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ABSTRACT

With sequentially stacked self-attention, (optional) encoder-decoder attention, and
feed-forward layers, Transformer achieves big success in natural language pro-
cessing (NLP), and many variants have been proposed. Currently, almost all these
models assume that the layer order is fixed and kept the same across data samples.
We observe that different data samples actually favor different orders of the layers.
Based on this observation, in this work, we break the assumption of the fixed layer
order in Transformer and introduce instance-wise layer reordering into model struc-
ture. Our Instance-wise Ordered Transformer (IOT) can model variant functions by
reordered layers, which enables each sample to select the better one to improve the
model performance under the constraint of almost same number of parameters. To
achieve this, we introduce a light predictor with negligible parameter and inference
cost to decide the most capable and favorable layer order for any input sequence.
Experiments on 3 tasks (neural machine translation, abstractive summarization,
and code generation) and 9 datasets demonstrate consistent improvements of our
method. We further show that our method can also be applied to other architectures
beyond Transformer. Our code is released at Github1.

1 INTRODUCTION

Transformer (Vaswani et al., 2017) has been the dominant architecture in deep learning models
(Hassan et al., 2018; Ng et al., 2019; Carion et al., 2020; Radford et al., 2019; Dai et al., 2019; Lee
et al., 2019; Devlin et al., 2018; Yang et al., 2019; Cai & Lam, 2019). A Transformer model is stacked
by several identical blocks, and each block consists of sequentially ordered layers: the self-attention
(SA), encoder-decoder attention (ED) (decoder only) and feed-forward (FF) layer. Recently, various
modifications have been proposed, where the focus is on replacing or inserting some components
(e.g., attention layer/layer norm/position encoding) in standard Transformer (Wu et al., 2019; Lu
et al., 2019; Shaw et al., 2018; So et al., 2019; Ahmed et al., 2017).

Order De→En Ratio
1:SA→ED→FF 34.64 17.9%
2:FF→SA→ED 34.60 17.9%
3:ED→FF→SA 34.75 16.5%
4:ED→SA→FF 34.67 17.5%
5:SA→FF→ED 34.76 14.1%
6:FF→ED→SA 34.78 16.1%

Variance 0.0045 -

Table 1: Results for different de-
coder orders on IWSLT14 De→En
translation.

Despite these Transformer alternatives have achieved improved
performances, one critical element is almost neglected in cur-
rent models, which is how to arrange the components within
a Transformer network, i.e., the layer order also matters.
As pointed by He et al. (2016b), different orders of ReLU,
batch normalization and residual connection significantly af-
fect the performance of ResNet (He et al., 2016a). Therefore,
we ask: What if we reorder the sequential layers in Trans-
former (e.g., SA→FF or FF→SA of encoder, SA→FF→ED
or FF→ED→SA of decoder)? What is the best order for these
different layers?

∗Equal contribution and corresponding authors.
1https://github.com/instance-wise-ordered-transformer/IOT
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Reference and just like that , the iceberg shows you a different side of its personality . BLEU↑ TER↓
Order 1 Trans and just so , the iceberg shows a different side of its personality . 77.11 18.75
Order 2 Trans and just like that , the iceberg shows you a different side of its personality . 100.00 0.00
Order 3 Trans and just so , the iceberg gives you another side of his personality . 0.00 37.50
Order 4 Trans and just like this , the iceberg gives you another side of its personality . 38.71 25.00
Order 5 Trans ans so simply , the iceberg shows another side of his personality . 30.33 50.00
Order 6 Trans and just like this , the iceberg shows you another side of his personality . 36.61 25.00

Table 2: Translations (Trans) from all ordered decoders of Transformer for one example sentence.

We first conduct preliminary experiments. We vary the three layers in decoder with all six vari-
ants (each with a unique order of the three layers) and train these models. Results on IWSLT14
German→English translation are reported in Table 1. As we can see, their performances are similar
and no one is outstanding. The corpus BLEU variance is only 0.0045, which means that simply
reordering the layers and training over the whole corpus impacts little. Press et al. (2019) also
reported this for machine translation, but they stopped here.

This seems to be a negative answer. However, we take a further step and ask one more question: Does
different data favor different ordered layers? That is, we investigate whether each specific data has its
own preference for one particular order. Intuitively, putting various data patterns in one order should
not be the best choice. For example, harder samples may favor a particular order while easier ones
favor another one. Thus, for each order, we count the ratio of samples that achieve the best score with
that order. In Table 1, we find they almost lie on a uniform distribution (e.g., 17.9% samples achieve
the best BLEU with order SA→ED→FF). Besides, we calculate the BLEU variance for each sample,
and average all these variances, the result is 114.76, which is much larger than above corpus variance
(0.0045). These both mean the data indeed has its own preference to different orders. In Table 2, we
present translations from all decoders for on example with BLEU and TER score to give an evidence.

Motivated by above observations, in this work, we present Instance-wise Ordered Transformer (IOT),
in which the layer order is determined by the specific data through instance-wise learning. To achieve
this, we utilize a light predictor to predict the confidence for each order, given the corresponding
classification losses as training signals. However, directly training the predictor with conventional
(i.e., NMT) loss tends to quickly converge to a bad order, and ignore explorations on others. Thus, we
introduce two auxiliary losses to make an effective training while keeping an unambiguous prediction
for each data. As a result, the best order for each data is decided by the predictor during inference.

We evaluate our approach on 3 sequence generation tasks, including neural machine translation
(NMT), abstractive summarization (ABS) and code generation (CG). For NMT, we work on 8 IWSLT
and 2 WMT tasks, both on low-resource and rich-resource scenarios. Our method can consistently
obtain 1.0 BELU score improvements over Transformer. For ABS, IOT also outperforms Transformer
and other baselines on Gigaword dataset. For CG tasks, the results on 2 large-scale real-world code
datasets (Java and Python) collected from Github surpass the state-of-the-art performances. These all
demonstrate the effectiveness of our IOT. Furthermore, we provide detailed studies to verify that the
instance-wise learning and order selection make a reasonable and necessary modeling.

The contributions of this work can be summarized as follows:

• We are the first to leverage instance-wise learning for layer order selection in a Transformer
model (with shared parameters), and we demonstrate the instance-wise learning is critical.
• We demonstrate our learning approach can be universally applied to other structures beside

Transformer (e.g., Dynamic Convolutions), as long as there are multiple different layers.
• Experiments on 3 sequence generation tasks and 9 datasets verify the effectiveness of IOT

with consistent performance improvements.

