=(1- a)ﬁ log/wégo‘wgldu

—log | (ﬂé_ﬂ%fo)l_a(ﬂé;;fl ) dp
1

- _ ( log / ﬂ(l)—ﬁo—a+a50+a—aﬂ1 7.[.150—@60-&-0451 du — ((1 — a) log Zg, + alog Zﬁl))

_ <1Og/Wé—[(1—a)ﬁo+a51]ng—oz)ﬁo-‘raﬁldu — ((1 —a)log Zs, + alog Z51)>

= (1= a)¥(Bo) + ap(B1) — ¥((1 — @) Bo + aph1)
= ja,a/;

219 D Equal KL Divergences Derivation

¢(51)—1/J(/30):

220 We show that the KL divergences that constitute 7, are equal at the critical point 7, = =

Dw[/BO : Ba] = '(/)(ﬂO) - ¢(/80¢) - (ﬁO - /Ba)na
— (B0) — (Ba) + L) 45y~ y(8))

P —Po
B : B ((5 1= B0)¢(Bo) = (B1 = Bo) ¥ (Ba) + (B = Bo)(B1) — (B — Bowwo))
1 0
=7 iﬂo ((51 = Ba)¥(Bo) + (Ba = Bo)ib(B1) — (B1 — ﬁo)qp(@a))
_ 61 - ﬁa 504 — BO B
- (m — gV (Bo) + G (B) Wa))

Dw[ﬁl : ﬁa] = '(/)(ﬂl) - ¢(5a) - (ﬁl - /Ba)na
= $(B1) — b(Ba) — LT 45y~ y(8y))

B1 = Bo
— o (61— Bu)p(80) = (81— Bu)(Ba) = (B — Ba)0(80) + (5 = Pu)u(Fo)
1 0
=5 iﬂo ((51 = Ba)¥(Bo) + (Ba — Bo)¥(B1) — (B — ﬁo)w(ﬁa)>
_ 61 — ﬁa 504 - BO .
a (ﬂl —Bo V{Bo) + B1—Bo VB Mﬂa))

221 We have shown that the two divergences are equal when our condition on 7, holds. Further, observe

222 that each divergence amounts to a Jensen gap J, ., With o = %: This is more apparent for

8



223 [y = 0 and 1 = 1, where this simplifies using o = % = Ba:

Dy[Bo : Bal = Dy[B1 : Bal
= (1 = Ba)(0) + Batp(1) — ¥(Ba)

= (1=pa) 0+ Balogp(x)
= Balogp(x) + (1 = Ba)Dp, [m1(2]) : mo(2|2)]

= (1= Ba)Dg, [m(z|z) : mo(2]x)],
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