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Abstract

Our goal is to evaluate the accuracy of a black-box classification model, not as1

a single aggregate on a given test data distribution, but as a surface over a large2

number of combinations of attributes characterizing multiple test data distributions.3

Such attributed accuracy measures become important as machine learning models4

get deployed as a service, where the training data distribution is hidden from clients,5

and different clients may be interested in diverse regions of the data distribution.6

We present Attributed Accuracy Assay (AAA) — a Gaussian Process (GP)-based7

probabilistic estimator for such an accuracy surface. Each attribute combination,8

called an ‘arm’, is associated with a Beta density from which the service’s accuracy9

is sampled. We expect the GP to smooth the parameters of the Beta density over10

related arms to mitigate sparsity. We show that obvious application of GPs cannot11

address the challenge of heteroscedastic uncertainty over a huge attribute space that12

is sparsely and unevenly populated. In response, we present two enhancements:13

pooling sparse observations, and regularizing the scale parameter of the Beta14

densities. After introducing these innovations, we establish the effectiveness of15

AAA both in terms of its estimation accuracy and exploration efficiency, through16

extensive experiments and analysis.17

1 Introduction18

Increasing concentration of big data and computing resources has resulted in widespread adoption of19

machine learning as a service (MLaaS). The best-performing NLP, speech, image and video recog-20

nition tools are now provided as network services. MLaaS comes with few accuracy specifications21

or service level agreements, perhaps only leaderboard numbers from benchmarks that may not be22

closely related to most clients’ deployment data distributions. The client, therefore, finds it difficult23

to choose the best provider without extensive pilot trials [1]. Different clients may need to deploy the24

service on very different data distributions, with possibly widely different accuracy.25

In such circumstances, we propose that a service provider, or a service standardization agency, publish26

the accuracy of the classifier, not as one or few aggregate numbers, but as a surface defined on a space27

of input instance attributes that capture the variability of consumer expectations. Indoor/outdoor,28

day/night, urban/rural may be attributes of input images for visual object recognition tasks. Speaker29

age, gender, ethnicity/accent may be attributes of input audio for speech recognition tasks. We call30

a combination of attributes in their Cartesian space an arm (borrowing from bandit terminology)31
1. The labeled instances used by the service provider may not represent or cover well the space of32

attributes of interest to subscribers. Labeled data may be proprietary and inaccessible to prospective33

consumers and standardization agencies. Whoever estimates the accuracy surface, therefore, needs to34

actively select instances from an unlabeled pool for labeling, presumably within a restricted budget,35

to adequately cover the attribute space.36

1Figure 1 shows an example of diverse accuracy over arms.
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Several recent studies have highlighted the variability in accuracy across data sub-populations [2, 3],37

specifically in the context of fairness [4, 5, 6], and also proposed active estimation techniques of38

sub-population accuracy [7, 8]. We solve a more general problem where the space of arms (sub-39

population) defined by the Cartesian space of attributes grows combinatorially. This inevitably leads40

to extreme sparsity of labeled instances for many arms. A central challenge is how to smooth the41

estimate across related arms while faithfully representing the uncertainty for active exploration.42

We present Attributed Accuracy Assay (AAA) — a practical system that estimates accuracy, together43

with the uncertainty of the estimate, as a function of the attribute space. AAA uses these estimates44

to drive the sampling policy for each attribute combination. Gaussian Process (GP) regression is a45

natural choice to obtain smooth probabilistic accuracy estimates over arm attributes. However, a46

straightforward GP model fails to address the challenge of heteroscedasticity that we face with uneven47

and sparse supervision across arms. We model arm-specific service accuracy as drawn from a Beta48

density that is characterized by mean and scale parameters, which are sampled from two GPs that are49

informed by suitable trained kernels over the attribute space. We propose two further enhancements50

to the training of this model. First, we recognize an over-smoothing problem with GP’s estimation51

of the Beta scale parameters, and propose a Dirichlet likelihood to supervise the relative values of52

scale across arms. Second, we recognize that arms with very low support interfere with learning the53

kernel parameters of the GPs. We mitigate this by pooling observations across related arms. With54

these fixes, AAA achieves the best estimation performance among competitive alternatives.55