2 RELATED WORK

Architecture Exploration Inventing novel architectures by human designing or automatic searching
plays an important role in deep learning. Specific to Transformer structures, various modifications
have been proposed. For example, human knowledge powered designs include DynamicConv (Wu
et al., 2019), Macaron Network (Lu et al., 2019), Reformer (Kitaev et al., 2020) and others (Fonollosa
et al., 2019; Ahmed et al., 2017; Shaw et al., 2018). As for automatic searching, neural architecture
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Figure 1: The IOT framework. Pred means the light predictor introduced in 3.1 for order selection.
We show two ordered encoders/decoders here. After taking X1, X2, X3, the selected order for Y2, Y3
is the lower encoder and upper decoder, while for Y1 is the upper encoder and lower decoder.

search can discover networks with state-of-the-art performances but always with complicated com-
putation, i.e., Evolved Transformer (So et al., 2019). The underlying principle is to add or replace
some components of Transformer. For instance, Wu et al. (2019) replace self-attention with dynamic
convolution, So et al. (2019) add a separate convolution layer in a new branch. Different from them,
we, instead, only focus on the selection of layer orders for each data sample so as to improve the
model performance, without a heavy modification. Besides, our approach is structure agnostic, which
can be universally applied to other structures, only if multiple different layers exist.

Instance-wise Learning Deep learning models are trained over large-scale datasets, and data samples
are often treated equally without modeling the difference between them. Some works attempt to
weight each data with different importance (Ren et al., 2018; Hu et al., 2019; Chang et al., 2017) or
feed data with curriculum learning according to its difficulty (Bengio et al., 2009; Fan et al., 2018).
However, they often explicitly manipulate the data during training only, while no distinction exists
in inference, and under one fixed model. Elbayad et al. (2020) take a step further and propose the
depth-adaptive Transformer, which can forecast different depths of the network by predicting the
required computation for a particular data. Similarly, Liu et al. (2020) propose a sample-wise adaptive
mechanism to dynamically calculate the number of required layers. They both aim at reducing the
computation cost and speed up the inference. Schwartz et al. (2020), Bapna et al. (2020) and Shazeer
et al. (2017) all leverage conditional computation for each sample to control the computation and
accuracy tradeoff during inference. Instead, we pay attention to the variant modeling functions and
perform instance-wise order selection in order to boost the Transformer performance.

The most related work is Press et al. (2019), which manually generates randomly ordered Transformer
encoders and finds the Sandwich Transformer can slightly reduce the perplexity of language modeling.
However, they find that Sandwich Transformer pattern has no effect on NMT task. Besides, it still
performs over the whole corpus without considering each specific data. We, instead, investigate on
various sequence-to-sequence generation tasks and greatly improve the task performances through
instance-wise learning, so as to discover the optimal ordered Transformer for each particular data.

3 INSTANCE-WISE ORDERED TRANSFORMER

The overall framework of IOT is presented in Figure 1. In comparison with the standard Transformer,
IOT only incorporates light-weighted predictors and reorders the encoder/decoder with weight tying,
under the constraint of almost same number of parameters and exempt from heavy modifications. In
this section, we introduce the details of IOT, including training, inference and discussions.

Notations Sequence-to-sequence learning aims to map one sequence x = [x1, x2, ..., xTx ] into
another sequence y = [y1, y2, ..., yTy

], where xi, yj denotes the i-th and j-th token of x and y, Tx and
Ty are the corresponding lengths. Given one sentence pair (x, y) and a learning modelM, we can
define the training objective as minimizing the cross-entropy loss LM = −

∑Ty

j=1 logP (yj |y<j , x).
Besides, DKL(P‖Q) denotes the Kullback-Leibler (KL) divergence between distributions P and Q.

3.1 INSTANCE-WISE ENCODER/DECODER

IOT intends to break the fixed order of layers in Transformer. As shown in introduction, simply
reordering the layers w.r.t the whole corpus impacts little, while each data has its own preference to
orders. Therefore, IOT incorporates instance-wise learning to adjust the favorable order for each data.
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As shown in Figure 1, both encoder and decoder in IOT consist of several blocks of SA, ED, FF
layer with dynamic order, and we assume there are M (e.g., M = 2) ordered encoders and N (e.g.,
N = 6) ordered decoders (with shared weights). Inspired by the fact that lower training loss implies
the higher proficiency confidence for candidate orders, we utilize the cross-entropy loss as signals to
learn the confidence. That is, we calculate confidence γm and λn for each encoder encm, decoder
decn (resulted modelMm,n), and use them to weight the training loss LMm,n. To calculate the
confidence, we add a simple and light predictor to help distinguish the orders.

Training Given one source sequence x = [x1, x2, ..., xTx
], we first map each token into word

embedding e = [e1, e2, ..., eTx
], where ei ∈ Rd, and then apply one light encoder predictor πenc to

predict the confidence of encoder orders using sentence embedding se = 1
Tx

∑Tx

i=1 ei. Concretely,
πenc takes se as input and predicts γm for encm by Gumbel-softmax (Jang et al., 2016):

γm =
exp ((log (πencm

) + gm) /τe)∑M
k=1 exp ((log (πenck

) + gk) /τe)
, πenc = softmax (seWe) , (1)

where gm is sampled from Gumbel distribution: gm = − log(− logUm), Um ∼ Uniform(0, 1),
We ∈ Rd×M is the weight matrix, τe is a constant temperature to control the distribution to be
identical approximation with categorical distribution. Simultaneously, the token embeddings e will
feed to the encoders to get hidden states h = [h1, h2, ..., hTx

], then we can calculate decoder order
confidence λn by one predictor πdec in the same way as πenc:

λn =
exp ((log (πdecn

) + gn) /τd)∑N
k=1 exp ((log (πdeck

) + gk) /τd)
, πdec = softmax (sdWd) , (2)

where sd = 1
Tx

∑Tx

i=1 hi and Wd is the weight matrix. For each ordered path through encm and
decn, we can obtain the training loss LMm,n, and the final cross-entropy loss is weighted by
confidence γm and λn with LMm,n, formulately as:

LC =
M∑

m=1

N∑
n=1

(γm · λn)LMm,n. (3)

Inference During inference, we directly replace the Gumbel-softmax used in training with argmax,
in order to choose the most capable encoder and decoder for each sequence x:

enc = argmax (seWe) , dec = argmax (sdWd) . (4)

Discussion The decoding process is almost the same as standard Transformer, with only little
overhead for order predictions. One may concern the training cost is increased through our training.
As we present in Section 5.1, the cost is actually affordable with a fast convergence. Currently, we
reorder the layers of the encoder/decoder block and stack the same ordered block L times (see Figure
1). A complex extension is to reorder all L blocks of encoder/decoder and we take it as future work.

