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Abstract

In this paper we introduce “Federated Learning Utilities and Tools for Experimen-1

tation” (FLUTE), a high-performance open source platform for federated learning2

research and offline simulations. The goal of FLUTE is to enable rapid proto-3

typing and simulation of new federated learning algorithms at scale, including4

novel optimization, privacy, and communications strategies. We describe the archi-5

tecture of FLUTE, enabling arbitrary federated modeling schemes to be realized,6

we compare the platform with other state-of-the-art platforms, and we describe7

available features of FLUTE for experimentation in core areas of active research,8

such as optimization, privacy, and scalability. A comparison with other established9

platforms shows speed-ups up to 42× and savings in memory footprint of 3×.10

A sample of the platform capabilities is presented in the Appendix for a range of11

tasks and other functionality such as scaling and a variety of federated optimizers.12

1 Introduction13

Distributed Training (DT) has drawn much scientific attention with focus on scaling the model14

training processes, either via model or data parallelism. As training datasets grow larger, the15

need for data parallelism has become a priority. Different approaches have been proposed over16

the years, as discussed in [1], aiming at more efficient training, either in the form of training17

platforms such as “Horovod” [2, 3] or algorithmic improvements like “Blockwise Model-Update18

Filtering” (BMUF) [4]. Most often, these techniques and platforms are evaluated on metrics such as19

data throughput (without compromising model performance), model and training dataset size, and20

GPU utilization and convergence rates. There are a few underlying assumptions implied for such21

DT scenarios, i.e., data and device uniformity and efficient network communication between the22

working nodes. Besides the communication/network specifications, data uniformity is paramount for23

successful training, ensured by repeated randomization and data shuffling steps.24

On the other hand, new constraints in data management are emerging, driven by the need for privacy25

compliance of personal data and information [5], vastly distributed and segregated data silos, etc. As26

such, increasingly more data are inaccessible, either behind firewalls or on users’ devices without the27

option of being shared for centralized training. The “Federated Learning” (FL) paradigm has been28

proposed as a strategy to address these constraints, as in [6]. Federated learning is a decentralized29

machine learning scheme with focus on collaborative training and user data privacy. The key idea is30

to enable training of a global model with the participation of multiple clients coordinated by a central31

server. Each client trains the model using local data and then sends the tuned parameters back to the32

server, where the global model is updated by aggregating the client, aka local, information.33

One of the challenges when using the Federated Learning platforms is the need for scaling the learning34

process to millions of clients, in order to simulate real-world conditions under reasonable computing35

resources. As such, testing and validating any novel algorithm in realistic scenarios, e.g., using real36
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devices or close-to-real scaled deployments, can be particularly difficult. Simulation platforms play37

an important role, enabling researchers and developers to develop proof-of-concept implementations38

(POCs) and validate their performance before building and deploying in the wild. While several open-39

source frameworks have been developed to enable FL solutions, few offer end-to-end simulations,40

experiment orchestration, and scalability.41

This paper introduces a novel platform “Federated Learning Utilities and Tools for Experimentation”42

(FLUTE) as a framework for running large-scale, offline FL simulations. It is designed to be flexible,43

to enable arbitrary model architectures1, and to allow for prototyping novel approaches in federation,44

optimization, quantization, privacy, and so on. Finally, it provides an optional integration with45

AzureML workspaces, enabling scenarios closer to real-world applications, and leveraging platform46

features to manage and track experiments, parameter sweeps, and model snapshots.47

The main contributions of FLUTE are: (i) A platform for high-performance FL simulations at scale48

