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ABSTRACT

Recently, people have been paying more attention to the abstractive dialogue sum-
marization task. Compared with news text, the information flows of the dialogue
exchange between at least two interlocutors, which leads to the necessity of captur-
ing long-distance cross-sentence relations. In addition, the generated summaries
commonly suffer from fake facts because the key elements of dialogues often scat-
ter in multiple utterances. However, the existing sequence-to-sequence models are
difficult to address these issues. Therefore, it is necessary for researchers to ex-
plore the implicit conversational structure to ensure the richness and faithfulness
of generated contents. In this paper, we present a Knowledge Graph Enhanced
Dual-Copy network (KGEDC), a novel framework for abstractive dialogue sum-
marization with conversational structure and factual knowledge. We use a se-
quence encoder to draw local features and a graph encoder to integrate global fea-
tures via the sparse relational graph self-attention network, complementing each
other. Besides, a dual-copy mechanism is also designed in decoding process to
force the generation conditioned on both the source text and extracted factual
knowledge. The experimental results show that our method produces significantly
higher ROUGE scores than most of the baselines on both SAMSum corpus and
Automobile Master corpus. Human judges further evaluate that outputs of our
model contain more richer and faithful information.

1 INTRODUCTION

Abstractive summarization aims to understand the semantic information of source texts, and gener-
ate flexible and concise expressions as summaries, which is more similar to how humans summarize
texts. By employing sequence-to-sequence frameworks, some encouraging results have been made
in the abstractive summarization of single-speaker documents like news, scientific publications, etc
(Rush et al., 2015; See et al., 2017; Gehrmann et al., 2018; Sharma et al., 2019). Recently, with the
explosive growth of dialogic texts, abstractive dialogue summarization has begun arousing people’s
interest. Some previous works have attempted to transfer general neural models, which are designed
for abstractive summarization of non-dialogic texts, to deal with abstractive dialogue summarization
task (Goo & Chen, 2018; Liu et al., 2019; Gliwa et al., 2019).

Different from news texts, dialogues contain dynamic information exchange flows, which are usu-
ally informal, verbose and repetitive, sprinkled with false-starts, backchanneling, reconfirmations,
hesitations, and speaker interruptions (Sacks et al., 1974). Furthermore, utterances are often turned
from different interlocutors, which leads to topic drifts, and lower information density. Therefore,
previous methods are not suitable to generate summaries for dialogues. We argue that the conver-
sational structure and factual knowledge are important to generate informative and succinct sum-
maries. While the neural methods achieve impressive levels of output fluency, they also struggle to
produce a coherent order of facts for longer texts (Wiseman et al., 2017), and are often unfaithful
to input facts, either omitting, repeating, hallucinating or changing facts. Besides, complex events
related with the same element often span across multiple utterances, which makes it challenging
for sequence-based models to handle utterance-level long-distance dependencies and capture cross-
sentence relations.

1



Under review as a conference paper at ICLR 2021

To mitigate these issues, an intuitive way is to model the relationships between textual units within
a conversation discourse using graph structures, which can break the sequential positions of tex-
tual units and directly connect the related long-distance contents. In this paper, we present the
Knowledge Graph Enhanced Dual-Copy network (KGEDC), a novel network specially designed
for abstractive dialogue summarization. A graph encoder is proposed to construct the conversa-
tional structure in utterance-level under the assumption that utterances represent nodes and edges
are semantic relations between them. Specifically, we devise three types of edge label: speaker
dependency, sequential context dependency, and co-occurring keyword dependency. The edges nav-
igate the model from the core fact to other occurrences of that fact, and explore its interactions with
other concepts or facts. The sparse dialogue graph only leverages related utterances and filters out
redundant details, retaining the capacity to include concise concepts or events. In order to extract
sequential features in token-level, a sequence encoder is also used. These two encoders cooper-
ate to express conversational contents via two different granularities, which can effectively capture
long-distance cross-sentence dependencies.

Moreover, considering that the fact fabrication is a serious problem, encoding existing factual knowl-
edge into the summarization system should be an ideal solution to avoid fake generation. To achieve
this goal, we firstly apply the OpenIE tool (Angeli et al., 2015) and dependency parser tool (Man-
ning et al., 2014) to extract the factual knowledge in the form of relational tuples: (subject, predicate,
object), which construct a knowledge graph. These tuples describes facts and are regarded as the
skeletons of dialogues. Next, we design a dual-copy mechanism to copy contents from tokens of
the dialogue text and factual knowledge of the knowledge graph in parallel, which would clearly
provide the right guidance for summarization.

To verify the effectiveness of KGEDC, we carry out automatic and human evaluations on SAMSum
corpus and Automobile Master corpus. The experimental results show that our model yield signifi-
cantly better ROUGE scores (Lin & Hovy, 2003) than all baselines. Human judges further confirm
that KGEDC generates more informative summaries with less unfaithful errors than all models with-
out the knowledge graph.

