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Abstract

We propose a series of computationally efficient, nonparametric tests for the1

two-sample, independence and goodness-of-fit problems, using the Maximum2

Mean Discrepancy (MMD), Hilbert Schmidt Independence Criterion (HSIC), and3

Kernel Stein Discrepancy (KSD), respectively. Our test statistics are incomplete4

U -statistics, with a computational cost that interpolates between linear time in the5

number of samples, and quadratic time, as associated with classical U -statistic6

tests. The three proposed tests aggregate over several kernel bandwidths to detect7

departures from the null on various scales: we call the resulting tests MMDAggInc,8

HSICAggInc and KSDAggInc. For the test thresholds, we derive a quantile bound9

for wild bootstrapped incomplete U -statistics, which is of independent interest. We10

derive uniform separation rates for MMDAggInc and HSICAggInc, and quantify11

exactly the trade-off between computational efficiency and the attainable rates: this12

result is novel for tests based on incomplete U -statistics, to our knowledge. We13

further show that in the quadratic-time case, the wild bootstrap incurs no penalty to14

test power over more widespread permutation-based approaches, since both attain15

the same minimax optimal rates (which in turn match the rates that use oracle16

quantiles). We support our claims with numerical experiments on the trade-off17

between computational efficiency and test power.18

1 Introduction19

Nonparametric hypothesis testing is a fundamental field of statistics, and is widely used by the machine20

learning community and practitioners in numerous other fields, due to the increasing availability of21

huge amounts of data. When dealing with large-scale datasets, computational cost can quickly emerge22

as a major issue which might prevent from using expensive tests in practice; constructing efficient23

tests is therefore crucial for their real-world applications. In this paper, we construct kernel-based24

aggregated tests using incomplete U -statistics (Blom, 1976) for the two-sample, independence and25

goodness-of-fit problems (which we detail in Section 2). The quadratic-time aggregation procedure is26

known to lead to state-of-the-art powerful tests (Fromont et al., 2012, 2013; Albert et al., 2022; Schrab27

et al., 2021, 2022), and we propose efficient variants of these well-studied tests, with computational28

cost interpolating from the classical quadratic-time regime to the linear-time one.29

Related work: aggregated tests. Kernel selection (or kernel bandwidth selection) is a fundamental30

problem in nonparametric hypothesis testing because it has a major influence on test power. Moti-31

vated by this problem, non-asymptotic aggregated tests, which combine tests with different kernel32

bandwidths, have been proposed for the two-sample (Fromont et al., 2012, 2013; Kim et al., 2022;33

Schrab et al., 2021), independence (Albert et al., 2022; Kim et al., 2022), and goodness-of-fit (Schrab34

et al., 2022) testing frameworks. Li and Yuan (2019) and Balasubramanian et al. (2021) construct35

similar aggregated tests for these three problems, with the difference that they work in the asymptotic36
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regime. All the mentioned works study aggregated tests in terms of uniform separation rates (Baraud,37

2002). Those rates depend on the sample size and satisfy the following property: if the L2-norm38

difference between the densities is greater than the uniform separation rate, then the test is guaranteed39

to have high power. All aggregated kernel-based tests in the existing literature have been studied40

using estimators which are U -statistics (Hoeffding, 1992) with tests running in quadratic time.41

Related work: linear-time kernel tests. Several linear-time kernel tests have been proposed for42

those three testing frameworks. Those include tests using classical linear-time estimators with median43

bandwidth (Gretton et al., 2012a; Liu et al., 2016) or selecting an optimal bandwidth on held-out44

data to maximize power (Gretton et al., 2012b), tests using eigenspectrum approximation (Gretton45

et al., 2009), tests using post-selection inference for adaptive kernel selection, also using incomplete46

U -statistics (Yamada et al., 2018, 2019; Lim et al., 2019, 2020; Kübler et al., 2020; Freidling et al.,47

2021), tests which use a Nyström approximation of the asymptotic null distribution (Zhang et al.,48

2018; Cherfaoui et al., 2022), random Fourier features tests (Zhang et al., 2018; Zhao and Meng, 2015;49

Chwialkowski et al., 2015), the current state-of-the-art adaptive tests which use features selected50

on held-out data to maximize power (Jitkrittum et al., 2016, 2017a,b), as well as tests using neural51

networks to learn a discrepancy (Grathwohl et al., 2020). We also point out the very relevant works52

of Kübler et al. (2022) and Huggins and Mackey (2018) on quadratic-time tests, and of Ho and Shieh53