(scaling to millions of clients), (ii) Flexibility in the platform to include new FL paradigms, unlocking49

research, experimentation, and POC development, (iii) A generic API for new model types and50

data formats, (iv) A pre-built list of features - state-of-the-art federation algorithms, optimizers,51

differential privacy, bandwidth management, client management/sampling, etc, (v) Experimental52

results illustrating the utility of the platform for FL research, (vi) A competitive analysis and53

comparisons with some of the leading FL simulation platforms2, FedML, described in [7] and Flower,54

details in [8]. The goal of FLUTE is to facilitate the study of new algorithmic paradigms and55

optimizations, enabling more effective FL solutions in real-world deployments. FLUTE’s unique56

architecture allows clients to be instantiated on-the-fly and then processed asynchronously, making it57

more efficient than other platforms. On the other hand, FLUTE does not currently address challenges58

like data collection, secure aggregation, device labelling, or attestation. The code for the platform is59

open-sourced and available at https://github.com/AnonymousQTHM31/FLUTE.60

2 Background and Prior Work61

In general, there are two different approaches concerning the architecture of FL systems: either62

using a central server [9], as the “coordinator or orchestrator”, or opting for peer-to-peer learning,63

without the need of a central server [10]. FLUTE is based on the “server-client” architecture, where64

the server coordinates any number of clients. Besides the basic architecture, FLUTE addresses65

technical challenges such as the required resources, i.e. bandwidth, and computing power, efficiency,66

optimization and learning pipeline [11], and privacy constraints.67

Such challenges can be attributed to either the ML side of federated learning, such as the distributed68

nature of the tasks, or the engineering side where the available resources are limited:69

Communication overhead: FL relies heavily on the communication between server and the clients70

to complete any training iteration. The fact that some of the clients and the server can be in different71

networks may cause limited connectivity, high latency and others. Different approaches have been72

proposed, e.g., gradient quantization and sparsification [6, 12], different architectures per client [13],73

use of adapters for federating transformer models, etc. Most of these approaches are already74

implemented in FLUTE, e.g., quantization results shown in Appendix B.75

Hardware heterogeneity: Computing capabilities of each client can vary, i.e., CPU, memory,76

battery level, storage are not expected to be the same across all nodes. This can affect both the77

selection and availability of the participating devices and it can bias the learning process. Different78

approaches have been also proposed to address clients that fall behind, i.e. “stragglers”, the most79

popular of them allowing for asynchronous updates and client dropouts. FLUTE provides a flexible,80

asynchronous framework to incorporate workers of different capabilities. Also, there is an intuitive81

way of modeling faster/slower nodes as part of the training process.82

Unbalanced and/or non-IID data: Local training data are individually generated according to83

the client usage, e.g., users spending more time on their devices tend to generate more training data84

than others. Therefore, it is expected that these locally segregated training sets may not be either85

1The repository provides some examples and users are urged to add their implementations.
2Based on the availability of simulation functionality and the number of downloads from their github repo.
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a representative sample of the global data distribution or uniformly distributed between clients. A86

simple strategy to overcome communication overheads was proposed with the “Federated Averaging”87

(FedAvg) algorithm [6]. In this approach, the clients perform several training iterations, and then88

send the updated models back to the server for aggregation based on a weighted average. FedAvg89

is one of the go-to training strategies for FL, given the simplicity and the consistently good results90

achieved in multiple experiments. On the other hand, FedAvg is not the best aggregation strategy,91

especially in the case of non-IID local data distributions. Over time, new approaches have emerged92

to overcome these limitations, for example, adaptive optimizers [14], SCAFFOLD [15], the DGA93

algorithm [16], which proposes an optimization strategy to address the heterogeneity problems on94

data and devices.95

Threats: The ever increasing interest for applying FL in different scenarios has brought interest in96

malicious attacks and threat models, as described [17]. FL itself cannot assure either data privacy, or97

robustness to diverse attacks proven to be effective in breaking privacy or destroying the learning98

process. Without any mitigation, both the server and clients can be attacked by malicious users. For99

example, attackers can try to poison the model by sending back to the server fake model parameters100

[18] or fake the server and send a malicious model to the clients stealing the local information [19].101