2 RELATED WORK

Graph-based summarization Graph-based approaches have been widely explored in text sum-
marization. Early traditional works make use of inter-sentence cosine similarity to build the connec-
tivity graph like LexRank (Erkan & Radev, 2004) and TextRank (Mihalcea & Tarau, 2004). Some
works further propose discourse inter-sentential relationships to build the Approximate Discourse
Graph (ADG) (Yasunaga et al., 2017) and Rhetorical Structure Theory (RST) graph (Xu et al., 2019).
These methods usually rely on external tools and cause error propagation. To avoid these problems,
neural models have been applied to improve summarization techniques. Tan et al. (2017) proposed
a graph-based attention mechanism to discover the salient information of a document. Fernandes
et al. (2019) developed a framework to extend existing sequence encoders with a graph component to
reason about long-distance relationships. Zhong et al. (2019) used a Transformer encoder to create
a fully-connected graph that learns relations between pairwise sentences. Nevertheless, the factual
knowledge implied in dialogues is largely ignored. Cao et al. (2017) incorporated the fact descrip-
tions as an additional input source text in the attentional sequence-to-sequence framework. Gunel
et al. (2019) employed an entity-aware transformer structure to boost the factual correctness, where
the entities come from the Wikidata knowledge graph. In this work, we design a graph encoder
based on conversational structure, which uses the sparse relational graph self-attention network to
obtain the global features of dialogues.

Abstractive dialogue summarization Due to the lack of publicly available resources, the work
for dialogue summarization has been rarely studied and it is still in the exploratory stage at present.
Some early works benchmarked the abstractive dialogue summarization task using the AMI meeting
corpus, which contains a wide range of annotations, including dialogue acts, topic descriptions, etc
(Carletta et al., 2005; Mehdad et al., 2014; Banerjee et al., 2015). Goo & Chen (2018) proposed
to use the high-level topic descriptions (e.g. costing evaluation of project process) as the gold ref-
erences and leveraged dialogue act signals in a neural summarization model. They assumed that
dialogue acts indicated interactive signals and used these information for a better performance. Cus-
tomer service interaction is also a common form of dialogue, which contains questions of the user
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Figure 1: (a) A general architecture of Knowledge Graph Enhanced Dual-copy network for ab-
stractive dialogue summarization. (b) The first approach for fusion, which simply concatenates two
context vectors. (c) The second approach for fusion, which uses MLP to build a gate network and
combines context vectors with the weighted sum.
and solutions of the agent. Liu et al. (2019) collected a dialogue-summary dataset from the logs in
the DiDi customer service center. They proposed a novel Leader-Writer network, which relies on
auxiliary key point sequences to ensure the logic and integrity of dialogue summaries, and designs
a hierarchical decoder. The rules of labeling the key point sequences are given by domain experts,
which needs to consume a lot of human efforts. For Argumentative Dialogue Summary Corpus,
Ganesh & Dingliwal (2019) used the sequence tagging of utterances for identifying the discourse
relations of the dialogue and fed these relations into an attention-based pointer network. From con-
sultations between nurses and patients, Liu et al. (2019) arranged a pilot dataset. They presented
an architecture that integrates the topic-level attention mechanism in the pointer-generator network,
utilizing the hierarchical structure of dialogues. Because the above datasets all have a low num-
ber of instances and the quality of them is also low, Gliwa et al. (2019)introduced a middle-scale
abstractive dialogue summarization dataset (namely SAMSum), and evaluated a number of generic
abstractive summarization methods. Although some progress has been made in abstractive dialogue
summarization task, previous methods do not develop specially designed solutions for dialogues,
and are all dependent on sequence-to-sequence models, which can not handle the utterance-level
long-distance dependency, thus causing inaccuracies for rephrased summaries. We present a dual-
copy mechanism to directly extract facts from the knowledge graph, which enhances the credibility
of the summarization generation.

3 METHODOLOGY

In this section, we introduce the Knowledge Graph Enhanced Dual-Copy network, as displayed
in Figure 1 (a). Our framework consists of four modules including a sequence encoder, a graph
encoder, a factual knowledge graph, and a dual-copy decoder. Importantly, we first present two
types of graphs: Dialogue Graph which constructs conversational structures, and Factual Knowledge
Graph which directly extracts fact descriptions from source dialogues. Then, the dual-copy decoder
generates faithful summaries by embedding the semantics of both source utterances and factual
knowledge.

3.1 SEQUENCE ENCODER

Considering that the contextual information of dialogues usually flows along the sequence, the se-
quential aspect of the input text is also rich in meaning. Taking the dialogue D as an example, we
feed the tokens of it one-by-one into a single-layer bidirectional LSTM, producing a sequence of
encoder hidden states {hS1 , hS2 , ..., hSn}. The BiLSTM at the time step i is defined as follows:

hSi = BiLSTM(wi, h
S
i−1) (1)

where wi is the embedding of the i-th token in dialogue, and hSi is the the concatenation of the
hidden state of a forward LSTM and a backward LSTM.

