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Abstract

Black-box optimization does not require any specification on the function to opti-1

mize. As such, it represents one of the most general problems in optimization, and2

is central in many areas such as hyper-parameter tuning. However in many practi-3

cal cases, one must solve a sequence of black-box problems from functions sam-4

pled from a specific class and hence sharing similar patterns. Classical algorithms5

such as evolutionary or random methods would treat each problem independently6

and would be oblivious of the general underlying structure. In this paper, we in-7

troduce MELBA (MEta bLack Box optimizAtion), an algorithm that exploits the8

similarities among a given class of functions to learn a task-specific solver that9

is tailored to efficiently optimize every function from this task. More precisely,10

given a class of functions, the proposed algorithm learns a Transformer-based Re-11

inforcement Learning (RL) black-box solver. First, the Transformer embeds a12

previously gathered set of evaluation points and their image through the function13

into a latent state. Then, the next evaluation point is sampled depending on the14

latent state. The black-box solver is trained using PPO and the global regret on15

a training set. We show experimentally the effectiveness of our solvers on var-16

ious synthetic and real-life tasks including the hyper-parameter optimization of17

machine learning models (SVM, XGBoost) and demonstrate that our approach is18

competitive with existing methods.19

1 Introduction20

Over the past decades, research on black-box optimization has focused on designing algorithms21

agnostic to the type of problems they can solve. Indeed, the idea behind this approach was to22

propose algorithms that could solve a large number of optimization problems as different as possible.23

However, in many real-world applications such as automated machine learning (Hutter et al., 2019)24

or asset and energy management (Waring et al., 2020; Salimans et al., 2017; Alarie et al., 2021), it25

is often the case that a similar optimization problem is solved again and again on a regular basis,26

maintaining the same problem structure but differing in the input data. Moreover, as it has long27

been known by the celebrated No Free Lunch Theorems for Optimization (Wolpert and Macready,28

1997), averaged over all problems, the cost of finding a solution is the same for any optimization29

algorithm. Thus, whenever an algorithm is efficient on vast classes of problems, it is necessarily30

suboptimal on a more specific class of functions. Following these observations, we propose in this31

paper to directly learn black-box optimization algorithms which are tailored to optimize a specific32

class of functions. To do so, it is necessary to (1) define a class of algorithms that can be learned33

and act as black-box solvers and (2) define a way to learn these algorithms, despite the fact that the34

gradients of the functions we wish to optimize are unavailable. To overcome these challenges, we35

first propose to learn an expressive latent representation of the optimization problem at stake using36

Transformer-based architectures. Secondly, we show how to train this model by casting the problem37
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as a Reinforcement Learnig instance to overcome the problem of non-diffentiability. Using both38

these ideas, we propose a meta-algorithm called MEta bLack Box optimizAtion (MELBA) which39

aims at optimizing task-specific black-box functions through meta-learning.40

2 Meta-learning for black-box optimization: problem formulation41

We consider the problem where we wish to find the maximum of a black-box function f : X → R42

defined on some input space X ⊂ Rd, which is assumed to be sampled from a known class function43

distribution F of potentially non-convex and non-differentiable functions. Here, the only thing we44

assume is that for any black-box function f ∼ F from the distribution, we can query its values45

at any point of the input domain X . This setting corresponds, for example, to the case where we46

wish to design a specific algorithm that can optimize the hyper-parameters of an SVM trained on a47

dataset: choosing a dataset would correspond to sampling a function f ∼ F , and training the SVM48

on some arbitrary hyper-parameters would correspond to querying the value of the function at some49

point. As an example, Figure 1 displays the loss function associated to the cross-validation error of50

the two parameters of a SVM on three different datasets, that display strong similarities. To solve51

this type of problems, most standard black-box optimization (BBO) algorithms rely on a sequential52

procedure, denoted here by A, that starts with no gathered observations on the function (o0 = {}),53

and iterates as follow: (1) select a candidate solution xn+1 that depends on the information gathered54

so far on; , (2) evaluate the objective function (e.g. the corss validation error) at the candidate55

solution f(xn+1); and (3) update information gathered so far on+1 ← on ∪ {(xn+1, f(xn+1))},56

n← n+1. In practice, the performance of an algorithm A on a black-box function f with a budget57

of N iterations is generally measured through the difference between the true value of the optimum58

and the maximum found so far:59

r(A, f,N) := f∗ − max
i=1...N

f(xi) , (1)

where f∗ = maxx∈X f(x) and x1, . . . , xN denotes the series of evaluation points chosen by the60

algorithm A. Thus, given the a priori knowledge that the objective is sampled from a distribution F ,61

we can measure the meta-loss of the algorithm A on the class function distribution F with a budget62

of N evaluations as follows:63

R(A,F , N) =

∫
f∼F

r(A, f,N)df. (2)