(2006), Zaremba et al. (2013) and Zhang et al. (2018) on the use of block U -statistics which have54

complexity O(N1.5
) for block size

p
N where N is the sample size.55

Contributions and outline. In Section 2, we present the three testing problems with their associated56

well-known quadratic-time kernel-based estimators (MMD, HSIC, KSD) which are U -statistics. We57

introduce three associated incomplete U -statistics estimators, which can be computed in linear time,58

in Section 3. We then provide quantile and variance bounds for generic incomplete U -statistics using59

a wild bootstrap, in Section 4. We study the level and power guarantees of linear-time tests using60

incomplete U -statistics for a fixed kernel bandwidth, in Section 5. In particular, we obtain uniform61

separation rates for the two-sample and independence tests over a Sobolev ball, and show that these62

rates are minimax optimal up to the cost incurred for efficiency of the test. In Section 6, we propose63

our efficient aggregated tests which combine tests with multiple kernel bandwidths. We prove that the64

proposed tests are adaptive over Sobolev balls and achieve the same uniform separation rate (up to an65

iterated logarithmic term) as the tests with optimal bandwidths. As a result of our analysis, we have66

shown minimax optimality over Sobolev balls of the quadratic-time tests using quantiles estimated67

with a wild bootstrap. Whether this optimality result also holds for tests using the more general68

permutation-based procedure to approximate HSIC quantiles, was an open problem formulated by69

Kim et al. (2022), we prove that it indeed holds in Section 7. We close the paper with numerical70

experiments in Section 8, where we observe that MMDAggInc, HSICAggInc and KSDAggInc retain71

high power and outperform other state-of-the-art linear-time kernel tests. Our implementation of72

the tests and code for reproducibility of the experiments are available online under the MIT License:73

https://anonymous.4open.science/r/agginc-10EF/README.md.74

2 Background75

Here we briefly describe our main problems of interest, comprising the two-sample, independence76

and goodness-of-fit problems. We approach these problems from a nonparametric point of view77

using the kernel-based statistics: MMD, HSIC, and KSD. We briefly introduce original forms of78

these statistics, which can be computed in quadratic time, and also discuss ways of calibrating tests79

proposed in the literature.80

Two-sample testing. In this problem, we are given independent samples Xm := (Xi)1im and81

Yn = (Yj)1jn, consisting of i.i.d. random variables with respective probability density functions182

p and q on Rd. We assume we work with balanced sample sizes so that there exists a constant2 C > 083

such that max(m,n)  Cmin(m,n). We are interested in testing the null hypothesis H0 : p = q84

against the alternative H1 : p 6= q; that is, we want to know if the samples come from the same85

distribution. Gretton et al. (2012a) propose a non-parametric kernel test based on the Maximum Mean86

Discrepancy (MMD), a measure between probability distributions which uses a characteristic kernel87

k (Fukumizu et al., 2008; Sriperumbudur et al., 2011). It can be estimated using a quadratic-time88

1All probability density functions in this paper are with respect to the Lebesgue measure.
2We use the convention that all constants are generically denoted by C, even though they are different.
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estimator (Gretton et al., 2012a, Lemma 6) which, as noted by Kim et al. (2022), can be expressed as89

a two-sample U -statistic (both of second order) (Hoeffding, 1992),90

\MMD
2

k(Xm,Yn) =
1��im

2

����in
2

��
X

(i,i0)2i
m
2

X

(j,j0)2i
n
2

hMMD

k (Xi, Xi0 ;Yj , Yj0), (1)

where i
b
a denotes the set of all a-tuples drawn without replacement from {1, . . . , b} so that

��iba
�� =91

b · · · (b� a+ 1), and where, for x1, x2, y1, y2 2 Rd, we let92

hMMD

k (x1, x2; y1, y2) := k(x1, x2)� k(x1, y2)� k(x2, y1) + k(y1, y2). (2)

Independence testing. In this problem, we have access to i.i.d. pairs of samples ZN :=93 �
Zi

�
1iN

=
�
(Xi, Yi)

�
1iN

with joint probability density pxy on Rdx⇥Rdy and marginals px on94

Rdx and py on Rdy . We are interested in testing H0 : pxy = px⌦py against H1 : pxy 6= px⌦py; that95

is, we want to know if two components of the pairs of samples are independent or dependent. Gretton96

et al. (2005, 2008) propose a non-parametric kernel test based on the Hilbert Schmidt Independence97

Criterion (HSIC). It can be estimated using the quadratic-time estimator proposed by Song et al.98

(2012, Equation 5) which is a fourth-order one-sample U -statistic99

\HSICk,`(ZN ) =
1��iN
4

��
X

(i,j,r,s)2i
N
4

hHSIC

k,` (Zi, Zj , Zr, Zs) (3)

for characteristic kernels k on Rdx and ` on Rdy (Gretton, 2015), and where for za = (xa, ya) 2100

Rdx ⇥ Rdy , a = 1, . . . , 4, we let101

hHSIC

k,` (z1, z2, z3, z4) :=
1

4
hMMD

k (x1, x2;x3, x4)h
MMD

` (y1, y2; y3, y4). (4)