To tackle this issue, FL strategies started to incorporate techniques like Differential Privacy (DP), as102

detailed in [20] or Multi-Party Computation (MPC), which only reveals the computation result while103

maintaining the confidentiality of all the intermediate computations [21, 22]. Defenses to inference104

and backdoor attacks, based on DP and masking, are already part of FLUTE.105

Simulation and prototyping: Building federated learning solutions can require significant up-front106

engineering investment, often with an unclear or uncertain outcome. Simulation frameworks enable107

FL researchers and engineers to estimate the potential utility of a particular solution, and investigate108

novel approaches, before making any significant investments. Recently, several frameworks have been109

proposed for FL simulations, including TensorFlow Federated [3], FedML [7] and Flower [8], with110

each having different focus and different simulation scope of their proof-of-concept scenarios. We111

extensively compare the main features of these frameworks alongside FLUTE in Section 4, showing112

the competitive advantage of FLUTE vs. the other platforms.113

3 FLUTE Platform: Design and Features114

The main goal of FLUTE is to be a scalable framework for rapid prototyping, encouraging researchers115

to propose novel FL solutions addressing real-world applications, in scale, data volume, etc, focusing116

on the following design constraints/specs:117

• Scalability: Capacity to process many thousands of clients on any given round. FLUTE118

allows to run large-scale experiments using up to 10,000 clients with reasonable turn-around119

time, since scale is a critical factor in understanding practical metrics such as convergence120

and privacy-utility trade-offs.121

• Flexibility: Allow for any combination of model, dataset, and optimizer. FLUTE Support122

for diverse FL configurations, including standardized implementations such as DGA and123

FedAvg, with Pytorch being the framework of choice for implementing the models.124

• Versatility: Allow the end users to easily plug in customized/new techniques like differential125

privacy or gradient quantization. FLUTE provides an open architecture allowing users to126

incorporate new algorithms in a straightforward fashion.127

FLUTE provides a range of built-in functionality while the implemented state-of-the-art algorithms128

cover important areas in FL. In more detail:129

Federated Optimization: FLUTE already supports a range of federated optimizers by adjusting130

the gradient aggregation process, and the server-side optimizers, making FedAvg [6], FedYogi131

or FedAdam [23], and DGA [16, 24], straightforward to apply. Also, the FLUTE client scaling132

capabilities are enhanced by switching to large-batch optimizers on the server-side, like LAMB [25],133

and LARS [26], validated by the experimental evidence, shown in Appendix B.134

Differential Privacy: In FLUTE, either local or global DP can be used, depending on whether the135

clients or the server are responsible for doing the clipping and noise-addition. In both cases, this step136
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is directly applied on the pseudo-gradients, i.e., the difference between current and previous weights137

after each user’s data is processed. The pseudo-gradients are re-scaled so that their norm is at most138

C, ensuring the norm of the difference between any two of them (the sensitivity) is bounded. We139

typically use Gaussian noise, with variance σ2 = 2 log
(
1.25
δ

)
C2

ε2 picked so that the aggregation is at140

most (ε, δ)-DP w.r.t. each client. In the case of DGA [16], the aggregation weights also go through141

the same procedure, since they are data-dependent.142

Bandwidth Optimization: We have incorporated an approach similar to that of [27]. At each layer143

of the neural network, we first get the dynamic range of the gradient components, and then create a144

histogram of 2B bins between these two values. Next, we replace each gradient component by the145

label of the closest bin. That way, we need just to communicate the bin indices, together with the146

min. and max. values. Besides gradient compression and quantization, We also in the process of147

incorporating FL-algorithms with different model architectures [13] and the use of adapters in NLU148

tasks, achieving even further bandwidth compression.149

Computing Resources: AzureML (AML) [28] is the preferred computing FLUTE environment150

for staging, executing, tracking, and summarizing the FL experiments. FLUTE has a native AML151

integration included for job submissions, allowing the users to use the built-in CLI or web interface152

for job/experiment tracking, and for visualization purposes. While FLUTE needs only the experiment-153

related configurations, AML expects the computing environment parameters in a configuration file,154

such as target, cluster, code, etc. Besides AML, FLUTE can also run seamlessly on stand-alone155