In this paper, we investigate the problem of finding the best algorithm A∗ that minimize the meta-64

error for a class of problemsF by minimizing the meta-loss R(A,F , N). Since it is assumed that we65

have access to the distribution F , a natural approach would be to minimize its empirical counterpart:66

67

A∗(F , N) ∈ argmin
A∈Alg

1

M

M∑
j=1

r(A, fj , N) , (3)

where f1, . . . , fM are independent problems sampled from the distributionF and Alg denotes the set68

of all sequential black-box algorithms. However, this approach suffers from two major drawbacks:69

(1) how do we define a class of trainable parametrized algorithms Alg large enough to effectively70

learn efficient sequential algorithms? and (2) how do we perform the optimization over (3) when the71

quantities r(A, fj , N) depends on black-box functions fj for which the gradient is not available?72
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Figure 1: Examples of three objective functions f1, f2, f3 corresponding to the cross-validation error
of a SVM as a function of the hyper-parameters on three different datasets where the x-axis denotes
the regularization parameter and y-axis denotes the bandwidth parameter in log-scale.
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Algorithm 1 MELBA (MEta bLack Box optimizAtion)

Require: Class function distribution F ; BBO budget N ; meta iterations M
1: Initialize belief function BθT and policy πθP
2: for i = 1 to M do ▷ Outer meta-loop: learning the solver
3: fi ∼ F , o0 = {}, fmax = −∞, τ = {}
4: for n = 0 to N − 1 do ▷ Inner meta-loop: applying the solver
5: zbn = BθT (on) ▷ Compute latent belief state
6: xn ∼ πθP (·|zbn) ▷ Sample a candidate solution
7: fmax = max(fmax, fi(xn)) ▷ Evaluate and update max observed so far
8: cn = f∗ − fmax ▷ Compute reward
9: on+1 = on ∪ {(xn, fi(xn)} ▷ Update information gathered so far

10: τ = τ ∪ {(on, xn, rn, on+1)} ▷ Update RL trajectory
11: end for
12: Compute PPO objective LRL(τ)
13: Update πθP , BθT according to LRL(τ) ▷ Gradient descent steps
14: end for

3 Meta-learn problem-specific black-box solvers through deep73

reinforcement learning74

Using Transformers to define a class of learnable algorithms. First, in order to solve (3), we75

define a large class of algorithms Alg through the use of Transformers. More precisely, at any time76

n ≤ N , based on the set of previously evaluated points on = (x1, f(x1), . . . , (xn, f(xn))), an77

algorithm A selects the next evaluation points xn+1 based on the history on. One general way to78

formalize this process is to consider algorithms (without loss of generality) that sample the next79

points according to a Gaussian distribution with learnable parameters:80

xn+1 ∼ πθP (·|zbn) = N (µθP (z
b
n),ΣθP ) , (4)

where zbn denotes a latent representation of the current observations on, and µθP ,ΣθP are two learn-81

able functions (e.g. feed-forward networks) that represent the mean and covariance matrix of the82

gaussian. Inspired by (Xiang and Foo, 2021), the idea here is to learn a latent representation zbn of83

the current information on informative enough such that the more evaluated points, the less uncer-84

tain the belief. To take the sequential information on into account, a natural approach is to consider85

a state-of-the-art sequential model such as the Transformer architecture (Vaswani et al., 2017) that86

allows us to compute pairwise interactions between the collected evaluation points. Formally, the87

parametrized belief function BθT embeds the set of observations on = {(xi, f(xi))}i∈{1,...n} in a88

latent space through several layers of Transformer encoders. Finally, the final representations are89

averaged to provide the belief latent representation zbn = BθT (on) which is used as the input of the90

algorithm πθP through µθP instead of the raw observation on.91

Minimizing the meta-loss using reinforcement learning. Second, we focus on minimizing the loss92

(3). The first potential idea is to directly differentiate the loss (3) that assesses the performance of the93

learned algorithm, which have been explored in previous works (TV et al., 2019; Chen et al., 2016).94

However, to differentiate (3), it is necessary for the functions f1, . . . , fM in F to be differentiable,95

which greatly restricts the range of applications of the meta-approach to black-box functions. With96

these considerations in mind, RL appears as a natural way to optimize this non-differentiable loss.97

Indeed, similarly to RL problems, our framework relies on optimizing a parametrized algorithm98