3



Under review as a conference paper at ICLR 2021

Matt
I ...

Agnes
I ...

 Georgian
 Restaurant

 Kazimierz

Saturday 6 pm at

Dialogue:

Matt: Do you want to go for date? … Matt: This is the perfect time to get to know 

each other. … Matt: So let's go to the Georgian in Kazimierz. … Matt: On Saturday 

at 6pm? … Matt: I can pick you up on the way to the restaurant. … 

Summary:

Matt invites Agnes for a date to get to know each other better. They'll go to the 

Georgian restaurant in Kazimierz on Saturday at 6 pm, and he'll pick her up on 

the way to the place.

Matt
I ...

Agnes
I ...

 Georgian
 Restaurant

 Kazimierz

Saturday 6 pm at

Dialogue:

Matt: Do you want to go for date? … Matt: This is the perfect time to get to know 

each other. … Matt: So let's go to the Georgian in Kazimierz. … Matt: On Saturday 

at 6pm? … Matt: I can pick you up on the way to the restaurant. … 

Summary:

Matt invites Agnes for a date to get to know each other better. They'll go to the 

Georgian restaurant in Kazimierz on Saturday at 6 pm, and he'll pick her up on 

the way to the place.

(a) (b)

CNN

GAT

CNN

GAT

Sparse Relational Graph 

Self-Attention Layer

Linear Combination Layer

… …

utterance1 5utterance

M 

… …

Constructed Dialogue Graph

,1
ˆ

d
v

,2
ˆ

d
v

,3
ˆ

d
v

,4
ˆ

d
v

,5
ˆ

d
v

,1
ˆ

d
v

,2
ˆ

d
v

,3
ˆ

d
v

,4
ˆ

d
v

,5
ˆ

d
v

Constructed Factual Knowledge Graph

Sequential context 

dependency

Co-occurring keyword 

dependency

Co-occurring keyword 

dependency

Speaker dependencySpeaker dependency

Sequential context 

dependency

Co-occurring keyword 

dependency

Speaker dependency

Figure 2: (a) The detailed construction process of a graph encoder (self-loops are omitted for simpli-
fication in the constructed dialogue graph). (b) An example of constructed factual knowledge graph
from a dialogue.
3.2 GRAPH ENCODER

Given a constructed dialogue graph Gd = (Vd, Ed), Vd = {vd,1, ..., vd,m} corresponds to m ut-
terances in the dialogue, and ed,ij ∈ Ed (i ∈ {1, ...,m}, j ∈ {1, ...,m}) indicates that there is a
certain semantic relation between the i-th utterance and the j-th utterance. We then use graph neu-
ral networks to update the representations of all utterances to capture long-distance cross-sentence
dependencies, as shown in Figure 2 (a).

3.2.1 NODE INITIALIZATION

We first use a Convolutional Neural Network (CNN) with different filter sizes to obtain the repre-
sentations xj for each node vd,j . A graph attention mechanism is then designed to characterize the
strength of contextual correlations between utterance node vd,j and keywords ki (i ∈ Nj), where
Nj is the keyword neighborhood. The keywords are obtained by doing pos tag on tokens with
off-the-shelf tools such as Stanford CoreNLP (Manning et al., 2014), and they are nouns, numerals,
adjectives or notional verbs, which can express practical meaning. Each keyword is transformed into
a real-valued vector representation εi by looking up the word embedding matrix, which is initialized
by a random process. The node representation v̂d,j is calculated as follows:

Aij = f (εi, xj) = εTi xj

αij = softmaxi (Aij) =
exp (Aij)∑

k∈Nj
exp (Akj)

v̂d,j = σ

∑
i∈Nj

αijWaεi


(2)

where Wa is a trainable weight and αij is the attention coefficient between εi and xj .

3.2.2 EDGE INITIALIZATION

If we hypothesize that each utterance is contextually dependent on all the other utterances in the
dialogue, then a fully connected graph would be constructed. However, this leads to a huge amount
of computation. Therefore, we adopt a strategy to construct the edges of the graph, which relies
on the various semantic relations among utterances. We define three types of edge labels: speaker
dependency, sequential context dependency, co-occurring keyword dependency (Appendix A.1).

Speaker dependency: The relation depends on where the same speaker appears in the dialogue.
In other words, if the utterances belong to the same speaker, we will set an edge between them.

Sequential context dependency: The relation describes the sequential utterances that occur
within a fixed-size sliding window. In this scenario, each utterance node vd,i has an edge with
the immediate p utterances of the past vd,i−1, vd,i−2, ..., vd,i−p, and f utterances of the future:
vd,i+1, vd,i+2, ..., vd,i+f .

co-occurring keyword dependency: The relation means that all utterances containing the same
keyword are connected.
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We further change the existing undirected edges into bidirectional edges and add self-loops to en-
hance the information flow.

