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Abstract

Image classifiers are typically scored on their test set accuracy, but high accuracy1

can mask a subtle type of model failure. We find that high scoring convolutional2

neural networks (CNNs) on popular benchmarks exhibit troubling pathologies3

that allow them to display high accuracy even in the absence of semantically4

salient features. When a model provides a high-confidence decision without salient5

supporting input features, we say the classifier has overinterpreted its input, finding6

too much class-evidence in patterns that appear nonsensical to humans. Here, we7

demonstrate that neural networks trained on CIFAR-10 and ImageNet suffer from8

overinterpretation, and we find models on CIFAR-10 make confident predictions9

even when 95% of input images are masked and humans cannot discern salient10

features in the remaining pixel-subsets. We introduce Batched Gradient SIS, a11

new method for discovering sufficient input subsets for complex datasets, and use12

this method to show the sufficiency of border pixels in ImageNet for training and13

testing. Although these patterns portend potential model fragility in real-world14

deployment, they are in fact valid statistical patterns of the benchmark that alone15

suffice to attain high test accuracy. Unlike adversarial examples, overinterpretation16

relies upon unmodified image pixels. We find ensembling and input dropout can17

each help mitigate overinterpretation.18

1 Introduction19

Well-founded decisions by machine learning (ML) systems are critical for high-stakes applications20

such as autonomous vehicles and medical diagnosis. Pathologies in models and their respective21

training datasets can result in unintended behavior during deployment if the systems are confronted22

with novel situations. For example, a medical image classifier for cancer detection attained high23

accuracy in benchmark test data, but was found to base decisions upon presence of rulers in an image24

(present when dermatologists already suspected cancer) [1]. We define model overinterpretation to25

occur when a classifier finds strong class-evidence in regions of an image that contain no semantically26

salient features. Overinterpretation is related to overfitting, but overfitting can be diagnosed via27

reduced test accuracy. Overinterpretation can stem from true statistical signals in the underlying28

dataset distribution that happen to arise from particular properties of the data source (e.g., derma-29

tologists’ rulers). Thus, overinterpretation can be harder to diagnose as it admits decisions that are30

made by statistically valid criteria, and models that use such criteria can excel at benchmarks. We31

demonstrate overinterpretation occurs with unmodified subsets of the original images. In contrast32

to adversarial examples that modify images with extra information, overinterpretation is based on33

real patterns already present in the training data that also generalize to the test distribution. Hidden34

statistical signals of benchmark datasets can result in models that overinterpret or do not generalize35

to new data from a different distribution. Computer vision (CV) research relies on datasets like36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



CIFAR-10 [2] and ImageNet [3] to provide standardized performance benchmarks. Here, we analyze37

the overinterpretation of popular CNN architectures on these benchmarks to characterize pathologies.38

Revealing overinterpretation requires a systematic way to identify which features are used by a model39

to reach its decision. Feature attribution is addressed by a large number of interpretability methods,40

although they propose differing explanations for the decisions of a model. One natural explanation41

for image classification lies in the set of pixels that is sufficient for the model to make a confident42

prediction, even in the absence of information about the rest of the image. In the example of the43

medical image classifier for cancer detection, one might identify the pathological behavior by finding44

pixels depicting the ruler alone suffice for the model to confidently output the same classifications.45

This idea of Sufficient Input Subsets (SIS) has been proposed to help humans interpret the decisions46

of black-box models [4]. An SIS subset is a minimal subset of features (e.g., pixels) that suffices to47

yield a class probability above a certain threshold with all other features masked.48

We demonstrate that classifiers trained on CIFAR-10 and ImageNet can base their decisions on49

SIS subsets that contain few pixels and lack human understandable semantic content. Nevertheless,50

these SIS subsets contain statistical signals that generalize across the benchmark data distribution,51

and we are able to train classifiers on CIFAR-10 images missing 95% of their pixels and ImageNet52

images missing 90% of their pixels with minimal loss of test accuracy. Thus, these benchmarks53

contain inherent statistical shortcuts that classifiers optimized for accuracy can learn to exploit,54

instead of learning more complex semantic relationships between the image pixels and the assigned55

class label. While recent work suggests adversarially robust models base their predictions on more56

semantically meaningful features [5], we find these models suffer from overinterpretation as well.57