devices, such as laptop and desktop machines (like those used for Section 4), using the local GPUs156

if/when available.157

FLUTE design is based on a central server architecture, as depicted in Figure 1. The logical workflow158

is: (i) Send an initial global model to participating clients, (ii) Train instances of the global model159

with the locally available data on each client, (iii) Send training information, e.g., updated model160

parameters, logits (if required), and/or gradients/pseudo-gradients back to the server, (iv) Combine161

the returned information on the server to produce a new global model, (v) Optionally, update the162

global model with an additional server-side rehearsal step, (vi) Send the updated global model to163

the subset of clients, (vii) Repeat steps (ii) - (vi) after sampling a new subset of clients for the next164

training iteration.165

 Worker 0 (Server)

Global Model

  Worker 1

Configuration Optimizer

Global 

Model

Training 

Data

ClientClient ClientClient ClientClient

. . .

  Worker K

Global 

Model

Training 

Data

ClientClient ClientClient ClientClient

. . .

Clients ID Pool

. . .

Figure 1: Client-server communication protocol. At each iteration, the server sends a copy of the
global model to each worker, samples a number of clients and asynchronously assigns them to a
worker as they become available

A FLUTE job leverages one or more multi-gpu VMs running up to a total of K worker processes,166

each executing tasks assigned by the server (Worker 0). The number of workers is decoupled from the167

number of clients P , allowing the platform to scale to millions of clients even when K � P . During168

training, the server plays the role of both the orchestrator and the aggregator. First, it distributes169

a copy of the global model(s), training data and the list of all the client-IDs among the workers.170

The workers, on their turn, process the clients’ data to produce new models, and send the models171

back to the server. After a number of clients is processed, the server will aggregate all the resulting172

models, typically into a single global model. Algorithm 1 describes in detail this process and Figure 2173

exemplifies the execution flow.174
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Figure 2: FLUTE Execution Flow: The server samples N of the clients and sends them to the K
workers. Every time one of the workers finishes processing the client data, it returns the gradient and
draws the next client until all clients are processed.

Algorithm 1 FLUTE Orchestration: P is a Client
Pool, which contains IDs of each client, P = |P|,
M is the federation rounds to be executed, K is
the number of Workers, N is the subset of clients
per iteration and N = |N | the number of clients
per iteration

Server-Side Worker-0:
for each federated round from 1, . . . ,M do
N ← Sample N clients from P
repeat

Wait for workerk to finish
Save pseudo-gradient response from workerk
c← Sample client-ID from C
Dispatch model and c to workerk

until all client-IDs c inN have been processed
Aggregate pseudo-gradients
Update model with optimization step

end for

Client-Side Worker-k, with k > 0:
Load client and model data
Execute local training processes
Send pseudo-gradients and statistics about local
training to Worker-0

The distributed nature of FLUTE is based on Py-175

Torch, using torch.distributed package as the176

communication backbone. The interface be-177

tween server and workers is based on “mes-178

sages”, that contain model parameters, client-179

IDs and training instructions. There are four180

message-types that can be passed from server to181

worker: 1. Update creates a copy of the model182

parameters and learning rate on the worker,183

2. Train triggers the execution of a training184

step on a worker, for a given client. The result-185

ing model (or pseudo-gradient) is passed from186

worker to server, 3. Evaluate triggers the ex-187

ecution of an evaluation step in a given client.188

Resulting metrics are passed from worker to189

server, 4. Terminate shuts down the worker190

thread.191

FLUTE leverages the communication scheme in192

Figure 1 by loading a local copy of the training193

data on each worker prior to training, signifi-194

cantly reducing the traffic communication be-195

tween server and workers, only sending client196

indices. In this research simulator, all clients are197

implemented as isolated object instances, therefore local data on each client stays within the local198

storage boundaries and it is never sent to the server or aggregated with other local data sources. Only199

metrics, model parameters or gradients are communicated between the server and clients – these200