Goodness-of-fit testing. For this problem, we are given a model density p on Rd and i.i.d. samples102

ZN := (Zi)1iN drawn from a density q on Rd. The aim is again to test H0 : p = q against103

H1 : p 6= q; that is, we want to know if the samples have been drawn from the model. Chwialkowski104

et al. (2016) and Liu et al. (2016) both construct a non-parametric goodness-of-fit test using the Kernel105

Stein Discrepancy (KSD). A quadratic-time KSD estimator can be computed as the second-order106

one-sample U -statistic,107

[KSD
2

p,k(ZN ) :=
1��iN
2

��
X

(i,j)2i
N
2

hKSD

k,p (Zi, Zj), (5)

where the Stein kernel hp,k : Rd ⇥ Rd ! R is defined as108

hKSD

k,p (x, y) :=
�
r log p(x)>r log p(y)

�
k(x, y) +r log p(y)>rxk(x, y)

+r log p(x)>ryk(x, y) +
dX

i=1

@

@xi@yi
k(x, y).

(6)

In order to guarantee consistency of the Stein goodness-of-fit test (Chwialkowski et al., 2016,109

Theorem 2.2), we assume that the kernel k is C0-universal (Carmeli et al., 2010, Definition 4.1) and110

that Eq

h��r log
p(Z)

q(Z)

��2
2

i
< 1.111

Quantile estimation. Multiple strategies have been proposed to estimate the quantiles of test statistics112

under the null for the three tests. We primarily focus on the wild bootstrap approach (Chwialkowski113

et al., 2014), though our results also hold using a parametric bootstrap for the goodness-of-fit setting114

(Schrab et al., 2022). In Section 7, we show that the same uniform separation rates can be derived for115

HSIC quadratic-time tests using permutations instead of a wild bootstrap.116

More details on MMD, HSIC, KSD, and on quantile estimation are provided in Appendix A.117

3 Incomplete U -statistics for MMD, HSIC and KSD118

As presented above, the quadratic-time statistics for the two-sample (MMD), independence (HSIC)119

and goodness-of-fit (KSD) problems can be rewritten as U -statistics with kernels hMMD

k , hHSIC

k,` and120
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hKSD

k , respectively. The computational cost of tests based on these U -statistics grows quadratically121

with the sample size. When working with very large sample sizes, as it is often the case in real-world122

uses of those tests, this quadratic cost can become very problematic, and faster alternative tests are123

better adapted to this ‘big data’ setting. Multiple linear-time kernel tests have been proposed in124

the three testing frameworks (see Section 1 for details). We construct linear-time variants of the125

aggregated kernel tests proposed by Fromont et al. (2013), Albert et al. (2022), Kim et al. (2022),126

and Schrab et al. (2021, 2022) for the three settings, with the aim of retaining the significant power127

advantages of the aggregation procedure observed for quadratic-time tests. To this end, we propose128

to replace the quadratic-time U -statistics presented in Equations (1), (3) and (5) with second order129

incomplete U -statistics (Blom, 1976; Janson, 1984; Lee, 1990),130

MMD
2

k

�
Xm,Yn;DN

�
:=

1��DN

��
X

(i,j)2DN

hMMD

k (Xi, Xj ;Yi, Yj), (7)

HSICk,`

�
ZN ;DbN/2c

�
:=

1��DbN/2c

��
X

(i,j)2DbN/2c

hHSIC

k,`

�
Zi, Zj , Zi+bN/2c, Zj+bN/2c

�
, (8)

KSD
2

p,k

�
ZN ;DN

�
:=

1��DN

��
X

(i,j)2DN

hKSD

k,p (Zi, Zj), (9)

where for the two-sample problem we let N := min(m,n), and where the design Db is a subset of i
b
2

131

(the set of all 2-tuples drawn without replacement from {1, . . . , b}). Note that DbN/2c ✓ i
N/2
2

⇢ i
N
2

.132

The design can be deterministic. For example, for the two-sample problem with equal even sample133

sizes m = n = N , the deterministic design DN = {(2a � 1, 2a) : a = 1, . . . , N/2} corresponds134

to the MMD linear-time estimator proposed by Gretton et al. (2012a, Lemma 14). For fixed design135

size, the elements of the design can also be chosen at random without replacement, in which case the136

estimators in Equations (7) to (9) become random quantities given the data. The results presented in137

this paper hold for both deterministic and random (without replacement) design choices. By fixing138

the design sizes in Equations (7) to (9) to be139

��DN

�� =
��DbN/2c

�� = cN (10)

for some small constant c 2 N \ {0}, we obtain incomplete U -statistics which can be computed in140

linear time. Note that by pairing the samples Zi := (Xi, Yi), i = 1, . . . , N for the MMD case and141

eZi :=
�
Zi, Zi+bN/2c

�
, i = 1, . . . , bN/2c for the HSIC case, we observe that all three incomplete142

U -statistics of second order have the same form, with only the kernel functions and the design143

differing. The motivation for defining the estimators in Equations (7) to (9) as incomplete U -statistics144

of order 2 (rather than of higher order) derives from the reasoning of Kim et al. (2022, Section 6)145

using permuted complete U -statistics for the two-sample and independence problems.146

4 Quantile and variance bounds for incomplete U -statistics147

Here we derive upper quantile and variance bounds for a second order incomplete degenerate U -
statistic with a generic degenerate kernel h, for some design D ✓ iN

2
, defined as

U
�
ZN ;D

�
:=

1

|D|
X

(i,j)2D

h(Zi, Zj).