Another practical challenge in our setting is that some attributes of instances are not known exactly.56

For example, attributes, such as camera shutter speed or speaker gender, may be explicitly provided57

as meta information attached with instances. But other attributes, such as indoor/outdoor, or speaker58

age, may have to be estimated noisily via another (attribute) classifier, because accurate human-based59

acquisition of attributes would be burdensome. AAA also tackles uncertain attribute inference. Its60

attribute classifiers are trained on a small amount of labeled data and their error rates are modeled in61

a probabilistic framework.62

We report on extensive experiments using several real data sets. Comparison with several estimators63

based on Bernoulli arm parameters, Beta densities per arm, and even simpler forms of GPs on the64

arm Beta distributions, shows that AAA is superior at quickly cutting down arm accuracy uncertainty.65

Summarizing, our contributions are:66

• We motivate and define the problem of accuracy surface estimation over a large space of attribute67

combinations.68

• Our proposed estimator AAA fits a Beta density for every attribute combination (arm), with its69

parameters smoothed via two GPs to capture heteroscedastic uncertainty of each arm’s accuracy70

under limited data settings.71

• We propose two important components included in AAA: 1) a Dirichlet regularization to control72

over-smoothing of the Beta scale parameters, and 2) pooled observations to reduce over-fitting of a73

GP-associated kernel to sparse arms.74

• We show significant gains in terms of both estimation quality and the efficiency of exploration75

on four real classification models compared to existing methods. AAA obtains an average 80%76

reduction in macro averaged square error over the existing methods.77

2 Problem Setup78

Our goal is to evaluate a given machine learning service model S used by a diverse set of consumers.79

The service S : X 7→ Y could be any predictive model that, for an input instance x ∈ X , assigns80

an output label ŷ ∈ Y , where Y is a discrete label space. Let y(x) denote the true label of x and81

Agree(y, ŷ) denote the match between the two labels. For scalar classification, Agree(y, ŷ) is in82

{0,1}. For structured outputs, e.g., sequences, we could use measures like BLEU scores in [0,1].83

Classifiers are routinely evaluated on their expected accuracy on a data distribution P (X ,Y):84

ρ = EP (x,y)[Agree(y, S(x)] (1)

We propose to go beyond this single measure and define accuracy as a surface over a space of85

attributes of the input instances. Let A denote a list of K attributes that capture the variability of86

consumer expectation on which the service S will be deployed. For instance, visual object recognition87

is affected by the background scene, and facial recognition is affected by demographic attributes. We88

use A(x) ∈ A to denote the vector of values of attributes of input x and A to denote the Cartesian89
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product of the domains of all attributes. An attribute could be discrete, e.g., the ethnicity of a speaker;90

Boolean, e.g., whether a scene is outdoors/indoors; or continuous, e.g., the age of the speaker in91

speech recognition. Some of the attributes of x, for example the camera settings of an image, may be92

known exactly, and others may only be available as a distribution Mk(ak|x) for an attribute ak ∈ A,93

obtained from a pre-trained probabilistic classifier.94

Generalizing from a single global expected accuracy (1), we define the accuracy surface ρ : A → [0, 1]95

of a service S at each attribute combination a ∈ A, given a data distribution P (X ,Y), as96

ρ(a) = EP (x,y|A(x)=a)[Agree(y, S(x)] (2)

Our goal is to provide an estimate of ρ(a) given two kind of data sampled from P (X ,Y): a small97

labeled sample D, and a large unlabeled sample U . In addition, we are given a budget of B instances98

for which we can seek labels y from a human by selecting them from U . Applying Mk to all of U is,99

however, free of cost.100

We aim to design a probabilistic estimator for ρ(a), which we denote as P (ρ|a) where ρ ∈ [0, 1]101

and a ∈ A. This is distinct from active learning, which selects instances to train the learner toward102

greater accuracy, and also active accuracy estimation [7], which does not involve a surface over as.103

We also show that standard tools to regress from a to ρ are worse than our proposal.104