quantities can be encrypted 3 if necessary.201

4 Comparison with related platforms202

FLUTE allows customized training procedures and complex algorithmic implementations in scale,203

making it a valuable tool to rapidly validate the feasibility of novel FL solutions, while avoiding204

the need to deal with complications that production environments present. To this day, different FL205

platforms have been proposed, however, most of them have been designed with a specific purpose206

limiting their flexibility to experiment with complex large-scale FL scenarios in a reasonable amount207

of time using limited resources. Table 1 shows a detailed comparison of the most common FL208

platforms features and their main focus.209

3Encryption and secure aggregation are not currently implemented in FLUTE - these are security mechanisms
which aren’t strictly necessary for simulations.
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FLUTE FedML (Parrot) Flower (Simulator)

Focus Research and Simulation Research and Production Research and Production
ML Framework PyTorch PyTorch PyTorch / TensorFlow
Communication Protocols Supported Gloo,NCCL SP, MPI Ray, gRPC
Support Security/Privacy related functions 3 3 3
Support Multiple Federated Optimization Techniques 3 3 3
Flexible and Generic API 3 3 3
Cloud Integration 3 3 7
Multi-GPU Support 3 3 7
Performance Optimizations 3 7 7
Easily Extensible to Production 7 3 3

Table 1: Comparison between FLUTE and Popular Federated Learning Simulation Platforms. This
analysis is focused on the simulators provided by these platforms only.

Some production-oriented frameworks also allow researchers to work in a simulation environment210

using the same platform. However, these frameworks suffer from lack of flexibility and limited211

functionality since their architecture is optimized towards productization, especially in complex FL212

scenarios. We selected the FedML and Flower platforms as the most representative, based on their213

number of stars on GitHub.214

FLUTE architecture provides a significant advantage in runtime and memory utilization, leveraging215

the benefits when using NCCL in GPUs, the communication optimization, etc, outperforming all216

other platforms by 42× in speed and 3× in memory consumption, Tables 2 and 4.217

Task FedML (MPI) 0.7.303 FLUTE (NCCL) 1.0.0

Model Dataset Clients Rounds Acc Time GPU memory Acc Time GPU memory

lr mnist 1000 100 81 00:03:09 3060 MB 81 00:01:35 1060 MB
cnn fedmnist 3400 800 83 05:49:52 5180 MB 83 00:08:22 1770 MB
resnet18 fedcifar100 500 4000 34 15:55:36 5530 MB 33 01:42:01 1900 MB
rnn fedshakespeare 715 1200 57 06:46:21 3690 MB 57 00:21:50 1270 MB

Table 2: GPU Performance comparison FLUTE 1.0.0 vs FedML 0.7.303 on 4x NVIDIA RTX A6000
using FedML Datasets. Test accuracy is reported from the last communication round. The training
configuration and datasets details for these experiments are reported in Appendix B.

The advantage of FLUTE relies on its ability to asynchronously assign new clients to the workers, as218

they become available, and receive their outputs. On the other hand, FedML4 links the number of219

workers with the number of MPI processes, which is reflected as the number of parallel clients during220

training. FLUTE design allows processing multiple clients per worker decoupling the need for 1 : 1221

mapping between clients and training processes. Another FLUTE strength is that each worker holds222

a preloaded local copy of the training data, avoiding communication overheads during training as223

the Server only sends indices of clients to instantiate. An additional comparison of FLUTE with the224

Gloo backend vs Flower 1.0.0 is presented in Appendix A.225

5 Discussion and Conclusions226

In recent years, researchers have made significant efforts to address the challenges FL raises, especially227

when it comes to setting up FL-friendly environments – privacy guarantees, time-consuming processes,228

communication costs and beyond. Herein, we presented FLUTE, a versatile, open-architecture229

platform for high-performance federated learning simulation that is available as open source. FLUTE230

provides scaling capabilities, several state-of-the-art federation approaches and related features such231

as differential privacy, and a flexible API enabling extensions and the introduction of novel approaches.232