(here the policy πθP ) to minimize the observed error (here the reward (1)) that is not necessarily99

differentiable. Our algorithm is thus optimized in a RL fashion by computing the standard surrogate100

loss LRL of the Proximal Policy Optimization Schulman et al. (2017) (PPO) and performing gradient101

descent, learning together the Transformer parameters θT and the policy parameters θP . As classical102

meta-learning approaches, our algorithm called MELBA (Algorithm 1) consists in two optimization103

loops: an outer meta-loop optimizing the parameters of the learned solver by gradient descent (line104

2); an inner meta-loop optimizing the black-box function with the current parametrized solver (line105

4). More precisely, the outer loop contains the optimization of a meta-loss that is designed to learn106

the optimization algorithm over F .107
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Figure 2: Performance of the algorithms on the hyper-parameter optimization problems.

4 Experimental evaluation108

We considered three baselines. Random Search (RS) is the standard random method which consists109

in evaluating the objective function on a series of points randomly sampled over the input space.110

While simple, RS has been shown to be difficult to outperform on some black-box problems. CMA-111

ES is a state-of-the-art evolutionary algorithm that samples the next evaluation points according to112

a multivariate normal distribution. Bayesian Optimization (BO) builds a surrogate model of the113

black-box function and chooses points according to an acquisition function that trades off uncertainty114

and best known regions. It is one of the most successful methods for hyper-parameter tuning. For115

MELBA, the algorithm presented in this paper, the policy is parametrized by a 512-dimension latent116

space, a four-layer Transformer encoder with four heads followed by two fully connected layers.117

Details regarding the experiments are provided in the Appendix.118

Test problems. The goal of MELBA is to learn specific hyper-parameter optimization algorithms119

from a training set of trained Machine Learning models on different datasets to generalize to unseen120

datasets. We compared MELBA to the baselines on three test problems. Support Vector Machines121

(SVM). This two-dimensional problem consists of learning an algorithm that is specifically tailored122

to optimize the hyper-parameters of the SVM. More precisely, the parameters to optimize are the123

regularization parameter 10 log(C) and the bandwidth parameter 10 log(γ) of the Radial Basis Func-124

tion (RBF) kernel for any dataset. The parameters were rescaled to be in X = [−1, 1]2. Fully Con-125

nected Networks (FCNet). This six-dimensional problem consists of finding the parameters that126

define the architecture of dense neural network to perform classification. The different parameters127

are the learning rate, the batch size, the width of the first layer, the width of the second layer, the128

dropout rates for the first and second layer. The parameters were rescaled to be in X = [−1, 1]6.129

XGBoost. This eight-dimension problem consists of finding the hyper-paramaters of an XGBoost130

(Chen and Guestrin, 2016) regardless of the dataset. The hyper-parameters are: the learning rate,131

gamma, res_alpha, reg_lambda, n_estimators, sub_sample, max_depth, min_child_weight. Again,132

all the parameters were rescaled to be in X = [−1, 1]8. For all these problems, we used the bench-133

marking suite for hyper-parameter optimization called PROFET (Klein et al., 2019). PROFET uses134

generative models to create realistic HPO tasks. These generative models allow to query the value135

at some point in the space of the black-box functions f1, . . . , fM (that represents the metric of the136

trained model as a function of its hyper-parameters) corresponding to the above problems. Each137

instance of MELBA has been trained on M = 970 test problems for each task and we considered a138

budget of N = 50 evaluations.139

Performance metrics and discussion.140

To measure the performance of the algorithm on a given class of functions F , we computed the141

empirical regret Regret(A,F , n) = 1
M

∑M
j=1 r(A, fj , n) for each iteration n = 1 . . . N where142

f1, . . . , fM are randomly sampled from the family of functions F with M = 30 and unseen during143

the training phase. Results are displayed in Figure 2. MELBA shows high-performance compared144

to the baselines on all tasks. It outperforms CMA-ES on all tasks. It outperforms RS on all tasks but145

the SVM one where it has comparable performance. MELBA outperforms BO on the XGBoost task146

while having comparable performances on the SVMs and FCNet ones. We observe that MELBA-147

learned solvers find a significantly better solution than the competitors within only 10 function eval-148

uations. Then, MELBA-solvers are slightly overtaken by BO on the SVMs and FCNet benchmarks.149

In the case of XGBoost functions, the MELBA-solver is very efficient and reaches a better value150

in 20 steps than the results reached by competitors in 50 steps. These promising results outline the151

relevance of learning task-specific solvers with Meta-learning for hyper-parameter optimization.152
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A Time Complexity of MELBA vs BO190