3.2.3 ITERATIVE REFINEMENT

To modularize architecture design, multiple blocks, which all consist of the sparse relational graph
self-attention layer and the linear combination layer, are stacked to capture long-distance dependen-
cies missed by sequence encoder for better summarization.

Sparse Relational Graph Self-Attention Layer Different parts of the dialogue history have dis-
tinct levels of importance that may influence the summary generation process. We use a sparse
attention mechanism to focus more on the salient utterances. The full self-attention operation in
Transformer (Vaswani et al., 2017) captures the interactions between two arbitrary positions of a sin-
gle sequence. However, our sparse self-attention operation only calculates the similarities between
two connected nodes in the graph and masks the irrelevant edges, which reduces the quadratic com-
putation to linear. In a single sparse graph attention layer, a node in the graph attends over the local
information from 1-hop neighbors, which assigns different attention weights to different neighbor-
ing edges. These weights can be learned by the model in an end-to-end fashion. Although the sparse
graph attention mechanism aggregates the representations of neighborhood nodes along the depen-
dency paths, this process fails to take semantic relations into consideration, which may lose some
important dependency information. Intuitively, neighborhood nodes with different dependency re-
lations should have different influences. We extend the sparse graph attention mechanism with the
additional edge labels, which can learn better inter-sentence relations. Specifically, we first map the
semantic relations into vector representations R, and then this layer is designed as follows:

headli = Attention
(
QWQ,l

i ,KWK,l
i , V WV,l

i , RWR,l
i

)
Attention (Q,K, V,R) = softmax

(
Q×K√

d
+R

)
(V +R)

gl =
[
headl1; ...;head

l
H

]
W o,l

(3)

where W o, WQ
i , WV

i , WK
i , and W r

i are weight matrices, H is the head number, and d is the
dimension of utterance node features v̂d ∈ Rm×d. In the first block, Q, K, and V are v̂d. For the
following blocks l, they are the linear combination layer output vector zl−1 ∈ Rm×d of block l− 1.

Linear Combination Layer This layer contains two linear combinations with aReLU activation
in between just as Transformer (Vaswani et al., 2017). Formally, the output of the linear transforma-
tion layer is defined as:

zl = ReLU
(
glwl

1 + bl1
)
wl

2 + bl2 (4)

where w1, and w2 are weight matrices. b1, and b2 are bias vectors.

After M identical blocks, we take mean pooling over all nodes and obtain the final representation of
the dialogue graph, hG = 1

m

∑m
i=1 z

M
i

3.3 FACTUAL KNOWLEDGE GRAPH CONSTRUCTION

To construct a factual knowledge graph from an input dialogue, we leverage the Open Information
Extraction (OpenIE) tools (Angeli et al., 2015) to obtain relation triples. It is worth noting that
although OpenIE is able to give a complete description of the entity relations, the relation triples
are not always extractable. Hence, we further adopt a dependency parser and dig out some binary
tuples from the parse tree of the sentence to supplement the fact descriptions (Appendix A.2). Given
a factual knowledge graph Gf = (Vf , Ef ), nodes Vf = {vf,1, ..., vf,m} represent subjects and
objects of the triples, and directed edges Ef represent links which pointed from subjects to objects,
with predicates as edge labels. We then obtain mentions via the coreference resolution tool and
collapse coreferential mentions of the same entity into one node. The node representations v̂f,i are
updated by using sparse relational graph self-attention network. Figure 2 (b) presents an example of
constructed factual knowledge graph from a dialogue.

5



Under review as a conference paper at ICLR 2021

Table 1: Results in terms of Rouge-1, Rouge-2, and Rouge-L on the SAMSum corpus test set and
Automobile Master corpus test set.

Model SAMSum Automobile Master
R-1 R-2 R-L R-1 R-2 R-L

Longest-3 32.46 10.27 29.92 30.72 9.07 28.14
Seq2Seq 21.51 10.83 20.38 25.84 13.82 25.46
Seq2Seq + Attention 29.35 15.90 28.16 30.18 16.52 29.37
Transformer 36.62 11.18 33.06 36.21 11.13 34.08
Transformer + Separator 37.27 10.76 32.73 37.43 11.87 34.97
LightConv 33.19 11.14 30.34 34.68 12.41 31.62
DynamicConv 33.79 11.19 30.41 34.72 12.45 31.86
DynamicConv + Separator 33.69 10.88 30.93 34.41 12.38 31.22
Pointer Generator 38.55 14.14 34.85 39.17 15.39 34.76
Pointer Generator + Separator 40.88 15.28 36.63 39.23 15.42 34.53
Fast Abs RL 40.96 17.18 39.05 39.82 15.86 36.03
Fast Abs RL Enhanced 41.95 18.06 39.23 40.13 16.17 36.42
KGEDCc 43.51 19.34 40.57 42.85 18.11 38.02
KGEDCg 43.87 19.66 41.02 43.35 18.23 38.98