3.2 AUXILIARY LOSSES

As we can see, the predictors are trained in an unsupervised way, and we observe they lean to be lazy
so that all samples quickly converge to one same order during training, without a senseful learning.
Thus, to make an effective training and inference, we introduce two auxiliary losses in our framework.

(1) First, we explore the diverse capability of all orders with help of a loss LD to encourage all
orders to participate in training. The spirit is the same as to encourage exploration in reinforcement
learning. The expected softmax probability Ex [πx] (encoder/decoder) from the predictor should
approximate the uniform distribution Q = [ 1N ,

1
N , . . . ,

1
N ] (e.g., decoder orders), and we achieve this

by minimizing KL-divergence between the statistical average Ex [πx] and Q:

LD = DKL(Q‖Ex [πx]) = −
1

N

N∑
n=1

log(Ex [(πx)n])− logN, (5)

where (πx)n is the probability of n-th decoder order for data x. For encoder order, it is (πx)m
processed in a same way as decoder.
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(2) Different from LD to keep all orders effectively trained, during inference, the output distribution
πx for each data should be able to make an unambiguous argmax selection. We then introduce
another loss LS to constrain each πx to be far away from the uniform distribution Q. Concretely, we
maximize the KL-divergence between each probability πx and Q:

LS = −Ex [DKL(Q‖πx)] = −Ex

[
− 1

N

N∑
n=1

log(πx)n − logN

]
. (6)

Note that we clamp the value of probability πx since the KL value is theoretically unbounded. With
above auxiliary losses, the final training objective is to minimize:

L = LC + c1LD + c2LS , (7)

where c1 and c2 are coefficients to make a trade-off between LD and LS . In this way, we can achieve
effective training, while keeping the ability to distinguish the favorable order for each data.

Discussion LD and LS aim to keep effective training and unambiguous inference. There are several
alternatives. The first is to simply decay the temperature τ in Equation (1) and (2), and remove the
auxiliary losses. However, we do not notice obvious gain. Second is to linearly decay c1 only and
remove LS , which is able to fully train all orders at the beginning and loose this constraint gradually.
We find this is also beneficial, but our two losses method performs better.

4 EXPERIMENTS

We conduct experiments on 3 sequence generation tasks: neural machine translation (both low-
resource and rich-resource), code generation and abstractive summarization. The main settings of
each experiment are introduced here, and more details can be found in Appendix A.

4.1 DATASET

Neural Machine Translation For the low-resource scenario, we conduct experiments on IWSLT14
English↔German (En↔De), English↔Spanish (En↔Es), IWSLT17 English↔French (En↔Fr),
English↔Chinese (En↔Zh) translations. The training data includes 160k, 183k, 236k, 235k sen-
tence pairs for each language pair respectively. For the rich-resource scenario, we work on WMT14
En→De and WMT16 Romanian→English (Ro→En) translations. For WMT14 En→De, we filter
out 4.5M sentence pairs for training and concatenate newstest2012 and newstest2013 as dev set,
newstest2014 as test set. For WMT16 Ro→En, we concatenate the 0.6M bilingual pairs and 2.0M
back translated data2 for training, newsdev2016/newstest2016 serve as dev/test set.

Code Generation Code generation aims to map natural language sentences to programming language
code. We work on one Java (Hu et al., 2018) and one Python dataset (Wan et al., 2018), following
Wei et al. (2019) to process the two datasets. The Java dataset is collected from Java projects on
Github, and the Python dataset is collected by Barone & Sennrich (2017). We split each dataset with
ratio 0.8 : 0.1 : 0.1 as training, dev and test set.

Abstractive Summarization Abstractive summarization is to summarize one long sentence into a
short one. The dataset we utilized is a widely acknowledged one: Gigaword summarization, which is
constructed from a subset of Gigaword corpus (Graff et al., 2003) and first used by Rush et al. (2017).
The training data consists of 3.8M article-headline pairs, while the dev and test set consist of 190k
and 2k pairs respectively.

4.2 MODEL AND OPTIMIZATION

For IWSLT translation tasks, we use transformer iwslt de en setting as model configuration.
The number of block, embedding size and feed-forward network (FFN) size are 6, 512, 1024. WMT
tasks use transformer vaswani wmt en de big configuration, with 6 blocks, embedding
size 1024 and FFN size 4096. Optimization and learning scheduler are the default settings in
Vaswani et al. (2017). For code generation, block number/embedding size/FFN size are 3, 256, 1024

2http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en/.
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Table 3: Preliminary results of varied orders on IWSLT14 De→En task.

(a) Results of encoder, decoder orders, and
their combinations.

De→En
Transformer 34.64

Encoder (M = 2, N = 1) 35.18
Decoder (M = 1, N = 6) 35.60

Encoder×Decoder (M = 2, N = 6) 35.24
Encoder×Decoder (M = 2, N = 4) 35.30
Encoder×Decoder (M = 2, N = 2) 35.25

(b) Results of varied number of
decoder orders.

De→En
Transformer 34.64

IOT (M = 1, N = 6) 35.60
IOT (M = 1, N = 5) 35.65
IOT (M = 1, N = 4) 35.62
IOT (M = 1, N = 3) 35.58
IOT (M = 1, N = 2) 35.32

Table 4: BLEU scores of IOT on eight IWSLT low-resource translation tasks.