We will use these results to bound the quantiles and variances of our three test statistics for our148

hypothesis tests in Section 5. The derived bounds are of independent interest.149

In the following lemma, building on the results of Lee (1990), we directly derive an upper bound on150

the variance of the incomplete U -statistic in terms of the sample size N and of the design size |D|.151

Lemma 1. The variance of the incomplete U -statistic can be upper bounded in terms of the quantities

�2

1
:= var

�
E
⇥
h(Z,Z 0

)
��Z 0

⇤�
and �2

2
:= var(h(Z,Z 0

)) with different bounds depending on the design

choice. For deterministic design Dd, and for random design Dr, we have

var
�
U
�
 C

✓
N

|Dd|
�2

1
+

1

|Dd|
�2

2

◆
and var

�
U
�
 C

✓
1

N
�2

1
+

✓
1

|Dr|
+

1

N2

◆
�2

2

◆
.
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The proof of Lemma 1 is deferred to Appendix D. We emphasize the fact that this variance bound152

also holds for random design with replacement, as considered by Blom (1976) and Lee (1990). For153

random design, we observe that if |D| ⇣ N2 then the bound is �2

1
/N + �2

2
/N2 which is the variance154

bound of the complete U -statistic (Albert et al., 2022, Lemma 10). If N  |D|  N2, the variance155

bound is �2

1
/N + �2

2
/|D|, and if |D|  N it is �2

2
/|D| since �2

1
 �2

2
/2 (Blom, 1976, Equation 2.1).156

Kim et al. (2022) develop exponential concentration bounds for permuted complete U -statistics, and157

Clémençon et al. (2013) study the uniform approximation of U -statistics by incomplete U -statistics.158

To the best of our knowledge, no quantile bounds have yet been obtained for incomplete U -statistics159

in the literature. While permutations are well-suited for complete U -statistics (Kim et al., 2022),160

using them with incomplete U -statistics results in having to compute new kernel values, and this161

comes at an extra computational cost we would like to avoid. Restricting the set of permutations to162

those for which the kernel values have already been computed for the original incomplete U -statistic163

corresponds exactly to using a wild bootstrap (Schrab et al., 2021, Appendix B). Hence, we consider164

the wild bootstrapped second order incomplete U -statistic165

U
✏�ZN ;D

�
:=

1

|D|
X

(i,j)2D

✏i✏jh(Zi, Zj) (11)

for i.i.d. Rademacher random variables ✏1, . . . , ✏N with values in {�1, 1}, for which we derive an166

exponential concentration bound (quantile bound). We note the in-depth work of Chwialkowski et al.167

(2014) on the wild bootstrap procedure for kernel tests with applications to quadratic-time MMD and168

HSIC tests. We now provide exponential tail bounds for wild bootstrapped incomplete U -statistics.169

Lemma 2. There exists some constant C > 0 such that, for every t � 0, we have170

P✏

⇣��U ✏�� � t
��ZN ,D

⌘
 2 exp

✓
�C

t

Ainc

◆
 2 exp

✓
�C

t

A

◆

where A2

inc
:= |D|�2

P
(i,j)2D

h(Zi, Zj)
2

and A2 := |D|�2
P

(i,j)2iN2
h(Zi, Zj)

2
.171

Lemma 2 is proved in Appendix E. While the second bound in Lemma 2 is less tight, it has the benefit172

of not depending on the choice of design D but only on the design size |D| which is usually fixed.173

5 Efficient kernel tests using incomplete U -statistics174

We now formally define the hypothesis tests obtained using the incomplete U -statistics with a wild175

bootstrap. This is done for fixed kernel bandwidths � 2 (0,1)
dx , µ 2 (0,1)

dy , for the kernels3176

k�(x, y) :=
dxY

i=1

1

�i
Ki

✓
xi � yi

�i

◆
, `µ(x, y) :=

dyY

i=1

1

µi
Li

✓
xi � yi

µi

◆
, (12)

for characteristic kernels (x, y) 7! Ki(x� y), (x, y) 7! Li(x� y) on R⇥R for functions Ki, Li 2
L1

(R) \ L2
(R) integrating to 1. We unify the notation for the three testing frameworks. For the two-

sample and goodness-of-fit problems, we work only with k� and have d = dx. For the independence
problem, we work with the two kernels k� and `µ, and for ease of notation we let d := dx + dy and
�dx+i := µi for i = 1, . . . , dy. We also simply write p := pxy and q := px ⌦ py. We let U� and
h� denote either MMD

2

k�
and hMMD

k�
, or HSICk�,`µ and hHSIC

k�,`µ
, or KSD

2

p,k�
and hKSD

k�,p
, respectively.