We measure the quality of our estimate as the square error between the gold accuracy ρ(a) and the105

mean of the estimated accuracy distribution P (ρ|a). Our estimator distribution naturally gives an106

idea of the posterior variance of accuracy estimate of each attribute combination, which we use for107

uncertainty-based exploration.108

3 Proposed Estimator109

We will first review recent work that leads to candidate solutions to our problem, discuss their110

limitations, and finally present our solution. Initially, to keep the treatment simple, we assume A(x)111

and gold y (hence c = Agree(S(x), y), the service correctness bit) is known for all instances. Later112

in this section, we remove these assumptions.113

The simplest option is to ignore any relationship between arms, and, for each arm a, fit a suitable114

density over ρ(a). When this density is sampled, we get a number in [0, 1], which is like a coin head115

probability used to sample correctness bits c. For representing uncertainty of accuracy values (which116

are ratios between two counts), the Beta distribution B(·, ·) is a natural choice. We call this baseline117

method Beta-I.118

The variance of the estimated Beta density can be used for actively sampling arms. Ji et al. [7]119

describe a related scenario, stressing on active sampling. However, this approach cannot share120

observations or smooth the estimated density at a sparsely-populated arm with information from121

similar arms. In our real-life scenario, we expect accuracy surface smoother and the number of arms122

to be large enough that many arms will get very few, if any, instances.123

The second baseline method, which we call BernGP, is to view the (a, c) instances inD as a standard124

classification data set with the binary c values as class label and a as input features. Given the limited125

data, we can use the well-known GP classification approach [9] for fitting smooth values ρ as a126

function of a. Suppose the arms a can be embedded to V(a) in a suitable space induced by some127

similarity kernel. In this embedding space, we expect the accuracy of S to vary smoothly. Given a128

kernel K1(a,a′) to guide the extent of sharing of information across arms, a standard form of this129

GP would be130

P (c|a) = Bernoulli(c; sigmoid(fa)); f ∼ GP (0,K1). (3)

The GP can give estimates of uncertainty of ρ(a), which may be used for active sampling of arms.131

As we will demonstrate, such GP-imposed estimate of uncertainty of ρ(a) is inadequate, because132

it loses sight of the number of supporting observations at each arm, which could be very diverse.133

This is because the standard GP assumption of homoscedasticity, that is, identical noise around each134

arm is violated when observations per arm differ significantly. We therefore need a mechanism to135

separately account for the uncertainty at each arm, even the unexplored ones, to guide the strategy for136

actively collecting more labeled data.137
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3.1 The basic BetaGP proposal138

We model arm-specific noise by allowing each arm to represent the uncertainty of ρa, not just by139

an underlying GP as in BernGP above, but also by a separate scale parameter. Further, the scale140

parameter is smoothed over neighboring arms using another GP. The influence of this scale on the141

uncertainty of ρa is expressed by a Beta distribution as follows:142

P (ρ|a) ∼ B(ρ;φ(fa), ψ(ga)) (4)
φ(fa) = sigmoid(fa), f ∼ GP (0,K1), (5)
ψ(ga) = log(1 + ega), g ∼ GP (0,K2), (6)

where we use φ(•), ψ(•) to denote the parameters of the Beta distribution at arm a. The Beta143

distribution is commonly represented via α, β parameters whereas we chose the less popular mean144

(φ) and scale (ψ) parameters. While these two forms are functionally equivalent with φ = α
α+β , ψ =145

α + β, we preferred the second form because imposing GP smoothness across arms on the mean146

accuracy and scale seemed more meaningful. We validate this empirically in the Appendix.147

Two kernel functions K1(a,a′), K2(a,a′) defined over pairs of arms a,a′ ∈ A control the degree148

of smoothness among the Beta parameters across the arms. We use an RBF kernel defined over149

learned shared embeddings V(a):150

K1(a,a′) = s1 exp
[
−‖V(a)−V(a

′)‖2
l1

]
, K2(a,a′) = s2 exp

[
−‖V(a)−V(a

′)‖2
l2

]
(7)

where s1, s2, l1, l2 denote the scale and length parameters of the two kernels. The scale and length151

parameters are learned along with the parameters of embeddings V(a) during training.152