En→De De→En En→Fr Fr→En En→Zh Zh→En En→Es Es→En
Transformer 28.57 34.64 35.9 36.1 26.3 18.4 39.0 40.6

IOT 29.52 35.62 37.2 37.8 27.2 19.3 40.1 41.7

respectively. Others are the same as NMT. For summarization, we take transformer wmt en de,
with 6 blocks, embedding size 512 and FFN size 2048. Dropout (Srivastava et al., 2014) is set to be
0.3. Other settings are also the same as NMT task. Implementation is developed on Fairseq (Ott et al.,
2019). We first grid search c1, c2 on IWSLT14 De→En dev set, and then apply them on other tasks.
The best setting is c1 = 0.1, c2 = 0.01, and the importance study of c1, c2 is shown in Appendix B.1.

4.3 EVALUATION

We use multi-bleu.perl to evaluate IWSLT14 En↔De and all WMT tasks for a fair comparison
with previous works. For other NMT tasks, we use sacre-bleu for evaluation. During inference,
we follow Vaswani et al. (2017) to use beam size 4 and length penalty 0.6 for WMT14 En→De,
beam size 5 and penalty 1.0 for other tasks. For code generation, the evaluation is based on two
metrics, the sentence BLEU computes the n-gram precision of a candidate sequence to the reference,
and the percentage of valid code (PoV) that can be parsed into an abstract syntax tree (AST). As for
summarization, the generated summarization is evaluated by ROUGE-1/2/L F1 score (Lin, 2004).

4.4 MAIN RESULTS

Encoder/Decoder Orders Encoder block only contains SA and FF layers, the resulted max number
of encoder layer orders M is 2, while for decoder, the max order variants N is 6. Therefore, we first
evaluate the utilization of encoder orders, decoders orders, and both orders on IWSLT14 De→En
translation, in order to see the impacts of different number of order candidates and their combinations.
In Table 3 (a), we can see that 2 ordered encoders improve the result, and 6 ordered decoders achieve
more gain. This meets our expectation, since the search space is limited when there are only 2 ordered
encoders. However, if we train both encoder and decoder orders (e.g., M = 2, N = 6), the results
(e.g., 35.30) can not surpass the 6 decoders only (35.60). We suspect the search space is too large
so that training becomes hard, and decoder orders play a more important role than encoder orders
for sequence generation. Therefore, we turn to investigate different decoder order candidates (refer
to Appendix A.3 for detailed combinations) in Table 3 (b). Results show that N = 4, 5, 6 achieve
similar strong performances (results on other tasks/datasets are in Appendix A.4). Thus, considering
the efficiency and improvements, we utilize N = 4 ordered decoders (order 1, 2, 4, 6 in Table 1) to
reduce training cost in later experiments.

NMT Results BLEU scores on 8 IWSLT low-resource tasks are shown in Table 4. As we can see,
IOT achieves more than 1.0 BLEU points improvement on all tasks (e.g., 1.7 on Fr→En). The
consistent gains on various language pairs well demonstrate the generalization and effectiveness of
our method. We then present comparison with other works on IWSLT14 De→En task in Table 5
(a), and IOT is also better than several human designed networks. The results of WMT14 En→De
and WMT16 Ro→En are reported in Table 6. We also compare with existing works, such as the
unsupervised Ro→En based on pre-trained cross-lingual language model (Lample & Conneau, 2019).
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Table 5: Results on IWSLT14 De→En translation task (a), Java and Python code generation tasks (b).

(a) Results on IWSLT14 De→En translation.

Method BLEU
Transformer 34.64
IOT 35.62

Adversarial MLE (Wang et al., 2019a) 35.18
DynamicConv (Wu et al., 2019) 35.20
Macaron Network (Lu et al., 2019) 35.40
MADL (Wang et al., 2019c) 35.56

(b) Results on Java and Python code generations.

Java Python
Method BLEU PoV BLEU PoV

Transformer 24.58 74.44% 13.20 61.89%
IOT 25.51 77.30% 14.05 63.14%

Wei et al. (2019) 17.17 27.4% 12.09 51.9%

Method En→De
Transformer? 29.12
IOT 30.03

Shaw et al. (2018) 29.20
Ott et al. (2018) 29.30
Wu et al. (2019) 29.70
So et al. (2019) 29.80

Method Ro→En
Transformer? 37.73
IOT 38.83

Sennrich et al. (2016) 33.90
Lample & Conneau (2019) 38.50

Table 6: WMT14 En→De and
WMT16 Ro→En translation re-
sults. ?stands for our reproduced
result.

Similarly, our method outperforms them and shows our framework
can work well on rich-resource scenario.

Code Generation Results The results are shown in Table 5(b).
We can observe that Transformer obtains better result than the
LSTM-based work (Wei et al., 2019). Compared with Transformer,
IOT can further improve the quality of generated code. Specifi-
cally, IOT boosts Transformer with 0.93 BLEU/2.86% PoV gain
on Java generation and 0.75 BLEU/1.25% PoV gain on Python re-
spectively. Again, these results well demonstrate the effectiveness
of our method.

Abstractive Summarization Results The IOT performances on
summarization task are shown in Table 7. From the results, we
can see IOT achieves 0.8, 0.7 and 1.0 scores gain of ROUGE-1,
ROUGE-2 and ROUGE-L metrics over standard Transformer on
Gigaword summarization. IOT also surpasses other works such as
reinforcement learning based method (Wang et al., 2018), which
again verifies our approach is simple yet effective.

Method ROUGE-1 ROUGE-2 ROUGE-L

Transformer (Vaswani et al., 2017) 35.59 17.74 32.98
IOT 36.37 18.46 33.89

RNNSearch+MRT (Ayana et al., 2016) 36.54 16.59 33.44
Concept pointer+DS (Wang et al., 2019b) 37.01 17.10 34.87
RNNSearch+select+MTL+ERAML (Li et al., 2018) 35.33 17.27 33.19
CGU (Lin et al., 2018) 36.30 18.00 33.80
Reinforced-Topic-ConvS2S (Wang et al., 2018) 36.92 18.29 34.58

Table 7: ROUGE-1/2/L F1 scores for Gigaword summarization.

5 STUDY AND ANALYSIS

5.1 INFERENCE/TRAINING COST

As discussed before, our approach only increases negligible parameters and inference time cost. Here
we compare the detailed inference time and model size of our framework to the standard Transformer.
The detailed parameter numbers and inference time on IWSLT14 En↔De test set are shown in
Table 8. Since we only add one linear layer and softmax layer as the predictor, the number of extra
parameters is M × hidden size (encoder predictor) or N × hidden size (decoder predictor), which
is negligible compared to other model parameters. Therefore, IOT introduces more model diversity
and improves the performance, but under the constraint of almost same number of parameters. As for
the inference time, the only difference is from the one-pass order prediction and the cost is extremely
low compared with heavy autoregressive generation process, which can be seen from Table 8.