FLUTE is model and task independent, and provides facilities for easy integration of new model233

architectures based on PyTorch.234

The goal of FLUTE is to enable rapid experimentation and prototyping, and facilitate the development235

of new FL research efforts. We encourage the research community to explore new research using236

FLUTE and invite contributions to the public source repository.237

4FedML Simulator (Parrot) on its release 0.7.303, commit ID 8f7f261f (https://github.com/FedML-AI/
FedML/tree/8f7f261f44e58d0cb5a416b0d6fa270b42a91049)
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Appendix380

A Comparison with different platforms381

To enable the comparisons, the training configurations for the experiments presented in Table 2 are382

based on the FedML Benchmarking Recipes 5 using the setup and models as detailed in the FedML383

repository6. The datasets are also provided by FedML7. The FLUTE scripts can be found at the384

Experiments folder in the repository. More details about the specific setups are detailed in Table 3.385

Model Dataset Algorithm # Clients Clients/round Batch Size Client Optim. lr Local Epochs # Rounds Test Freq

Log. Regr. mnist FedAvg 1000 10 10 SGD 0.03 1 100 20
CNN fedmnist FedAvg 3400 10 20 SGD 0.1 1 800 50

ResNet18 fedcifar100 FedAvg 500 10 20 SGD 0.1 1 4000 50
RNN fedshakespeare FedAvg 715 10 4 SGD 0.8 1 1200 50

Table 3: Training configuration for FedML Benchmarking

The Flower platform seems more efficient when multiple CPUs are employed – the platform is fairly386

inefficient by design when multiple GPUs are used during simulation. To run a fair comparison, we387

compare the FLUTE CPU performance (using the Gloo backend) against Flower. We evaluate the388

overall time of the job in FLUTE 1.0.0 vs Flower 1.0.0 8, as in Table 4 using the same setup for the "lr389

mnist" task described in Table 3. FLUTE results outperform up to 54× faster than Flower on GPUs390

given that their simulation capabilities are not optimized for multi-GPU jobs. Also, for the CPU task391

FLUTE shows a competitive advantage running Gloo backend, over Flower being 9× faster.392

FLUTE 1.0.0 Flower 1.0.0
Gloo/NCCL gRPC

Accelerator Acc Time Acc Time

CPU 80 00:03:20 80 00:30:14
GPU 2x 80 00:01:31 80 01:21:44
GPU 4x 81 00:01:26 79 00:56:45

Table 4: Performance comparison FLUTE 1.0.0 vs Flower 1.0.0 on 4x NVIDIA RTX A6000, AMD
EPYC 7V12 64-Core Processor. Test accuracy is reported from the last communication round.

B Case Studies393

This section provides insights by exploring a variety of features of the FLUTE platform. The list of394

presented datasets, tasks and experimental results is by no means exhaustive. In this context, we do395

not present any of the models used since the platform allows training on any architecture currently396

supported by PyTorch.397

B.1 Sample of Baseline Experiments and Datasets398

We provide some of the available models/tasks as part of the FLUTE distribution. This list of models399

and tasks is not exhaustive since the flexibility of the platform allows extensions in models such as400

GNN’s, GBT’s and others:401

• ASR Task: LibriSpeech: FLUTE offers a Speech Recognition template task based on402

the LibriSpeech task [29]. The dataset contains about 1,000 hours of speech from 2,500403

speakers reading books. Each of the speakers is labeled as a different client. In one of the404

5FedML Benchmarking Results https://doc.fedml.ai/simulation/benchmark/BENCHMARK_MPI.
html

6FedML Benchmarking Examples https://github.com/FedML-AI/FedML/tree/master/python/
examples/simulation/mpi_fedavg_datasets_and_models_example