Initially, we assume we are given a labeled dataset D = {(xi,ai, yi) : i = 1 . . . , I} with attribute153

information available. Using predictions from the classification service S, we associate a 0/1 accuracy154

ci = Agree(yi, S(xi)). We can thus extend D to {(xi,ai, yi, ci) : i ∈ [I]}.155

Let ca =
∑
i:A(xi)=a ci denote the total accuracy score in arm a. Let na denote the total number of156

labeled examples in arm a. The likelihood of all observations given functions f, g decomposes as a157

product of Beta-binomial2 distributions at each arm as follows:158

Pr(D|f, g) =
∏
a

∫
ρ

ρca(1− ρ)na−ca B(ρ|φ(fa), ψ(ga)))dρ. (8)

=
∏
a

B(φ(fa)ψ(ga) + ca, (1− φ(fa))ψ(ga) + na − ca)

B(φ(fa)ψ(ga), (1− φ(fa))ψ(ga))
, (9)

where B is the Beta function, and the second expression is a rewrite of the Beta-binomial likelihood.159

During training we calculate the posterior distribution of functions f, g using the above data likelihood160

Pr(D|f, g) and GP priors given in eqns. (5) and (6). The posterior cannot be computed analytically161

given our likelihood, so we use variational methods. Further, we reduce the O(|A|3) complexity of162

posterior computation, using the inducing point method of Hensman et al. [9], whereby we learn163

m locations u ∈ Rd×m, mean µ ∈ Rm, and covariance Σ ∈ Rm×m of inducing points. Doing164

so brings down the complexity to O(m2|A|),m � |A|. These parameters are learned end to end165

with the parameters of the neural network used to extract embeddings V(a) of arms a, and kernel166

parameters s1, s2, `1, `2. We used off-the-shelf Gaussian process library: GPyTorch [10] to train the167

above likelihood with variational methods. Details of this procedure can be found in the Appendix.168

We denote the posterior functions as P (f |D), P (g|D). Thereafter, the mean estimated accuracy for169

an arm a is computed as170

E(ρ|a) = Ef∼P (f |D)[φ(fa)]. (10)
We call this setup BetaGP. Next, we will argue why BetaGP still has serious limitations, and offer171

mitigation measures.172

3.2 Supervision for scale parameters173

We had introduced the second GP ga to model arm-specific noise, and similar techniques have been174

proposed earlier by Lázaro-Gredilla and Titsias [11], Kersting et al. [12], Goldberg et al. [13], but175

for heteroscedasticity in Gaussian observations. However, we found the posterior distribution of176

2The
(
na
ca

)
term does not apply since we are given not just counts but accuracy ci of individual points.
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scale values ψ(ga) at each arm tended to converge to similar values, even across arms with orders of177

magnitude difference in number of observations na. On hindsight, that was to be expected, because178

the data likelihood (8) increases monotonically with scale ψa. The only control over its converging179

to ∞ is the GP prior g ∼ GP (0,K2). In the Appendix, we illustrate this phenomenon with an180

example. We propose a simple fix to the scale supervision problem. We expect the relative values of181

scale across arms to reflect the distribution of the proportion of observations na

n across arms (with182

n =
∑

a na). We impose a joint Dirichlet distribution using the scale of arms ψ(ga) as parameters,183

and write the likelihood of the observed proportions as (with Γ denoting Gamma function):184

log Pr({na}|g) =
∑
a

((ψ(ga)− 1) log
na
n
− log Γ(ψ(ga)) + log Γ(

∑
a ψ(ga)) (11)

We call this BetaGP-SL. With this as an additional term in the data likelihood, we obtained signifi-185

cantly improved uncertainty estimates at each arm, as we will show in the experiment section.186

3.3 Pooling for sparse observations187

Recall that the observations are accumulation of 1/0 agreement scores for all instances that belong to188

an arm. Given the nature of our problem, arms have varying levels of supervision, and also highly189

varying true accuracy values. Even when the available labeled data is large, many arms will continue190

to have sparse supervision because they represent rare attribute combinations. The combination191

of high variance observations and sparse supervision could lead to learning of non-smooth kernel192

parameters. The situation is further aggravated when learning a deep kernel. This problem has193

resemblance to “collapsing variance problem” [14] such as when Gaussian Mixture models overfit on194

outliers or when topic models overfit a noisy document in the corpus. Instead of depending purely195

on GP priors to smooth over these noisy observations, we found it helpful to also externally smooth196