Apart from the inference cost, one may concern about the training cost since IOT trains multiple
orders in one model. To see the influence, we provide several statistics here. Specifically, on the four
IWSLT En→X translation tasks, we analyze the cost by counting the training time for each epoch,
the epoch number when model convergences, and the corresponding total training time. The numbers
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En→ De De→En
Method Inference time (s) #parameters Inference time (s) #parameters
Transformer 1487.19 36741120 1432.03 36741120

IOT (N = 2) 1496.70 36742144 1429.26 36742144
IOT (N = 3) 1470.40 36742656 1480.83 36742656
IOT (N = 4) 1505.83 36743168 1444.74 36743168
IOT (N = 5) 1491.40 36743680 1424.10 36743680
IOT (N = 6) 1479.20 36744192 1464.00 36744192

Table 8: Inference time and model parameters counted for Transformer and our framework on
IWSLT14 En↔De. The study is performed on a single Tesla P100 GPU card.

Transformer IOT (N = 2) IOT (N = 3)

En→De
Epoch Time (s) 277.1 475.6(1.72×) 685.4(2.47×)
Epoch Number 67 42(0.63×) 39(0.58×)
Total Time (s) 18565.7 19975.2(1.08×) 26730.6(1.44×)

En→Fr
Epoch Time (s) 410.5 715.1(1.73×) 1024.1(2.49×)
Epoch Number 55 37(0.67×) 33(0.60×)
Total Time (s) 22577.5 26458.7(1.17×) 33795.3(1.49×)

En→Zh
Epoch Time (s) 349.9 612.3(1.75×) 931.4(2.66×)
Epoch Number 59 34(0.58×) 30(0.51×)
Total Time (s) 20644.1 20818.2(1.01×) 27942.0(1.35×)

En→Es
Epoch Time (s) 310.1 538.0(1.73×) 784.4(2.53×)
Epoch Number 69 43(0.62×) 30(0.43×)
Total Time (s) 21369.9 23134.0(1.08×) 23532.0(1.10×)

Table 9: Training cost analysis for Transformer and our IOT on four IWSLT translation tasks. The
study is performed on a single Tesla P100 GPU card.

are presented in Table 9, and we can have several observations. Take IWSLT14 En→De translation
as an example, (1) jointly optimizing different orders indeed introduces more training cost for each
epoch. Transformer baseline costs 277.1s per epoch training, while our IOT costs 475.6s and 685.4s
with N = 2 and N = 3 orders respectively, the increased cost ratio is about 1.72× and 2.47× (but
less than 2.0 and 3.0). (2) However, we find that with the shared parameters between these orders,
the model convergence also becomes faster. Transformer needs 67 epochs when converge, while
our IOT only needs 42(0.63×) and 39(0.58×) epochs for N = 2 and N = 3 orders, much fewer
than Transformer. (3) The total training cost actually is not increased much. IOT (N = 2) and IOT
(N = 3) are about 1.08× and 1.44× training time compared with Transformer baseline (the ratio
for IOT (N = 3) is only 1.10 on IWSLT17 En→Es). From these observations, we can see that the
increased training cost is affordable due to the fast convergence.

5.2 CASE VERIFICATION

We perform a study withN = 3 to verify that IOT has made a necessary instance-wise order selection.
We first split IWSLT14 En↔De dev set into 3 subsets according to the prediction of πdec, and then
we decode each subset use all 3 ordered decoders, and report the BLEU results. As shown in Figure
2, each subset indeed achieves the best score on the corresponding predicted order (outperforms
other orders by 0.2-0.4 BLEU). We also do the same study on the test set, and the predicted order
outperforms others by 0.7-0.8 BLEU. These well prove that IOT makes a reasonable prediction.

Besides, we find that the predicted orders correlate to different sentence difficulties. In our case,
the set 1 sentences belong to decoder 1 achieve highest BLEU than other sets, which means set 1 is
relatively simple to translate, and vice versa for samples in set 2. These imply that different difficulty
sentences have different structure preferences. We provide statistics and examples in Appendix B.2.

5.3 APPLY ON ANOTHER STRUCTURE (DYNAMICCONV)

As we discussed, our instance-wise layer reordering is structure agnostic. In this subsection, we
evaluate this by applying our approach on DynamicConv network (Wu et al., 2019) beyond standard
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(a) BLEU scores on IWSLT14 En→De. (b) BLEU scores on IWSLT14 De→En.

Figure 2: BLEU scores of three subsets (divided by predicted decoder) on all decoders.

Transformer, which replaces the self-attention with dynamic convolution. We train layer ordered
DynamicConv on N = 2, 3, 4 decoders and test the performances. The BLEU score of standard
DynamicConv is 35.20, and with our instance-wise order learning, we achieve 35.60, 35.82, 35.87
for N = 2, 3, 4 ordered decoders respectively (near 0.7 point gain). Therefore, this study verifies our
claim that our approach can be applied to other structures, as long as multiple different layers exist.

5.4 DISCUSSIONS

Ensemble Models En→De De→En
1-model (standard) 28.57 34.67
2-model (standard) 29.71 35.92
3-model (standard) 30.08 36.40
4-model (standard) 30.18 36.54

1-model (IOT) 29.52 35.62
2-model (IOT) 30.38 36.80
3-model (IOT) 30.93 37.25
4-model (IOT) 31.02 37.38

Table 10: Ensemble performances
of standard Transformer and IOT.

Ensemble Since our framework involves multiple orders (with
shared parameters), which is also done in ensemble framework,
we make a comparison with ensemble. The ensemble method
trains multiple models with different parameters separately in
an independent way. While our work trains orders in a joint way
with an intention to make them more diverse. More importantly,
from the view of time and memory cost, the ensemble frame-
work increases N times which is totally different from ours. In
this sense, our method can be combined with ensemble to fur-
ther boost performance. The competitive results on IWSTL14
En↔De test set are shown in Table 10. We can clearly conclude
that IOT and ensemble are complementary to each other.