7FedML Datasets https://github.com/FedML-AI/FedML/tree/master/python/fedml/data
8Flower Simulator on its release 1.0.0, commit ID 4e7fad9 -

https://github.com/adap/flower/tree/4e7fad99389a5ee511730841b61f279e3359cb16

10

https://doc.fedml.ai/simulation/benchmark/BENCHMARK_MPI.html
https://doc.fedml.ai/simulation/benchmark/BENCHMARK_MPI.html
https://github.com/FedML-AI/FedML/tree/master/python/examples/simulation/mpi_fedavg_datasets_and_models_example
https://github.com/FedML-AI/FedML/tree/master/python/examples/simulation/mpi_fedavg_datasets_and_models_example
https://github.com/FedML-AI/FedML/tree/master/python/fedml/data


ASR task examples, a sequence-to-sequence model was used for training, more details can405

be found in [30].406

• Computer Vision Task: MNIST and EMNIST: Two different datasets, i.e., the407

MNIST [31] and the EMNIST [32] dataset are used for Computer Vision tasks. The408

EMNIST dataset is a set of handwritten characters and digits captured and converted to409

28× 28 pixel images maintaining the image format and data-structure and directly matching410

the MNIST dataset. Among the many splits of EMNIST dataset, we use the “EMNIST411

Balanced”, containing 1̃32k images with 47 balanced classes.412

• NLP Tasks: Reddit: Different NLP tasks are supported in FLUTE with 2 use-cases for413

MLM and next-word prediction using Reddit data [33]. The Reddit dataset consists of users’414

tweets grouped in months when published on the social network. For the use-cases, we use415

2 months of Reddit data with 2.2M users.The initial/seed models used are based either on416

HuggingFace or a baseline LM model, as described below.417

• Sentiment Analysis: sent140, IMDb, YELP: Sent140 [34], is a sentiment analysis dataset418

consisting of tweets, automatically annotated from the emojis found in them. The dataset419

consists of 255k users, with mean length of 3.5 samples per user. IMDb is based on movie420

reviews of 1012 users providing 140k reviews with 10 rating classes [35]. The YELP dataset421

is based on restaurant review from Yelp and the sentiment label is from 1 to 5 [36]. It422

contains 2.5k users with 425k reviews.423

• Baseline LM Model: A baseline LM model is used for most of the experiments in Section B.424

A two-layer GRU with 512 hidden units, 10,000 word vocabulary, and embedding dimension425

160 is used for fine-tuning during the FL experiments. The seed model is pretrained on the426

Google News corpus [37].427

B.2 DP Experiments428

In this experiment, we explore privacy-utility trade-offs in LM training, using the baseline model429

described in Section B.1. Local differential privacy was applied with ε parameter LDP ε. We track430

the per-client noise across all clients and yield a final global RDP ε after 500 rounds of training. We431

express the privacy-utility tradeoff as the ratio of accuracy and RDP ε. Clearly, for a fixed number of432

training rounds, we achieve better privacy and better accuracy by sampling a larger number of clients.433

We observe a penalty of about 4.3% relative to the non-private baseline (ε =∞).434

Clients/Iter. LDP ε RDP ε Acc @1 (%) Tradeoff
10,000 100 0.108 17.20 0.00172
1,000 100 0.333 14.80 0.00148

10,000 500 1.41 20.00 0.000399
1,000 500 12.6 18.00 0.000361

10,000 750 3.65 20.30 0.00027
1,000 750 38.3 18.80 0.000251

10,000 1,000 7.66 20.30 0.000203
1,000 1,000 79.7 19.40 0.000194

10,000 inf inf 21.70 0.0
1,000 inf inf 21.40 0.0

Table 5: Next-word prediction: Results comparing language model accuracy and privacy for various
client sampling and LDP ε parameters. All experiments trained for 500 rounds. Trade-off is defined
as the ratio of accuracy and RDP ε

B.3 Quantization Experiment435

In Table B.3, the accuracy for a next-word-prediction task is shown, on the Reddit dataset and436

the baseline LM model described in Section B.1, while using different values of quantization B.437

As expected, using less bits, while training for the same number of epochs, leads to decreased438

performance in terms of accuracy.439

We have also done experiments varying the sparsity level, while keeping the quantization constant at440