We denote the design size of the incomplete U -statistics in Equations (7) to (9) by

L :=
��DN

�� =
��DbN/2c

��.

For the three testing frameworks, we estimate the quantiles of the test statistics by simulating the177

null hypothesis using a wild bootstrap, as done in the case of complete U -statistics by Fromont178

et al. (2012), Schrab et al. (2021) for the two-sample problem, and by Schrab et al. (2022) for the179

goodness-of-fit problem. This is done by considering the original test statistic UB1+1

� := U� together180

3Our results are presented for bandwidth selection, but they hold for more general kernel selection settings,
as considered by Schrab et al. (2022). The results for the goodness-of-fit problem hold for a wider range of
kernels including the IMQ (inverse multiquadric) kernel (Gorham and Mackey, 2017), as in Schrab et al. (2022).
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with B1 wild bootstrapped incomplete U -statistics U1

� , . . . , U
B1
� computed as in Equation (11), and181

estimating the (1�↵)-quantile with a Monte Carlo approximation182

bq �
1�↵ := inf

⇢
t 2 R : 1� ↵  1

B1 + 1

B1+1X

b=1

1
�
U b
�  t

��
= U•dB1(1�↵)e

� , (13)

where U•1

�  · · ·  U•B1+1

� are the sorted elements U1

� , . . . , U
B1+1

� . The test ��
↵ is defined as

rejecting the null if the original test statistic U� is greater than the estimated (1�↵)-quantile, that is,

�
�
↵(ZN ) := 1

�
U�(ZN ) > bq �

1�↵

�
.

We show in Proposition 1 that the test ��
↵ has well-calibrated asymptotic level for goodness-of-fit183

testing, and well-calibrated non-asymptotic level for two-sample and independence testing. The proof184

of the latter non-asymptotic guarantee is based on the exchangeability of U1

� , . . . , U
B1+1

� under the185

null hypothesis along with the result of Romano and Wolf (2005, Lemma 1). A similar proof strategy186

can be found in Fromont et al. (2012, Proposition 2), Albert et al. (2022, Proposition 1), and Schrab187

et al. (2021, Proposition 1). The exchangeability of wild bootstrapped incomplete U -statistics for188

independence testing does not follow directly from the mentioned works. We show this through an189

intriguing connection between the MMD kernel and the HSIC kernel (proof deferred to Appendix C).190

Proposition 1. The test �
�
↵ has level ↵ 2 (0, 1), i.e., PH0

�
�

�
↵(ZN ) = 1

�
 ↵. This holds non-191

asymptotically for the two-sample and independence cases, and asymptotically for goodness-of-fit.
4192

Having established the validity of the test ��
↵, we now study power guarantees for it in terms of193

the L2-norm of the difference in densities kp� qk2. In Theorem 1, we show for the three tests that,194

if kp � qk2 exceeds some threshold, we can guarantee high test power. For the two-sample and195

independence problems, we derive a uniform separation rate (Baraud, 2002) over Sobolev balls196

Ss
d(R) :=

n
f 2 L1

�
Rd

�
\ L2

�
Rd

�
:

Z

Rd

k⇠k2s
2
| bf(⇠)|2d⇠  (2⇡)dR2

o
, (14)

with radius R > 0 and smoothness parameter s > 0. This uniform separation rate is the smallest197

value of t such that for any alternative with kp� qk2 > t and p� q 2 Ss
d(R) the probability of type198

II error of ��
↵ can be controlled by � 2 (0, 1). Before presenting Theorem 1, we need to introduce199

more notation unified over the three testing frameworks; we define the integral transform T� as200

(T�f)(x) :=

Z

Rd

f(x)K�(x, y) dy (15)

for f 2 L2
(Rd

), x 2 Rd, where K� := k� for the two-sample problem, K� := k� ⌦ `µ for the201

independence problem, and K� := hKSD

k�,p
for the goodness-of-fit problem. Note that, for the two-202

sample and independence testing frameworks, since K� is translation-invariant, the integral transform203

corresponds to a convolution. However, this is not true for the goodness-of-fit framework as hKSD

k�,p
is204

not translation-invariant. We are now in a position to present our main contribution in Theorem 1:205

we derive a power guarantee condition for our tests using incomplete U -statistics, and a uniform206

separation rate over Sobolev balls for the two-sample and independence settings.207

Theorem 1. (i) Let �2

2,� := E
⇥
h�(Z,Z 0

)
2
⇤
. Assume kpk1  M and kqk1  M for some M > 0.