Regularization IOT consists of different ordered blocks in a weight tying method, which may
looks like a parameter regularization to some extent. However, we show that IOT is more than
regularization and can be complementary with other regularization methods. Setting (1): We first
train a Transformer model on IWSLT14 De→En task with all shared decoder orders, but without
instance-wise learning, and test the performance with each order. We find the BLEU scores on test
set are near 34.80 for each order, much worse than IOT, which means that simply regularizing the
shared parameters for different orders is not the main contribution to performance improvement, and
our instance-wise learning is critical. Setting (2): Another experiment is that we train Transformer
with LayerDrop (Fan et al., 2019), a dropout technique to regularize the layer parameters. The test
BLEU is 35.40, which achieves about 0.8 score improvement over Transformer. After applying
IOT with LayerDrop, we obtain further gains than IOT only (35.62) to reach a BLEU score 36.13.
Therefore, this demonstrates IOT is not only regularization and can be smoothly integrated with other
regularization methods. More details and experiments on other tasks are shown in Appendix B.3.

6 CONCLUSION

In this work, we propose Instance-wise Ordered Transformer, which leverages instance-wise learning
to reorder the layers in Transformer for each data. Compared with standard Transformer, IOT only
introduces slightly increased time cost. Experiments on 3 sequence generation tasks and 9 datasets
demonstrate the effectiveness of IOT. We also verify that our approach can be universally applied to
other structures, such as DynamicConv. In future, we plan to work on more complicated reordering
in each block, as well as other tasks such as multi-lingual translation and text classification.

9



Published as a conference paper at ICLR 2021

REFERENCES

Karim Ahmed, Nitish Shirish Keskar, and Richard Socher. Weighted transformer network for machine
translation. arXiv preprint arXiv:1711.02132, 2017.

Shiqi Shen Ayana, Zhiyuan Liu, and Maosong Sun. Neural headline generation with minimum risk
training. arXiv preprint arXiv:1604.01904, 2016.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Controlling computation versus quality for
neural sequence models. arXiv preprint arXiv:2002.07106, 2020.

Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus of python functions and
documentation strings for automated code documentation and code generation. arXiv preprint
arXiv:1707.02275, 2017.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. arXiv preprint
arXiv:1911.07470, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. arXiv preprint arXiv:2005.12872,
2020.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. In Advances in Neural Information
Processing Systems, pp. 1002–1012, 2017.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In
International Conference on Learning Representations, 2020.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In International Conference on Learning Representations, 2019.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. In International
Conference on Learning Representations, 2018.
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A EXPERIMENTAL SETTINGS AND MORE RESULTS

A.1 DETAILED DATA SETTINGS

Neural Machine Translation Following the common practice (Ott et al., 2019), we lowercase all
words for IWSLT14 En↔De. For IWSLT14 En↔De, En↔Es, IWSLT17 En↔Fr, we use a joint
source and target vocabulary with 10k byte-pair-encoding (BPE) (Sennrich et al., 2015) operations,
and for IWSLT17 En↔Zh, we use a seperate source and target vocabulary. For all WMT tasks,
sentences are encoded by a joint source and target vocabulary of 32k tokens.

Code Generation In the Java dataset, the numbers of training, validation and test sequences are
69, 708, 8, 714 and 8, 714 respectively, and the corresponding numbers for Python are 55, 538,
18, 505 and 18, 502. All samples are tokenized. We use the downloaded Java dataset without further
processing, and use Python standard AST module to further process the python code. The source and
target vocabulary sizes in natural language to Java code generation are 27k and 50k, and those for
natural language to Python code generation are 18k and 50k. In this case, following Wei et al. (2019),
we do not apply subword tokenization like BPE to the sequences.

Abstractive Summarization The Gigaword corpus represents for a headline generation task, each
source article contains about 31.4 tokens on average, while the target headline contains near 8.3
tokens per sentence. The training data consists of 3.8M article-headline pairs, while the validation
and test set consist of 190k and 2k pairs respectively. We preprocess the dataset in a same way as
NMT task. The words in the source article and target headline are concatenated to make a joint BPE
vocabulary. After preprocessing, there are 29k subword tokens in the vocabulary.

A.2 DETAILED MODEL/TRAINING CONFIGURATIONS

Model Configuration The detailed model configurations are as follows:

• transformer iwslt de en setting: 6 blocks in encoder and decoder, embedding size
512, feed-forward size 1024, attention heads 4, dropout value 0.3, weight decay 0.0001.

• transformer vaswani wmt en de big setting: 6 blocks in encoder and decoder,
embedding size 1024, feed-forward size 4096, attention heads 16, dropout value 0.3, atten-
tion dropout 0.1, relu dropout 0.1.

• transformer wmt en de big setting: 6 blocks in encoder and decoder, embedding
size 0124, feed-forward size 4096, attention heads 16, dropout value 0.3.

Optimization We adopt the default optimization setting in Vaswani et al. (2017). Adam (Kingma
& Ba, 2014) optimizer with β1 = 0.9, β2 = 0.98 and ε = 10−9. The learning rate scheduler
is inverse sqrt with warmup steps 4, 000, default learning rate is 0.0005. Label smoothing
(Szegedy et al., 2016) is used with value 0.1. As introduced, to learn the predictors, we clamp the
softmax output with value 0.05.

A.3 RESULTS OF ORDER COMBINATIONS

We show in the paper that different number of orders (e.g., N = 4 or N = 5) have varied perfor-
mances. Therefore, one necessary point is about the different combinations of these N decoders.
Here, we work on N = 5 IOT model to show the results of different order candidates.

We first present each ordered decoder in Table 11 again (same as in Table 1). For the N = 5 ordered
decoders with IOT model, we show the performances with 5 combined orders selected from all six
variants on dev set of IWSLT14 De→En and En→De translations. The results are reported in Table
12. We can see the different combinations achieve similar strong performances, which shows that our

Code 1 2 3 4 5 6

Order SA→ED→FF FF→SA→ED ED→FF→SA ED→SA→FF SA→FF→ED FF→ED→SA

Table 11: Each numbered code for one specific ordered decoder.
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IOT (N = 5) 12345 12346 12356 12456 13456 23456

En→De 30.64 30.65 30.53 30.58 30.70 30.67
De→En 36.71 36.67 36.72 36.79 36.74 36.75

Table 12: BLEU scores for IWSTL14 De→En and En→De translations on dev set. ‘12345’ represents
the combinations of order 1, 2, 3, 4, 5 decoders.

approach is robust towards different order combinations. This also demonstrate that the importance
of IOT is the diversity among order candidates that can help each data distinguish them. For other N
ordered decoders, the patterns are similar. Therefore, here we only report the N combinations used
for IOT experiments in the paper as follows: IOT (N = 2) is combined by order 4, 6 (ED→SA→FF
and FF→ED→SA), and IOT (N = 3) is order 1, 4, 6, IOT (N = 4) is order 1, 2, 4, 6, and IOT
(N = 5) is order 1, 2, 4, 5, 6.