3.4 DUAL-COPY DECODER

Our decoder is a hybrid between a single-layer unidirectional LSTM and a pointer network. To
obtain high faithfulness summaries, we also devise a dual copy mechanism to focus on both the
input tokens and the factual knowledge. The final representation of the last state representation
of the sequence encoder hSn and the dialogue graph hG are concatenated as the initial state of the
decoder s0 = [hSn ;h

G]. At each decoding step t, we compute a sequence context vector cst with the
attention mechanism:

cst =
∑
i

asi,th
s
i

asi,t = softmax
(
us

T tanh (W s
hh

s
i +W s

s st + bsattn)
) (5)

where us, W s
h , W s

s , and bsattn are learnable parameters. The context vector of a graph cgt can be
computed similarly. We fuse cst and cgt to build the overall context vector ct. We explore two
alternative fusion approaches. The first one is called KGEDCc, as shown in Figure 1 (b), which
simply concatenates two context vectors:

ct = [cst ; c
g
t ] (6)

The other approach is denoted as KGEDCg, as shown in Figure 1 (c), where we also use MLP to
build a gate network and combine context vectors with the weighted sum:

gt =MLP (cst , c
g
t )

ct = gt � cst + (1− gt)� cgt
(7)

where � means the element-wise dot, and MLP stands for a multi-layer perceptron.

Finally, the next token is generated based on the context vector ct, the decoder state st, and the
previous word yt−1.

Pvocab = softmax (U ′ (U [st, ct] + b) + b′)

Pgen = σ(wT
s st + wT

c ct + wT
y yt−1 + bgen)

P (yt) = pgenPvocab (yt) + (1− pgen)

 ∑
i:yi=yt

asi,t +
∑

i:yi=yt

agi,t

 (8)

where U , U ′, b, b′, wT
s , wT

c , wT
y , and bgen are learnable parameters. σ is the sigmoid function.

4 DATASET AND EXPERIMENTAL SETUP

4.1 DATASET

We perform our experiments on the SAMSum corpus and the Automobile Master corpus, which are
both new corpora for dialogue summarization. The SAMSum corpus is an English dataset about
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natural conversations in various scenes of the real-life (Gliwa et al., 2019). The standard dataset
is split into 14732, 818, and 819 examples for training, development, and test. The Automobile
Master corpus is from the customer service question and answer scenarios1. We use a portion of
the corpus that consists of high-quality text data, excluding picture and speech data. It is split into
183460, 1000, and 1000 for training, development, and test. More statistics of two datasets are in
the Appendix A.3.

4.2 TRAINING DETAILS

We filter stop words and punctuations from the training set to generate a limited vocabulary size of
40k. The dialogues and summaries are truncated to 500, and 50 tokens, and we limit the length of
each utterance to 20 tokens. The word embeddings and edge label embeddings are set to 128 and
32, which are both initialized randomly. The dimension for hidden layer units are 256 and 128 for
the sequence encoder and the graph encoder, respectively. For factual knowledge graph, the hidden
size is set to 128. The size of sliding window for sequential context dependency in the dialogue
graph is set to 1. We use a block number of 2, and the head number of 4 for sparse relational graph
self-attention network. At test time, the minimum length of generated summaries is set to 15, and
the beam size is 5. For all the models, we train for 30000 iterations using Adam optimizer (Kingma
& Ba, 2014) with an initial learning rate of 0.001 and the batch size of 8. See Appendix A.4.

4.3 BASELINE METHODS

For both datasets, we compare our proposed method with the following abstractive models: (1)
Longest-3; (2) Seq2Seq+Attention (Rush et al., 2015); (3) Transformer (Vaswani et al., 2017); (4)
LightConv (Wu et al., 2019); (5) DynamicConv (Wu et al., 2019); (6) Pointer Generator (See et al.,
2017); (7) Fast Abs RL (Chen & Bansal, 2018); (8) Fast Abs RL Enhanced (Chen & Bansal, 2018).
More details about baselines are shown in Appendix A.5.

5 RESULTS AND DISCUSSIONS

5.1 MAIN RESULTS

Results on SAMSum Corpus The results of the baselines and our model on SAMSum corpus
are shown in Table 1. We evaluate our models with the standard ROUGE metric, reporting the F1
scores for ROUGE-1, ROUGE-2, and ROUGE-L. Experiments show that KGEDCg significantly
outperforms KGEDCc, and the gate values apparently reflect the relative reliability of dialogues and
fact descriptions. By observation, the inclusion of a Separator2 is advantageous for most models,
because it improves the discourse structure. Compared to the best performing model Fast Abs RL
Enhanced, the KGEDCg model obtains 1.92, 1.60, and 1.79 points higher than it for R-1, R-2,
and R-L. The sparse relational graph self-attention operation of graph encoder in our model and the
extractive method of Fast Abs RL Enhanced model play a similar role in filtering important contents
in dialogues. However, our model does not need to use reinforcement learning strategies, which
greatly simplifies the training process. Our model also surpasses the pointer generator model without
the graph encoder and factual knowledge graph by 2.99, 4.38, and 4.39 points. This demonstrates
the benefit of using implicit structures and knowledge to enhance the faithfulness of summaries.