noisy observations. For each arm a with observations below a threshold, we mean-pool observations197

from some number of nearest neighbors, weighted by their kernel similarity with a. We will see that198

such external smoothing resulted in significantly more accurate estimates particularly for arms with199

extreme accuracy values. We call this method BetaGP-SLP (note that this also includes the scale200

supervision objective described in the previous section). Two other mechanisms take us to the full201

form of the AAA system, which we describe next.202

3.4 Exploration203

The variance estimate of an arm informs its uncertainty and is commonly used for efficient explo-204

ration [15]. Let P (f |D), P (g|D) denote the learned posterior distribution of the GPs. Using these,205

the estimated variance at an arm is given as:206

V(ρ|a) = Ef∼P (f |D),g∼P (g|D)

[∫
ρ
(ρ− E(ρ|a))2B(ρ;φ(fa), ψ(ga))dρ

]
(12)

where the expected value is given in eqn. (10). We use sampling to estimate the above expectation.207

The arm to be sampled next is chosen as the one with the highest variance among unexplored arms.208

We then sample an unexplored example with highest affiliation (P (a | x)) with the chosen arm.209

3.5 Modeling Attribute Uncertainty210

Recall that attributes of an instance x are obtained from models Mk(ak|x), k ∈ [K], which may211

be highly noisy for some attributes. Thus, we cannot assume a fixed attribute vector A(x) for an212

instance x. We address this by designing a model that can combine these noisy estimates into a213

joint distribution P (a|x) using which, we can fractionally assign each instance xi across arms. A214

baseline model for P (a|x) would be just the product
∏K
k=1Mk(ak|x). However, we expect values of215

attributes to be correlated (e.g. attribute ‘high-pitch’ is likely to be correlated with gender ‘female’).216

Also, the probabilities Mk(ak|x) may not be well-calibrated.217

We therefore propose an alternative joint model that can both recalibrate individual classifiers via218

temperature scaling [16], and model their correlation. We have a small seed labeled dataset D with219

gold attribute labels, independent noisy distributions from each attribute model Mk(ak|x), and an220

unlabeled dataset U . We prefer simple factorized models. We factorize log Pr(a|x) as a sum of221

temperature-weighted logits and a joint (log) potential as shown in expression (13) below.222
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log Pr(a|x) = log Pr(a1, a2, · · · , aK |x) =

K∑
k=1

tk logMk(ak|x) +N(a1, a2, · · · , aK) (13)

Here N denotes a dense network to model the correlation between attributes, and t1, . . . , tK denote223

the temperature parameters used to rescale noisy attribute probabilities. The maximum likelihood224

over D is maxt,N
∑

(xi,ai)∈D log Pr(ai|xi)225

= max
t,N

∑
xi∈D

{∑K
k=1 tk logMk(aik|xi) +N(ai1, . . . aiK)− log(Zi)

}
(14)

Zi denotes the partition function for an example xi which requires summation over A. It could226

be intractable to compute Zi exactly when A is large. In such cases, Zi can be approximated by227

sampling. In our case, we could get exact estimates.228

In addition to D, we use the unlabeled instances U with predictions from attribute predictors filling229

the role of gold-attributes. Details on how we train the parameters on large but noisy U and small but230

correct D can be found in the Appendix.231

The estimation method of BetaGP-SLP with variance based exploration and calibration described here232

constitute our proposed estimator: AAA. Detailed pseudo-code of AAA is given in the Appendix.233

4 Experiments234

Our exploration of various methods and data sets is guided by the following research questions.235

• How do various methods for arm accuracy estimation compare?236

• To what extent do BetaGP, scale supervision and pooled observations help beyond BernGP?237

• For the best techniques from above, how do various active exploration strategies compare?238

• How well does our proposed model of attribute uncertainty work?239

4.1 Data sets and tasks240

We experiment with two real data sets and tasks. Our two tasks are male-female gender classification241

with two classes and animal classification with 10 classes.242

Male-Female classification (MF): CelebA [17] is a popular celebrity faces and attribute data set243

which identifies the gender of celebrities among 39 other binary attributes. The label is gender. The244

accuracy surface spans various demographic, style, and personality related attributes. We hand-pick245

a subset of 12 attributes that we deem important for gender classification. Gender-neural attributes246

such as wearing spectacles or hat are ignored (see Appendix for more details). A subset of 50,000247

examples is used to train classifiers on each of the 12 attributes using a pretrained ResNet-50 model.248