A.4 RESULTS OF DIFFERENT NUMBER OF DECODERS

The results of N = 4 ordered decoders (order 1, 2, 4, 6) are mainly reported in the paper. Here, we
also show results of other N decoders for all tasks, along with the Transformer baseline.

The results of different N decoders for WMT14 En→De and WMT16 Ro→En translations, code
generation task, and Gigaword summarization are reported in Table 14, Table 15 and Table 16
respectively. As we can see, more ordered decoders can bring better performance, which supports the
effectiveness of our framework and demonstrates the data has its own favor towards different orders.
Considering the efficiency, we do not perform experiments with more than 4 decoders for these tasks.

Model En→De De→En En→Fr Fr→En En→Zh Zh→En En→Es Es→En
Transformer 28.57 34.64 35.9 36.1 26.3 18.4 39.0 40.6

IOT (N = 6) 29.48 35.60 37.4 37.7 27.1 19.2 40.2 41.5
IOT (N = 5) 29.51 35.65 37.2 37.6 27.2 19.2 40.2 41.9
IOT (N = 4) 29.52 35.62 37.2 37.8 27.2 19.3 40.1 41.7
IOT (N = 3) 29.43 35.58 37.0 37.6 27.0 19.1 39.7 41.5
IOT (N = 2) 29.18 35.32 36.6 37.1 26.8 18.9 39.6 41.0

Table 13: BLEU scores on 8 IWSLT tasks with different N ordered decoders (with shared weights).

Model WMT14 En→De WMT16 Ro→En
Transformer 29.12 37.73

IOT (N = 2) 29.71 38.57
IOT (N = 3) 29.89 38.79
IOT (N = 4) 30.03 38.83

Table 14: BLEU scores for WMT14 En→De and WMT16 Ro→En translation tasks of different N
ordered decoders in IOT.

Java Python
Model BLEU PoV BLEU PoV
Transformer 24.58 74.44% 13.20 61.89%

IOT (N = 2) 25.44 77.88% 13.97 62.22%
IOT (N = 3) 25.51 75.83% 14.00 62.04%
IOT (N = 4) 25.51 77.30% 14.05 63.14%

Table 15: BLEU and PoV scores for Java and Python code generation results of different N ordered
decoders in IOT.
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Model ROUGE-1 ROUGE-2 ROUGE-L

Transformer 35.59 17.87 32.98

IOT (N = 2) 36.14 18.37 33.61
IOT (N = 3) 36.15 18.48 33.81
IOT (N = 4) 36.37 18.46 33.89

Table 16: ROUGE F1 scores for Gigaword abstractive summarization results of different N ordered
decoders in IOT.

c1/c2 0.0 0.005 0.01 0.05

IOT (N = 2)

0.0 35.97 36.36 36.46 36.42
0.05 36.35 − 36.58 −
0.1 36.31 36.56 36.60 36.54
0.5 36.39 − 36.40 −

IOT (N = 3)

0.0 36.16 36.44 36.66 36.51
0.05 36.47 − 36.47 −
0.1 36.35 36.48 36.79 36.57
0.5 36.44 − 36.62 −

Table 17: BLEU scores for IWSLT14 De→En dev set. The performances are varied by different
weighted auxiliary losses controlled by c1 and c2 value.

B MORE STUDIES

B.1 IMPACT OF WEIGHTED AUXILIARY LOSSES

We conduct another study on IWSLT14 De→En dev set to investigate the impact of our proposed
auxiliary losses controlled by weight c1 and c2. The values of c1 and c2 are varied between
[0.0, 0.05, 0.1, 0.5] and [0.0, 0.005, 0.01, 0.05] respectively, and the results are presented in Table
17. It can be seen that the best configuration is c1 = 0.1 and c2 = 0.01. Therefore, we report the
leading results in the paper with c1 = 0.1, c2 = 0.01. The results also clearly demonstrate that the
two additional losses are necessary to make our framework effective.

B.2 DATA EXAMPLES VERIFICATION

As discussed in Section 5.2, the data split by the corresponding predicted order is in different pattern.
For example, the difficulty of each set is different. We therefore analyze the split data and calculate
some statistics among these subsets. Specifically, we first count the sentence number S, the tokens
T , and the distinct vocabulary Di in each subset. We show these numbers in Table 18, along with
corresponding averaged BLEU score (see Figure 2). We can see that the vocabulary size of set 1 is
the smallest, and set 2 is the largest, which means there are more distinct words in set 2. This leads
the generation of set 2 to be harder than set 1, which maps the BLEU score ranking among these
sets. Besides, we also calculate the token frequency fij for token j in each own subset i, and sum the
frequency of top 20 tokens in each subset, Fi =

∑20
j=1 fij , to give another evidence. The results also

show that F1 is the highest, which means the tokens in set 1 contains most frequent words to make an
easy learning, while set 2 is harder since F2 is small.

Set Si Ti Di Fi BLEUAvg

i = 1 2, 404 56, 036 4,557 0.3693 32.49
i = 2 2, 093 49, 077 4,897 0.3234 27.92
i = 3 2, 786 66, 226 4,699 0.3668 30.28

Table 18: Statistics of each English valid subset on IWSLT14 En→De translation. Si is the number of
sentences in set i. Correspondingly, Ti is the token number,Di is the vocabulary size. Fi =

∑20
j=1 fij

is the sum of the frequency of top 20 tokens in set i, where fij is the frequency for token j.
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Set 1 i will come to it later .
i wasn &apos;t very good at reading things .

Set 2 this is a very little known fact about the two countries .
it &apos;s why they leave lights on around the house .

Set 3 and how can we do that ?
it &apos;s our faith , and we will be lo@@ y@@ al to it .