Results on Automobile Master Corpus We observe similar trends on Automobile Master corpus
as shown in Table 1. Combined with graph encoder and dual-copy decoder, KGEDCg achieves
Rouge-1, Rouge-2, and Rouge-L of 43.35, 18.23, and 38.98, which outperforms the baselines and
our KGEDCc by different margins. Noticeably, unlike SAMSum corpus, Fast Abs RL Enhanced
model has no obvious advantage over other sequence models. This is because that the average
number of utterances in this dataset is more and the information is more scattered. Due to the
limited computational resource, we don’t apply a pre-trained encoder (i.e. BERT) to our model,
which we will regard as our future work. For the sake of fairness, we only compare with models
without BERT.

1This dataset is released by the AI industry application competition of Baidu.
2Separator is a special token added artificially, e.g. <EOU> for models using word embeddings, | for

models using subword embeddings. The use of it is proposed by Gliwa et al. (2019).
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Table 2: Human Evaluation on the test set of SAMSum
corpus and Automobile Master corpus.

Dataset Model Relevance Readability

SAMSum
PGS 2.36 4.25
FARE 2.67 4.73
KGEDCg 2.97 4.91

Automobile
Master

PGS 2.41 4.18
FARE 2.59 4.35
KGEDCg 2.92 4.66

Table 3: An ablation study for two com-
ponents in KGEDCg model on dev set of
SAMSum.

Model R-1 R-2 R-L
KGEDCg 43.87 19.66 41.02
KGEDCg-GE 43.17 19.08 39.88
KGEDCg-FKG 43.39 19.15 40.32

Human Evaluation We further conduct a manual evaluation to assess the models. Since the
ROUGE score often fails to quantify the machine generated summaries (Schluter, 2017), we focus
on evaluating the relevance and readability of each summary. Relevance is a measure of how much
faithful information the summary contains, and readability is a measure of how fluent and gram-
matical the summary is. 50 samples are randomly selected from the test set of SAMSum corpus
and Automobile Master corpus, respectively. The reference summaries , together with dialogues
are shuffled then assigned to 5 human annotators to score generated summaries. Each perspective is
assessed with a score from 1 (worst) to 5 (best). From Table 2, we can see that the KGEDCg obtains
better scores, compared to the baselines without the dialogue graph and factual knowledge graph,
such as Pointer Generator+Separator (PGS) and Fast Abs RL Enhanced (FARE). This indicates the
effectiveness of leveraging conversational structures and knowledge graph representation.

5.2 ABLATION STUDY

We examine the contributions of two main components, namely, graph encoder, and factual knowl-
edge graph, using the best-performing KGEDCg model on SAMSum corpus. The results are shown
in Table 3. First, we discuss the effect of the graph encoder. The removal of it (i.e. KGEDCg-GE)
leads performance to drop greatly. It suggests that graph encoder effectively uses the conversational
structure to capture utterance-level long-distance dependencies. Next, after we get rid of the factual
knowledge graph (i.e. KGEDCg-FKG), the model could not keep as competitive as KGEDCg,
verifying that factual knowledge is significant for generating informative and faithful summaries.

5.3 CASE STUDY

Table 5 in Appendix A.6 shows an example of dialogue summaries generated by different models.
The summary generated by the PGS repeats the same name “lilly” and only focuses some pieces of
information in the dialogue. FARE model adds information about other interlocutors, which makes
the generated summary contain both interlocutors’ names: lilly and gabriel, and obtains some valid
keywords, e.g. pasta with salmon and basil, because of the extractive method. However, FARE com-
bines the subject and object from different parts of a complex sentence, and usually makes mistakes
in deciding who performs the action (the subject) and who receives the action (the object), which
may be due to the way the dialogue is constructed. Important utterances are firstly chosen and then
summarizes each of them separately. This leads to the narrowing of the context and losing pieces of
important information. By using various semantic relations, our model constructs a dialogue graph
to capture long-distance cross-sentence dependencies. Factual knowledge is also enhanced via the
dual-copy mechanism to ensure the richness and faithfulness of generated summaries.

6 CONCLUSION

We propose a Knowledge Graph Enhanced Dual-Copy network for abstractive dialogue summariza-
tion. Our model explores the conversational structure via various semantic relations to construct
a dialogue graph, which can capture long-distance cross-sentence dependencies. In tandem with
copying from the source dialogue, our dual-copy mechanism utilizes factual knowledge graph to
improve generated summaries. Human evaluation further confirms that the KGEDC produces more
informative summaries and significantly reduces unfaithful errors.
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A APPENDIX

A.1 EDGE INITIALIZATION FOR DIALOGUE GRAPH

We illustrate the edge initialization process for the dialogue graph and the dialogue content of which
is shown in Figure 4. For speaker dependency, Neville, Don, and Wyatt corresponding to (1, 3),
(2, 5), and (4, 6), respectively. For sequential context dependency, the size of sliding window is
set to 1. For co-occurring keyword dependency, the selected keywords are Neville, remember, date,
wedding, Don, and Wyatt, which construct this type edges between (1, 3), (1, 6), (2, 5), (4, 6).