For � 2 (0,1)
d

with �1 · · ·�d < 1, ↵ 2 (0, e�1
), � 2 (0, 1), B1 � 2

↵2

�
ln
�
8

�

�
+ ↵(1� ↵)

�
, if

kp� qk2
2
� k(p� q)� T�(p� q)k2

2
+ C

N

L

ln(1/↵)

�
�2,� for some constant C > 0,

then PH1

�
�

�
↵(ZN ) = 0

�
 � (type II error), where �2,�  C/

p
�1 · · ·�d for MMD and HSIC.208

(ii) Fix R > 0 and s > 0, and consider the bandwidths �⇤

i := (N/L)2/(4s+d)
for i = 1, . . . , d. For

MMD and HSIC, the uniform separation rate of �
�⇤

↵ over the Sobolev ball Ss
d(R) is (up to a constant)

(N/L)2s/(4s+d) .

4Level is non-asymptotic for the goodness-of-fit case when using a parametric bootstrap (Schrab et al., 2022).
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The proof of Theorem 1 relies on the variance and quantile bounds presented in Lemmas 1 and 2, and209

also uses results of Albert et al. (2022) and Schrab et al. (2021, 2022) on complete U -statistics. The210

details can be found in Appendix F. The power condition in Theorem 1 corresponds to a variance-bias211

decomposition; for large bandwidths the bias term (first term) dominates, while for small bandwidths212

the variance term (second term which also controls the quantile) dominates. We recall that the213

minimax (i.e. optimal) rate over the Sobolev ball Ss
d(R) is (1/N)

2s/(4s+d) for the two-sample (Li214

and Yuan, 2019, Theorem 5 (ii)) and independence (Albert et al., 2022, Theorem 4) problems. We215

highlight that the rate for our incomplete U -statistic test has the same dependence in the exponent as216

the minimax rate; that is (N/L)2s/(4s+d)
= (1/N)

2s/(4s+d) �N2/L
�2s/(4s+d) where we recall that217

L  N2 is the design size and N is the sample size. We reach the following conclusions.218

• If L ⇣ N2 then the test runs in quadratic time and we recover exactly the minimax rate.
• If N < L < N2 then the rate still converges to 0 but we incur the cost (N2/L)2s/(4s+d)

. in the minimax rate (trade-off between computational efficiency and rate of convergence).
• If L  N then there is no guarantee that the rate converges to 0.

219

6 Efficient aggregated kernel tests using incomplete U -statistics220

We now introduce our aggregated tests that combine single tests with different bandwidths. Our
aggregation scheme is similar to those in Fromont et al. (2013), Albert et al. (2022) and Schrab
et al. (2021, 2022), and can yield an adaptive test to the unknown smoothness parameter s of the
Sobolev ball Ss

d(R), with relatively low price. Let ⇤ be a finite collection of bandwidths, (w�)�2⇤

be associated weights satisfying
P

�2⇤
w�  1 and u↵ be some correction term defined shortly in

Equation (16). Then, using the incomplete U -statistic U�, we define our aggregated test �⇤

↵ as

�
⇤

↵(ZN ) := 1

⇣
U�(ZN ) > bq �

1�u↵w�
for some � 2 ⇤

⌘
.

The levels of the single tests are weighted and adjusted with a correction term221

u↵ := supB3

(
u 2

✓
0,min

�2⇤

w�1

�

◆
:

1

B2

B2X

b=1

1

✓
max
�2⇤

⇣
eU b
� � U•dB1(1�uw�)e

�

⌘
> 0

◆
 ↵

)
, (16)

where the wild bootstrapped incomplete U -statistics eU1

� , . . . ,
eUB2
� computed as in Equation (11)222

are used to perform a Monte Carlo approximation of the probability under the null, and where the223

supremum is estimated using B3 steps of bisection method. Proposition 1, along with the reasoning224

of Schrab et al. (2021, Proposition 8), ensures that �⇤

↵ has non-asymptotic level ↵ for the two-225

sample and independence cases, and asymptotic level ↵ for the goodness-of-fit case. We refer to the226

three aggregated test constructed using incomplete U -statistics as MMDAggInc, HSICAggInc and227

KSDAggInc. The computational complexity of those tests is O (|⇤|(B1 +B2)L), which means that228

if L ⇣ N as in Equation (10), the tests run efficiently in linear time in the sample size.229

We formally record error guarantees of �⇤

↵ and derive uniform separation rates over Sobolev balls.230

Theorem 2. (i) Let �2

2,� := E
⇥
h�(Z,Z 0

)
2
⇤
. Assume kpk1  M and kqk1  M for some

M > 0. Consider a collection ⇤ such that �1 · · ·�d < 1 for all � 2 ⇤. For ↵ 2 (0, e�1
),