The remaining 150,000 examples in the data set are set as the unlabeled pool from which we actively249

explore new examples for human feedback.250

Animal classification (AC): COCO-Stuff [18] provides an image collection. For each image,251

labels for foreground (cow, camel) and background (sky, snow, water) ‘stuff’ are available. Visual252

recognition models often correlate the background scene with the animal label such as camel253

with deserts and cow with meadows. Thus, foreground stuff labels are our regular y-labels while254

background stuff labels supply our notion of attributes.255

We collapse fine stuff labels into five coarse labels using the dataset provided label hierarchy. These256

are: water, ground, sky, structure, furniture. The Coco dataset has around 90 object labels. Here257

we use a subset of 10 labels corresponding to animals. We take special care to filter out images258

with multiple/no animals and adapt the pixel segmentation/classification task to object classification259

(see the Appendix for more details). The image is further annotated with the five binary labels260

corresponding to five coarse stuff labels. The scene descriptive five binary labels and ten object labels261

make up for 32×10 = 320 attribute combinations.262

4.2 Service Models263

For the MF task, we use two service models S. MF-CelebA is a service model for gender classifica-264

tion. To simulate separate D and U , it is trained on a random subset of CelebA with a ResNet-50265
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Figure 1: Macro and micro av-
eraged accuracy (right most)
and ten quantiles (x-axis) of
per-arm accuracy (y-axis).

Service→ AC-COCOS10K AC-COCOS MF-IMDB MF-CelebA
CPredictor 5.4 / 15.0 3.2 / 9.4 1.2 / 8.2 5.2 / 35.9
Beta-I 7.0 / 15.6 4.3 / 10.0 1.6 / 8.4 4.7 / 30.3
BernGP 7.0 / 13.2 3.5 / 8.6 1.7 / 7.6 4.9 / 28.1
BetaGP 7.1 / 14.3 3.3 / 7.9 2.2 / 6.6 4.6 / 25.9
BetaGP-SL 5.3 / 11.7 2.8 / 6.8 1.4 / 4.4 4.1 / 22.6
BetaGP-SLP 4.7 / 10.4 2.8 / 5.7 1.4 / 3.9 4.3 / 23.3

Table 2: Comparing different estimation methods on labeled data size
2000 across four tasks. No exploration is involved. Each cell shows
two numbers in the format “macro MSE / worst MSE” obtained over
three runs. BetaGP-SLP generally gives the lowest MSE.

model. MF-IMDB is a publicly available3 classifier trained on IMBD-Wiki dataset, also using the266

ResNet50 architecture. The attribute predictors are trained using ResNet-50 on a subset of the CelebA267

dataset for both service models.268

For the AC task, we use two publicly available4 service models S. AC-COCOS was trained on269

COCOS data set with 164K examples. AC-COCOS10k was trained on COCOS10K, an earlier270

version of COCOS with only 10K instances. We use these architectures for both label and attribute271

prediction. See Appendix for more details on attribute predictor, service models and their architecture.272

In Figure 1, we illustrate some statistics of the shape of the accuracy surface for the four dataset-task273

combinations. Although S’s mean accuracy (right most bars) is reasonably high, the accuracy of the274

arms in the 10% quantile is abysmally low, while arms in the top quantiles have near perfect accuracy.275

This further motivates the need for an accuracy surface instead of single accuracy estimate.276

4.3 Methods Compared277

We compare the proposed estimation method AAA against natural baselines, alternatives, and278

ablations. Some of the methods, such as Beta-I, BernGP and BetaGP, we have already defined in279