Speaker Dependency (SD)

Neville: (1, 3); Don: (2, 5); Wyatt: (4, 6)

Sequential Context Dependency (SCD)

(1, 2); (2, 3); (3, 4); (4, 5); (5, 6)

Co-occurring Keyword Dependency (CKD)

Neville: (1, 3); remember: (1, 6); date: (1, 6); 

wedding: (1, 3); Don: (2, 5); Wyatt: (4, 6)

Speaker Dependency (SD)

Neville: (1, 3); Don: (2, 5); Wyatt: (4, 6)

Sequential Context Dependency (SCD)

(1, 2); (2, 3); (3, 4); (4, 5); (5, 6)

Co-occurring Keyword Dependency (CKD)

Neville: (1, 3); remember: (1, 6); date: (1, 6); 

wedding: (1, 3); Don: (2, 5); Wyatt: (4, 6)
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Figure 3: (a) A detailed illustration of the edge initialization for the dialogue graph. The dotted box
contains all the ids of utterance pairs for three edge labels. (b) Three types of dependency matric in
different colors and white color indicates there is no semantic relation between nodes.
A.2 FACT TUPLE EXTRACTION

Although OpenIE is able to give a complete description of parts of a fact, the relation triples are not
always extractable. In fact, about 18% and 21% of the OpenIE outputs are empty on the SAMSum
corpus and Automobile Master corpus, respectively. These empty instances are likely to damage
the performance of our model. As observed, each utterance almost contains some binary tuples,
while the complete fact tuples are not always available. Therefore, we adopt a strategy to solve
this issue. Firstly, we give the part of speech of each token in the utterance via Stanford CoreNLP
(Manning et al., 2014). The noun, numeral, adjective, and notional verb, which can express practical
significance, are selected as keywords. Then we leverage the dependency parser to dig out the
appropriate tuples to supplement the fact descriptions. The dependency parser converts an utterance
into the labeled tuples and only the tuples related to keywords are chosen. Finally, we merge the
tuples containing the same words, collapse coreferential mentions of the same entity into one word,
and order words based on the original sentence to form the fact descriptions. As shown in Figure
4, we give a demonstration of fact tuple extraction in detail. The outputs of OpenIE are empty for
some utterances in the dialogue. For 1-th utterance, we filter out the verb-related and noun-related
tuples: (anyone, remember), (remember, wedding), and (wedding, date) to form a fact description:
anyone remember the wedding date. For 3-th utterance, we filter out the noun-related ,adjective-
related, and verb-related tuples: (Tina, mad), (mad, something), (wedding, anniversary), and (have,
check) to form a fact description: Tina is mad wedding anniversary. For 6-th utterance, we filter out
the noun-related, numeral-related and verb-related tuples: (September, 17), (hope, remember), and
(remember, date) to form a fact description: I hope you to remember the date September 17. All
these tuples are merged to form facts of the dialogue.

A.3 STATISTICS OF SAMSUM CORPUS AND AUTOMOBILE MASTER CORPUS

As shown in Figure 5-8, we analyze the length distributions of the dialogue and summary for SAM-
Sum corpus and Automobile Master corpus, respectively.
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Don :  Are  you  serious?
NNP VBP PRP JJ

nsubj

Don :  Are  you  serious?
NNP VBP PRP JJ

nsubj

Wyatt :  Hang  on,  I  will  ask  my  wife. 

NNP VB PB PRP VB PRP$ NNMD

nsubj obj

Wyatt :  Hang  on,  I  will  ask  my  wife. 

NNP VB PB PRP VB PRP$ NNMD

nsubj obj

NNP NNP NN VBZ IN DT NN IN NN

Don :  Haha,  someone  is  in  a  lot  of  trouble. 

nsubj

cop

nmod

NNP NNP NN VBZ IN DT NN IN NN

Don :  Haha,  someone  is  in  a  lot  of  trouble. 

nsubj

cop

nmod

Wyatt :  September  17.  I  hope  you  remember  the  date. 

NNP NNP CD PRP VBP PRP VB DT NN

nummod nsubj obl:tmod

Wyatt :  September  17.  I  hope  you  remember  the  date. 