B1 � 2

↵2

�
ln
�
8

�

�
+ ↵(1� ↵)

�
, B2 � 8

↵2 ln
�
2

�

�
, B3 � log

2

�
4

↵ min�2⇤ w�1

�

�
, if

kp� qk2
2
� min

�2⇤

✓
k(p� q)� T�(p� q)k2

2
+ C

N

L

ln(1/(↵w�))

�
�2,�

◆
for some constant C > 0,

then PH1

�
�

⇤

↵(ZN ) = 0
�
 � (type II error), where �2,�  C/

p
�1 · · ·�d for MMD and HSIC.231

(ii) Consider the collections of bandwidths and weights (independent of R and s)

⇤ :=

n�
2
�`, . . . , 2�`

�
2 (0,1)

d
: ` 2

n
1, . . . ,

l
2

d
log

2

⇣ L/N

ln(ln(L/N))

⌘moo
, w� :=

6

⇡2`2
.

For two-sample and independence problems, the uniform separation rate of �
⇤

↵ over the Sobolev

balls
�
Ss
d(R) : R > 0, s > 0

 
is (up to a constant)

✓
ln(ln(L/N))

L/N

◆2s/(4s+d)

.
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The extension from Theorem 1 to Theorem 2 has been proved for complete U -statistics in the232

two-sample (Fromont et al., 2013; Schrab et al., 2021), independence (Albert et al., 2022) and233

goodness-of-fit (Schrab et al., 2022) testing frameworks. The proof of Theorem 2 follows with the234

same reasoning by simply replacing N with L/N as we work with incomplete U -statistics; this235

‘replacement’ is theoretically justified by Theorem 1. From Theorem 2, the aggregated test �⇤

↵ is236

adaptive over Sobolev balls
�
Ss
d(R) : R > 0, s > 0

 
: the test �⇤

↵ does not depend on the unknown237

smoothness parameter s (unlike �
�⇤

↵ in Theorem 1) and achieves the minimax rate up to an iterated238

logarithmic factor and up to the cost incurred for efficiency of the test (i.e. L/N instead of N ).239

7 Minimax optimal permuted quadratic-time aggregated independence test240

Considering Theorem 2 with our incomplete U -statistic with full design D = iN
2

for which L ⇣ N2,241

we have proved that the quadratic-time two-sample and independence aggregated tests using a wild242

bootstrap achieve the rate (ln(ln(N))/N)
2s/(4s+d) over the Sobolev balls

�
Ss
d(R) : R > 0, s > 0

 
.243

This is the minimax rate (Li and Yuan, 2019; Albert et al., 2022), up to some iterated logarithmic244

term. For the two-sample problem, Kim et al. (2022) and Schrab et al. (2021) show that this is also245

true using complete U -statistics with either a wild bootstrap or permutations. Whether the equivalent246

statement for independence test with permutations holds is unknown; the rate can be proved using247

theoretical (unknown) quantiles with a Gaussian kernel (Albert et al., 2022), but has not yet been248

proved using permutations. Kim et al. (2022, Proposition 8.7) consider this problem, again using a249

Gaussian kernel, but they do not obtain the correct dependence on ↵ (i.e. ln(1/↵) is replaced with250

↵�1/2), hence they cannot recover the desired rate. As pointed out by Kim et al. (2022, Section 8):251

‘It remains an open question as to whether [the power guarantee] continues to hold when ↵�1/2 is252

replaced by ln(1/↵)’. We now prove that we can improve the ↵-dependence to ln(1/↵)3/2 for any253

bounded kernel of the form presented in Equation (12), and that this allows us to obtain the desired254

rate over Sobolev balls
�
Ss
d(R) : R > 0, s > d/4

 
. The assumption s > d/4 imposes a stronger255

smoothness restriction on p� q 2 Ss
d(R), which is similarly also considered by Li and Yuan (2019).256

Theorem 3. Consider the quadratic-time independence test using the complete U -statistic HSIC257

estimator with a quantile estimated using permutations as done by Kim et al. (2022, Proposition 8.7),258

with kernels as in (12) for bounded functions Ki and Lj for i = 1, . . . , dx, j = 1, . . . , dy .259

(i) Consider the assumptions of Theorem 1. For fixed R > 0 and s > d/4, with the bandwidths

�⇤

i := N�2/(4s+d)
for i = 1, . . . , d, the probability of type II error of the test is controlled by � when

kp� qk2
2
� k(p� q)� T�⇤(p� q)k2

2
+ C

1

N

ln(1/↵)3/2

�
p

�⇤

1
· · ·�⇤

d

for some constant C > 0.