8 bits, cf. Table B.3. In this particular experiment, we had gains in bandwidth of up to 16x with no441
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Quant. (bits) Acc @1 (%) Rel. Improv. (%)

Seed Model N/A 9.83 (56.62)
SST N/A 22.30 (1.59)

FL Training 32 22.70 0
10 22.40 (1.32)
8 22.20 (2.25)
4 21.30 (5.87)
3 18.80 (17.21)
2 17.80 (21.58)

Table 6: Next-word prediction task: Top-1 accuracy after gradient quantization. The number of bits
per gradient coefficient varies 2− 32.

significant change in performance. Error compensation techniques [38] could be attempted in order442

to increase the performance at higher sparsity levels. The difference in performances for the case of443

8-bit quantization level in Tables B.3 and B.3 is due to noise during the training process.444

% Sparsity Gain in Bandwidth Acc @1 (%)

0.0 4x 22.60
75.0 16x 21.70
95.0 80x 19.00
99.0 400x 17.70

Table 7: Performance obtained by varying sparsity level on gradients while keeping quantization
fixed at 8 bits – gains in bandwidth are relative to standard 32 bits gradient. The performance reported
is the best one over 5000 iterations, with 1000 clients being processed at each iteration.

B.4 Performance for Variable/Different Number of Clients445

The number of clients processed at each round is a variable we can control on FLUTE. Here, we446

show how long a round typically takes using a varying number of clients, on a simulation with 1447

server + 3 workers attached to RTX A6000 GPUs and 2.45GHz AMD EPYC cores. Notice that, since448

clients are processed sequentially by each worker, runtime scales linearly; FLUTE provides options449

to speed-up this process, such as processing clients in multiple threads and pre-encoding the data.450

Number of Clients Runtime (sec.)
1,000 22.1 ± 0.6
5,000 111.3 ± 2.4

10,000 219.0 ± 2.3
50,000 1103.7 ± 11.3

Table 8: How long it takes for 3 workers to process different number of clients, on a simple NLG
experiment using a GRU model and the Reddit dataset. Averages are computed over 20 iterations.

Table 8 shows that FLUTE scales gracefully the number of clients per iteration, without any upper451

bound to that number. We can also look at the predictive performance attained for different numbers452

of clients, and study how it changes as a function of the optimizer used.453

In Table 9 , we compare 4 different scenarios for optimizers, increasing the number of clients,454

showing that the accuracy remains stable for most of them. However, the Adam optimizer decreases455

its accuracy as the number of clients increase, compared to SGD-LAMB that reaches a better456

performance with a larger number of clients.457

B.5 Comparing Optimizers458

This experiment of next-word prediction, using the Reddit dataset and baseline LM model described459

in Section B.1, explores model training performance for a variety of state-of-the-art optimizer choices.460
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Optimizer Acc @ 1 (%)
1k clients/iter Seed Model 9.80

Adam (Baseline) 22.70
RL-based DGA 22.80

10k clients/iter Adam (Baseline) 20.80
SGD-LARS 17.00
Adam-LARS 21.40
SGD-LAMB 23.00

Variable number Adam 22.30
Table 9: Next-word Prediction task: Top-1 accuracy achieved varying number of clients and optimiz-
ers.

We trained a recurrent language model, fixing the number of clients per round to 1,000, and varying461

the choice of optimizer in the central aggregator. Specifically, we applied standard SGD [39],462

ADAM [40], LAMB [25], and LARS [26]. Table 10 illustrates the performance of each optimizer,463

including maximum validation accuracy, and convergence rate: the number of rounds to reach 95%464

of the max. accuracy. Note there is no hyper-parameter tuning of the optimizers for this experiment.465

Optimizer Acc @1 (%) Convergence Round
LAMB 23.10 115
ADAM 22.70 641
SGD 20.60 2172
LARS 17.40 414

Table 10: Next-word prediction task: Top-1 Accuracy and training rounds to 95% convergence for
various central optimizer choices.
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