NNP NNP CD PRP VBP PRP VB DT NN

nummod nsubj obl:tmod

Neville :  Hi!  Does  anyone  remember  what  date  my  wedding  is?
UH VBZ NN VB WP NN VBZPRP$ NNNNP

nsubj

ccomp

nsubj

Neville :  Hi!  Does  anyone  remember  what  date  my  wedding  is?
UH VBZ NN VB WP NN VBZPRP$ NNNNP

nsubj

ccomp

nsubj

But  I  have  nowhere  to  check. 
CC PRP VBP PB To VB

nsubj

obj

ccomp

But  I  have  nowhere  to  check. 
CC PRP VBP PB To VB

nsubj

obj

ccomp

nsubj

Neville :  We  are  on  vacation,  and  Tina  is  mad  at  me  about  something.  I  think  it  is  about  our  wedding anniversary. 
NNP VBPPRP CCIN NN NNP VBZ JJ IN PRP IN NN PRP VBP PRPVBZ IN PRP$ NN NN

nsubj nmod:poss
obl

cop
compound

Neville :  We  are  on  vacation,  and  Tina  is  mad  at  me  about  something.  I  think  it  is  about  our  wedding anniversary. 
NNP VBPPRP CCIN NN NNP VBZ JJ IN PRP IN NN PRP VBP PRPVBZ IN PRP$ NN NN

nsubj nmod:poss
obl

cop
compound

nsubj

Neville :  We  are  on  vacation,  and  Tina  is  mad  at  me  about  something.  I  think  it  is  about  our  wedding anniversary. 
NNP VBPPRP CCIN NN NNP VBZ JJ IN PRP IN NN PRP VBP PRPVBZ IN PRP$ NN NN

nsubj nmod:poss
obl

cop
compound

(anyone, remember); (remember, wedding, date)

(Tina, mad, something); (wedding, anniversary); (have, check)

(ask, wife)

(someone, lot, trouble)

(September, 17); (hope, remember, date)

Figure 4: An example of fact tuple extraction in a dialogue. Words with shadings in different colors
are selected keywords. The purple arrow denotes the keyword-related tuples and the meaning of
the dependency labels can be referred to de Marneffe & Manning (2008). The extracted tuples are
shown in the text boxes.
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A.4 HYPER-PARAMETER SETTINGS

We tune the hyper-parameters according to results on the dev sets. We choose the number of blocks
nb from {1, 2, 3}, and the number of self-attention heads nh from {2, 4, 6}. The learning rate λ
is searched within the range of {0.0005, 0.0007, 0.001, 0.005}, and the batch size nbatch is in the
range of {8, 16, 32}. The settings of hyper-parameters are shown in Table 4

Table 4: Hyper-parameter settings.
Parameter Parameter Name Value

ld maximum length of dialogue 500
lu maximum length of utterance 20

lmax,s maximum length of summary 50
lmin,s minimum length of summary 15
dword word embedding size 128
dedge edge label embedding size 32

ds,hidden hidden embedding size of sequence encoder 256
dg,hidden hidden embedding size of graph encoder 128
dk,hidden hidden embedding size of factual knowledge graph 128
ws sliding window size 1
nb number of blocks 2
nh number of self-attention heads 4

nbeam number of beam size 5
niter number of training iteration 30000
nbatch batch size 8
λ learning rate 0.001

A.5 BASELINE DESCRIPTION

In this subsection, we describe baselines in detail.

Longest-3: This model is commonly used in the news summarization task, which treats 3 longest
utterances in order of length as a summary.

Seq2Seq+Attention: This model is proposed by Rush et al. (2015), which uses an attention-based
encoder that learns a latent soft alignment over the input text to help inform the summary.

Transformer: This model is proposed by Vaswani et al. (2017), which relies entirely on an attention
mechanism to draw global dependencies between the input and output.

LightConv: This model is proposed by Wu et al. (2019), which has a very small parameter footprint
and the kernel does not change over time-steps.

DynamicConv: This model is also proposed by Wu et al. (2019), which predicts a different convo-
lution kernel at every time-step and the dynamic weights are a function of the current time-step only
rather than the entire context.

Pointer Generator: This model is proposed by See et al. (2017), which aids the accurate reproduc-
tion of information by pointing and retains the ability to produce new words through the generator.

Fast Abs RL: This model is proposed by Chen & Bansal (2018), which constructs a hybrid
extractive-abstractive architecture, with the policy-based reinforcement learning to bridge together
the two networks.

Fast Abs RL Enhanced: This model is a variant of Fast Abs RL, which adds the names of all other
interlocutors at the end of utterances.
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A.6 CASE STUDY

Table 5: A case study on the summary generated by different models.

Dialogue

Lilly: sorry, I’m gonna be late.
Lilly: don’t wait for me and order the food.
Gabriel: no problem, shall we also order something for you?
Gabriel: so that you get it as soon as you get to us?
Lilly: good idea!
Lilly: pasta with salmon and basil is always very tasty there.

Reference Lilly will be late. Gabriel will order pasta with salmon and
basil for her.

Longest-3 gabriel: no problem, shall we also order something for you?
gabriel: so that you get it as soon as you get to us? lilly: pasta
with salmon and basil is always very tasty there.

Pointer Generator Separator (PGS) lilly gonna be late. lilly order pasta.
Fast Abs RL Enhanced (FARE) gabreil order the food, lilly thinks pasta with salmon and basil

is always very tasty.
KGEDCg lilly gonna be late. gabriel order pasta with salmon and basil.
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