The uniform separation rate over the Sobolev ball Ss
d(R) is, up to a constant, (1/N)

2s/(4s+d)
.260

(ii) Consider the assumptions of Theorem 2, the uniform separation rate over the Sobolev balls�
Ss
d(R) : R > 0, s > d/4

 
is
�
ln(ln(N))/N

�2s/(4s+d)
, up to a constant, with the collections

⇤ :=

n�
2
�`, . . . , 2�`

�
2 (0,1)

d
: ` 2

n
1, . . . ,

l
2

d
log

2

⇣ N

ln(ln(N))

⌘moo
, w� :=

6

⇡2`2
.

The proof of Theorem 3, in Appendix G, uses the exponential concentration bound of Kim et al.261

(2022, Theorem 6.3) for permuted complete U -statistics. As discussed by Kim et al. (2022, Section262

8.3), their proposed sample-splitting method can also be used to obtain the correct dependency on ↵.263

8 Experiments264

For the two-sample problem, we consider testing samples drawn from a uniform density on [0, 1]d265

against samples drawn from a perturbed uniform density. For the independence problem, the joint266

density is a perturbed uniform density on [0, 1]dx+dy , the marginals are then simply uniform densities.267

Those perturbed uniform densities can be shown to lie in Sobolev balls (Li and Yuan, 2019; Albert268

et al., 2022), to which our tests are adaptive. For the goodness-of-fit problem, we use a Gaussian-269

Bernoulli Restricted Boltzmann Machine as first considered by Liu et al. (2016) in this testing270

framework. Details on the experiments (e.g. model/test parameters) are presented in Appendix B.271
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Figure 1: Two-sample (a–d) and independence (e–h) experiments using perturbed uniform densities.
Goodness-of-fit (i–l) experiment using a Gaussian-Bernoulli Restricted Boltzmann Machine. The
power results are averaged over 100 repetitions and the run times over 20 repetitions.

We consider our incomplete aggregated tests MMDAggInc, HSICAggInc and KSDAggInc, with272

parameter R 2 {1, . . . , N � 1} which fixes the deterministic design to consist of the first R sub-273

diagonals of the N ⇥N matrix, that is, D := {(i, i+ r) : i = 1, . . . , N � r for r = 1, . . . , R} with274

size |D| = RN�R(R�1)/2. We run our incomplete tests with R 2 {1, 100, 200} and also consider275

the complete test which uses the full design D = iN
2

. We compare their performances with current276

linear-time state-of-the art tests: OST PSI (Kübler et al., 2020) which performs kernel selection using277

post selection inference, ME, SCF, FSIC and FSSD (Jitkrittum et al., 2016, 2017a,b) which evaluate278

the witness functions at a finite set of locations chosen to maximize the power, and LSD (Grathwohl279

et al., 2020) which uses a neural network to learn the Stein discrepancy (see Appendix B for details).280

Similar trends are observed across all our experiments in Figure 1, in the three testing frameworks,281

when varying the sample size, the dimension, and the difficulty of the problem (scale of perturbations282

or noise level). The linear-time tests AggInc R = 200 almost match the power obtained by the283

quadratic-time tests AggCom in all settings (except in Figure 1(i) where the difference is larger)284

while being computationally much more efficient as can be seen in Figure 1(d,h,l). The incomplete285

tests with R = 100 has power only slightly below the one using R = 200, and runs roughly twice286

as fast (Figure 1(d,h,l)). In all experiments, those three tests (AggInc R = 100, 200 and AggCom)287

have significantly higher power than the linear-time tests which optimize test locations (ME, SCF,288

FSIC and FSSD); in the two-sample case the aggregated tests run faster for small sample size but289

slower for large sample size, in the independence case the aggregated tests run much faster, and in290

the goodness-of-fit case the tests optimizing test locations run faster. While both types of tests are291

linear, we note that the run times of the tests of Jitkrittum et al. (2016, 2017a,b) increase slower292

with the sample size than our aggregated tests with R = 100, 200, but a fixed computational cost is293

incurred for the optimization step, even for small sample sizes. In the goodness-of-fit framework, LSD294

matches the power of KSDAggInc R = 100 when varying the noise level in Figure 1(k) (KSDAggInc295

R = 200 has higher power), and matches the power of KSDAggInc R = 200 when varying the296

hidden dimension in Figure 1(j) where dx = 100. When varying the sample size in Figure 1(i), both297

KSDAggInc tests with R = 100, 200 achieve much higher power than LSD. Unsurprisingly, AggInc298

R = 1, which runs much faster than all the aforementioned tests, has low power in every experiment.299

For the two-sample problem, it obtains slightly higher power than OST PSI which runs even faster.300
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(a) Did you include the full text of instructions given to participants and screenshots, if461

applicable? [N/A]462

(b) Did you describe any potential participant risks, with links to Institutional Review463

Board (IRB) approvals, if applicable? [N/A]464

(c) Did you include the estimated hourly wage paid to participants and the total amount465

spent on participant compensation? [N/A]466
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