The time complexity of one iteration of MELBA in comparison with Bayesian Optimization is pre-191

sented in table 1. We show that MELBA’s time complexity is quasi-constant with the dimension and192

that it is from 70 times faster in dimension 2 to more than 150 times faster in dimension 8. This is193

due to the inner maximization of the acquisition function in BO. Furthermore, time complexity is194

almost constant with the dimension in our approach while getting higher and higher in BO. This is195

a significant advantage of our approach.196

Benchmark Dimension MELBA BO
SVM 2 0.08 5.66

FCNet 6 0.08 10.68
XGBoost 8 0.08 12.51

Table 1: Average time of an iteration (in seconds) of MELBA instances vs Bayesian Optimization
as a function of the dimension

B Details of the experimental section197

The PROFET HPO benchmark (Klein et al., 2019) has been introduced to allow more reproducible198

research in AutoML. It avoids heavy and time-consuming training computations when testing HPO199

methods. Each HPO task is created thanks to some generative model fitted on some results of true200

training datasets. The generative model, then, allows to infer the value of the targeted metric (MSE201

or classification error) on unseen and continuous values of hyperparameters.202

C Hyperparameter validation203

In this section, we provide the technical details of our implementation and the hyperparameters we204

used for our experiments.205

C.1 Proximal Policy Optimization algorithm and Transformer encoder206

We validated the hyperparameters of our framework (both PPO and the Transformer encoders) by207

random search on each benchmark over a discrete grid of predefined values. Grids are presented in208

tables 2 and 3 for PPO and the attention network architecture respectively. We train all the models209

on 1000000 time-steps.210

Name Values
Learning rate 3× 10−3, 3× 10−4, 1× 10−4, 7.5× 10−5, 3× 10−5

N steps 32, 64, 128, 256, 512, 1024, 2048, 4092
Batch size 4, 8, 16, 32, 64, 128, 256

Epochs 10, 20, 30
Gamma 0.8, 0.9, 0.99

Clip range 0.1, 0.2, 0.3
Entropy coefficient 0.01, 0.001, 0

Value function coefficient 0.5, 0.7, 1

Table 2: Grid over PPO hyperparameters.

Tables 4 and 5 provide the hyperparameters selected for each benchmark for the PPO algorithm and211

the network architecture respectively:212

C.2 Baselines213

To run CMA-ES, we used the same values as in Klein et al. (2019), i.e., σ = 0.6 as the initial214

standard deviation and 10 for the population size. We used the pymoo library (Blank and Deb, 2020)215
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Name Values
Encoder layers 1, 2, 4, 8

Fully connected layers 1, 2, 4, 6
Hidden heads 1, 2, 4, 8

Feedforward dimension 32, 64, 128, 256, 512, 1024
Latent representation dimension 32, 64, 128, 256, 512, 1024

Dropout 0, 0.1, 0.2, 0.4, 0.8

Table 3: Grid over the Transformer encoders hyperparameters.

Benchmark Learning rate N steps Batch size Epochs Gamma Clip range Entropy Coefficient Value function coefficient
SVM 0.0001 512 32 10 0.99 0.1 0 0.7

‘ FCNet 0.0003 512 32 10 0.99 0.1 0 0.7
XGBoost 0.000075 512 32 10 0.99 0.1 0 0.7

Table 4: PPO hyperparameters for each benchmark

Benchmark Encoder layers Fully connected layers Hidden heads Feedforward dimension Latent representation dimension Dropout
SVM 4 2 4 256 256 0.1
FCNet 4 2 4 256 256 0.1

XGBoost 4 2 4 512 512 0.1

Table 5: Transformer encoders hyperparameters for each benchmark

implementation. For the Bayesian Optimization baseline, we used the Expected Improvement as the216

acquisition function and we used the implementation of Scikit-Optimize (Head et al., 2018).217

D Computational details218

All the experiments, both training and inference, were done on a Tesla P100 GPU. During training,219

we used multiprocessing with 8 CPUs to run 8 parallel environments.220

E Ablation studies221

In this section, we present some ablation studies on the impact of the Transformer architecture. For222

this purpose, we compare the results obtained on the different benchmarks with our architecture223

against Deep Set (Zaheer et al., 2017) which consists of shared fully connected layers with every224

element in the set of evaluated points. The experimental protocol is the same as in the main results.225

The Deep Set model consists of 4 fully connected layers with 512 neurons. The results are shown in226

figures 3 for the HPO benchmarks. These demonstrate the importance of the attention mechanism227

since the Transformer encoders outperform Deep Set consistently.228
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Figure 3: Ablation study on the PROFET HPO benchmarks.
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