Section 3. We train methods BernGP and BetaGP using the default arm-level likelihood. We also280

separately evaluate the impact of our fixes on BetaGP with only scale supervision: BetaGP-SL and281

along with mean pooling: BetaGP-SLP. We also include a trivial baseline: CPredictor which fits282

all the arms with a global accuracy estimated using gold D. We do not try sparse observation pooling283

with Beta-I since there is no notion of per-arm closeness. We also skip it on BernGP since it is worse284

than BetaGP as we will show below.285

4.4 Other experimental settings286

Gold accuracies ρ(a): We compute the oracular accuracy per arm using the gold attribute/label287

values of examples in U which we treat as unlabeled during exploration. For every arm with at288

least five examples, we set its accuracy to be the empirical estimate obtained through the average289

correctness of all the examples that belong to the arm. We discard and not evaluate on any arms with290

fewer than five examples since their true accuracy cannot reliably be estimated.291

Warm start: We start with 500 examples having gold attributes+labels to warm start all our experi-292

ments. The random seed also picks this random subset of 500 labeled examples. We calculate the293

overall accuracy of the classifier on these warm start examples as ρ̂ = (
∑
i ci)/(

∑
i 1). For all arms294

we use a default smoothing to [λρ̂, λ] where λ = 0.1, a randomly picked low value.295

Unless otherwise specified, we give equal importance to each arm and report MSE macroaveraged296

over all arms. Along with macro MSE, we also sometimes report MSE on the subset of 50 worst297

accuracy arms, referred to as worst MSE. We report other aggregate errors in the Appendix. All the298

numbers reported here are averaged over three runs with different random seeds. The initial set of299

warm-start examples (D) is also changed between the runs. In the case of BetaGP-SLP, for any arm300

with observation count below 5, we mean pool from its three closest neighbours.301

In the following Sections: 4.5 and 4.6, we compare various estimation and exploration strategies302

with P (a|x) noise calibrated as described in Section 3.5. In Section 4.7, we study different forms of303

calibration and demonstrate the superiority of our proposed calibration technique of Equation (13).304

3https://github.com/yu4u/age-gender-estimation
4https://github.com/kazuto1011/deeplab-pytorch/
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Figure 3: Comparison of estimation methods using worst MSE metric. The shaded region shows
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Figure 4: Comparison of exploration methods. BetaGP-SLP reduces macro MSE fastest most of the
time. Shaded region shows standard error.
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Figure 5: Calibration methods compared on different tasks. Cal:Full (red) includes temperature-based
recalibration and correlation modeling with joint potential and gives the best macro MSE. Shaded
region shows standard error.

4.5 Accuracy Estimation Quality305

We evaluate methods on their estimation quality when each method is provided with exactly the306

same (randomly chosen) labeled set. We compare the four service models when fitted on labeled307

data of size 2,000 and the results appear in Table 2. Note that we only have label supervision on Y308

in the labeled data. Table 2 shows macro and worst MSE, standard deviation for each metric can309

be found in Appendix. In Figure 3, we show worst MSE for a range of labeled data sizes along310

with their error bars. We make the following observations. Smoothing helps: Since we have a large311

number of arms, we expect Beta-I to fare worse than its smooth counterparts (BernGP and BetaGP),312

especially on the worst arms. This is confirmed in the table. In three out of four cases, this method313

is worse than even the constant predictor CPredictor on both metrics. Modeling arm specific noise314

helps: BetaGP is better than BernGP on almost all the cases in the table. Significant gains when315

the scale supervision problem of BetaGP is fixed: BetaGP-SL is significantly better than BetaGP316

in the table and figure. Our pooling strategy helps: BetaGP-SLP improves BetaGP-SL over worst317

MSE without hurting macro MSE as seen in the table and figure.318

4.6 Exploration Efficiency319

We compare different methods that use their own estimated variance for exploring instances to320

label (Section 3.4), as a function of the number of explored examples — see Figure 4. In most321

cases, BetaGP-SLP gives the smallest macro MSE, beating Beta-I and BetaGP. Note Beta-I is the322

exploration method recently suggested in [7]. We observe that BetaGP provides very poor exploration323

quality, indicating that the uncertainty of arms is not captured well by just using two GPs. In fact,324

in many cases BetaGP is worse than Beta-I, even though we saw the opposite trend in estimation325

quality (Figure 3). These experiments brings out the significant role of Dirichlet scale supervision326

and pooled observations in enhancing the uncertainty estimates at each arm.327

4.7 Impact of Calibration328

We consider two baselines along with our method explained in Section 3.5: Cal:Raw, which uses the329

predicted attribute from the attribute models without any calibration and Cal:Temp, which calibrates330
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only the temperature parameters shown in eqn. (13), i.e., without the joint potential part. We refer331

to our method of calibration using temperature and joint potentials as Cal:Full. We compare these332

on the four tasks with estimation method set to Beta-I and random exploration strategy. Figure 5333

compares the three methods: Cal:Raw(Black), Cal:Temp(Blue), Cal:Full(Red). The X-axis is the334

number of explored examples beyond D, and Y-axis is estimation error. Observe how Cal:Temp and335