Table 19: Samples of each English valid subset on IWSLT14 En→De translation.

We further take a look at the data and find the sentences in set 1 are mostly “simple sentences”, and
set 2 contains many “emphatic sentences”, while set 3 is somehow mixed. In Table 19, we provide
some sentence examples belong to each subset to give more clarifications.

B.3 REGULARIZATION

In Section 5.4, we have provided an example of regularization experiments on IWLST14 De→En
translation, which demonstrates that our IOT is not only regularization and can be smoothly inte-
grated with other regularization methods. To give more evidences and more details, we extend the
regularization experiments on all IWSLT translation tasks (IWSLT14 En↔De, IWSLT14 En↔Es,
IWSLT17 En↔Zh, IWSLT17 En↔Fr), and WMT16 Ro→En translation. The two specific settings
of the experiments are as follows. Setting (1): The first experiment is “ordered Transformer” without
instance awareness. That is, all the reordered architectures are trained on the whole same corpus
with equal weights, and the parameters for these reordered architectures are shared. More specif-
ically, the decoder block has different ways to order SA, ED, and FF layers (e.g., FF→SA→ED,
SA→ED→FF, etc), but the parameters for the reordered blocks are shared. Mathematically, the
loss function is: LC =

∑N
n=1(λn · LM

n), where LMn is the model loss function for n-th or-
dered decoder. Compared with Eqn (3), the weight λn is fixed to be 1 here. At inference, we
first find out the best order according to the dev performance and apply it on the test set. We
cannot use instance-wise reordered model in this setting, while our proposed IOT can. The exper-
iments are conducted with transformer iwslt de en configuration for IWSLT translations,
and transformer vaswani wmt en de big configuration for WMT16 Ro→En translation.
Setting (2): We integrate another regularization technique ‘LayerDrop’ (Fan et al., 2019) into both
the Transformer baseline and our IOT (N = 4) method, while other settings remain unchanged. The
study results of these two settings are represented in Table 20.

From the results, we have same conclusions as discussed in Section 5.4. Simply sharing the parameters
of different decoders as a regularization cannot boost the model performance (“Transformer + (1)” in
Table 20), while our IOT can further improve the performance with other regularization methods.

B.4 ROBUSTNESS

An impact of IOT training besides performance gain is that the model can be more robust compared
to one order only. In Table 21, we provide one example to prove the robustness. We train one
Transformer model by decoder order 1, and to decode the sentences with all orders in inference.
Obviously, only decoding with order 1 leads to good performance, while other orders can not achieve
reasonable scores since the layer order is changed and the feature exaction becomes incorrect. As for
IOT, the generated sequences remain stable and high results for each order.

B.5 VISUALIZATION

To better understand the difference between IOT and standard Transformer, we investigate on
the training process and provide visualization results about model optimization and performance
improvements. Specifically, we plot the curve of training loss, validation loss, as well as the validation
BLEU score and test BLEU score along the training epochs on IWSLT14 De→En translation dataset.
The loss curves are visualized in Figure 3, and the BLEU curves are presented in Figure 4.

From the validation loss curves of Figure 3(b) and 3(c), we can first see that our IOT (N = 3) training
converges faster than Transformer baseline and shows the advantage of IOT, which is consistent to
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Model En→De De→En En→Fr Fr→En
Transformer 28.57 34.64 35.9 36.1
IOT (N = 4) 29.52 35.62 37.2 37.8

Transformer + (1) 28.35± 0.12 34.68± 0.05 35.9± 0.23 36.7± 0.14

Transformer + (2) 29.01 35.40 36.2 36.8
IOT (N = 4) + (2) 29.94 36.13 37.4 38.1

Model En→Zh Zh→En En→Es Es→En Ro→En
Transformer 26.3 18.4 39.0 40.6 37.73
IOT (N = 4) 27.2 19.3 40.1 41.7 38.83

Transformer + (1) 26.4± 0.05 18.8± 0.17 37.7± 0.28 39.6± 0.11 37.82± 0.05

Transformer + (2) 26.8 19.0 39.4 40.8 38.33
IOT (N = 4) + (2) 27.3 19.5 40.6 42.5 38.98

Table 20: Regularization study experiments on 8 IWSLT translation tasks and WMT16 Ro→En
translation. We study both setting (1): train Transformer model with all shared decoders but without
instance-wise learning, and setting (2): add LayerDrop (Fan et al., 2019) regularization technique
experiments on these tasks.

Order Transformer IOT

1? 35.84 36.42
2 27.96 36.45
3 8.05 36.47
4 5.11 36.38
5 1.32 36.46
6 0.35 36.41

Table 21: Robustness study on IWSTL14 De→En translation task on dev set. ? is the order trained
by Transformer.

our analysis in Section 5.1. The converged (smallest) validation loss value seems to be similar to
Transformer baseline, but please note that the loss computation of IOT is different from Transformer
baseline. As shown in Eqn (3), the loss function of IOT is a weighted sum of loss values for each
order, while for Transformer, it is only one order loss. Therefore, when we turn to the comparison
of validation BLEU score, the superiority of our IOT can be clearly verified. From the BLEU score
curves in Figure 4, it is obvious that IOT achieves better BLEU score than standard Transformer along
the whole training epochs, on both validation and test sets. These visualized results well demonstrate
the effectiveness of our IOT approach.
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(b) Validation loss (y-axis: 4.0-9.0)
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(c) Validation loss (y-axis: 3.9-4.1)

Figure 3: Comparison of training/validation loss curves along the model training on IWSLT De→En
translation. ‘IOT’ is IOT (N = 3) and ‘Baseline’ is Transformer. Figure 3(c) is the same curve as
3(b), except the value of y-axis in Figure 3(c) is between 3.9-4.1, while 4.9-9.0 for Figure 3(b).
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(b) Test BLEU (y-axis: 0-36)

0 20 40 60 80 100
Epoch

33

34

35

36

Te
st

 B
LE

U

Baseline
IOT
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Figure 4: Comparison of validation/test BLEU curves along the model training on IWSLT De→En
translation. ‘IOT’ is IOT (N = 3) and ‘Baseline’ is Transformer. Figure 4(c) is the same curve as
4(b), except the value of y-axis in Figure 4(c) is between 33-36, while 0-36 for Figure 4(b).
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