Cal:Full are consistently better than Cal:Raw, and Cal:Full is better than Cal:Temp.336

5 Related Work337

Our problem of actively estimating the accuracy surface of a classifier generalizes the more estab-338

lished problem of estimating a single accuracy score [19, 20, 21, 22, 23, 24]. For that problem, a339

known solution is stratified sampling, which partitions data into homogeneous strata and then seeks340

examples from regions with highest uncertainty and support. If we view each arm as a stratum, our341

method follows similar strategy. A key difference in our setting is that low support arms cannot be342

ignored. This makes it imperative to calibrate well the uncertainty under limited and skewed support343

distribution. The setting of Ji et al. [7] is the closest to ours. However, their work only considers a344

single attribute which they fit using Beta-I, whereas we focus on the challenges of estimating accuracy345

over many sparsely populated attribute combinations.346

Sub-population performance: Several recent papers have focused on identifying sub-populations347

with significantly worse accuracy than aggregated accuracy [2, 3, 6, 8, 25, 26]. Some of these have348

also proposed sample-efficient techniques [6, 8] for estimation of performance on specific sub-groups,349

such as the ones defined by attributes like gender and race. Our accuracy surface estimation problem350

can be seen as a generalization where we need to estimate for all sub-groups defined in the Cartesian351

space of pre-specified semantic attributes. Mitchell et al. [5] recommend enclosing model cards with352

released or deployed models. In model cards, they suggest reporting performance under various353

relevant demographic/environmental factors which resembles the accuracy surface.354

Experiment design: Another related area is experiment design using active explorations with GPs355

[27]. Their goal is to find the mode of the surface whereas our goal is to estimate the entire surface.356

Further, each arm in our setting corresponds to multiple instances, which gives rise to a degree of357

heteroscedasticity and input-dependent noise that is not modeled in their settings. Lázaro-Gredilla358

and Titsias [11], Kersting et al. [12] propose to handle heteroscedasticity by using a separate GP359

to model the variance at each arm. However, we showed the importance of additional terms in our360

likelihood and observation pooling to reliably represent estimation uncertainty. Wenger et al. [28]361

propose observation pooling for estimating smooth Betas but they assume a fixed kernel.362

Model debugging: Testing deep neural network (DNN) is another emerging area [29]. Pei et al.363

[30], Tian et al. [31], Sun et al. [32], Odena et al. [33] propose to generate test examples with good364

coverage over all activations of a DNN. Ribeiro et al. [34], Kim et al. [35] identify rules that explain365

the model predictions.366

6 Conclusion367

We presented AAA, a new approach to estimate the accuracy of a classification service, not as a368

single number, but as a surface over a space of attributes (arms). AAA models uncertainty with a369

Beta distribution at each arm and regresses these parameters using two Gaussian Processes to capture370

smoothness and generalize to unseen arms. We proposed an additional Dirichlet likelihood to mitigate371

an over-smoothing problem with GP’s estimation of Beta distributions’ scale parameters. Further, to372

protect these high-capacity GPs from unreliable accuracy observations at sparsely populated arms,373

we propose to use an observation pooling strategy. Finally, we show how to handle noisy attribute374

labels by an efficient joint recalibration method. Evaluation on real-life datasets and classification375

services show the efficacy of AAA, both in estimation and exploration quality.376

Limitation and future work: (1) We have evaluated AAA on the order of thousands of arms. Even377

larger attribute spaces could unearth more challenges. (2) Identifying relevant attributes for an378

application can be non-trivial. Future work could devise strategies for attribute selection. (3) It may379

be hard to characterize test-time data shifts, particularly for text — there could be subtle changes in380

word usage, style, or punctuation. A more expressive attribute space needs to be developed for text381

applications.382
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