As we subsequently show, overinterpretation is not only a conceptual issue, but can actually harm58

overall classifier performance in practice. We find model ensembling and input dropout partially59

mitigate overinterpretation, increasing the semantic content of the resulting SIS subsets. However,60

this mitigation is not a substitute for better training data, and we find that overinterpretation is a61

statistical property of common benchmarks. Intriguingly, the number of pixels in the SIS rationale62

behind a particular classification is often indicative of whether the image is correctly classified.63

It may seem unnatural to use an interpretability method that produces feature attributions that look64

uninterpretable. However, we do not want to bias extracted rationales towards human visual priors65

when analyzing a model’s pathologies, but rather faithfully report the features used by a model. To66

our knowledge, this is the first analysis showing one can extract nonsensical features from CIFAR-1067

and ImageNet that intuitively should be insufficient or irrelevant for a confident prediction, yet are68

alone sufficient to train classifiers with minimal loss of performance. Our contributions include:69

• We discover the pathology of overinterpretation and find it is a common failure mode of ML70

models, which latch onto non-salient but statistically valid signals in datasets (Section 4.1).71

• We introduce Batched Gradient SIS, a new masking algorithm to scale SIS to high-72

dimensional inputs and apply it to characterize overinterpretation on ImageNet (Section 3.2).73

• We provide a pipeline for detecting overinterpretation by masking over 90% of each image,74

demonstrating minimal loss of test accuracy, and establish lack of saliency in these patterns75

through human accuracy evaluations (Sections 3.3, 4.2, 4.3).76

• We show misclassifications often rely on smaller and more spurious feature subsets suggest-77

ing overinterpretation is a serious practical issue (Section 4.4).78

• We identify two strategies for mitigating overinterpretation (Section 4.5). We demonstrate79

that overinterpretation is caused by spurious statistical signals in training data, and thus80

training data must be carefully curated to eliminate overinterpretation artifacts.81

2 Related Work82

While existing work has demonstrated numerous distinct flaws in deep image classifiers our paper83

demonstrates a new distinct flaw, overinterpretation, previously undocumented in the literature. There84

has been substantial research on understanding dataset bias in CV [6, 7] and the fragility of image85

classifiers deployed outside benchmark settings. We extend previous work on sufficient input subsets86

(SIS) [4] with the Batched Gradient SIS method, and use this method to show that ImageNet sufficient87

input subset pixels for training and testing are typically found at image borders. We comprehensively88

contrast overinterpretation against known flaws below.89
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• Image classifiers have been shown to be fragile when objects from one image are transplanted90

in another image [8], and can be biased by object context [9, 10]. In contrast, overinterpretation91

differs because we demonstrate that highly sparse, unmodified subsets of pixels in images suffice92

for image classifiers to make the same predictions as on the full images.93

• Lapuschkin et al. [11] demonstrate that DNNs can learn to rely on spurious signals in datasets,94

including source tags and artificial padding, but which are still human-interpretable. In contrast, the95

patterns we identify are minimal collections of pixels in images that are semantically meaningless96

to humans (they do not comprise human-interpretable parts of images). We demonstrate such97

patterns generalize to the test distribution suggesting they arise from degenerate signals in popular98

benchmarks, and thus models trained on these datasets may fail to generalize to real-world data.99

• CNNs in particular have been conjectured to pick up on localized features like texture instead100

of more global features like object shape [12, 13]. Brendel and Bethge [14] show CNNs trained101

on natural ImageNet images may rely on local features and, unlike humans, are able to classify102

texturized images, suggesting ImageNet alone is insufficient to force DNNs to rely on more causal103

representations. Our work demonstrates another source of degeneracy of popular image datasets,104

where sparse, unmodified subsets of training images that are meaningless to humans can enable a105

model to generalize to test data. We provide one explanation for why ImageNet-trained models106

may struggle to generalize to out-of-distribution data.107

• Geirhos et al. [15] discover that DNNs trained on distorted images fail to generalize as well as108

human observers when trained under image distortions. In contrast, overinterpretation reveals a109

different failure mode of DNNs, whereby models latch onto spurious but statistically valid sets of110

features in undistorted images. This phenomenon can limit the ability of a DNN to generalize to111

real-world data even when trained on natural images.112

• Other work has shown deep image classifiers can make confident predictions on nonsensical113

patterns [16], and the susceptibility of DNNs to adversarial examples or synthetic images has been114

widely studied [5, 17–19]. However, these adversarial examples synthesize artificial images or115

modify real images with auxiliary information. In contrast, we demonstrate overinterpretation of116

unmodified subsets of actual training images, indicating the patterns are already present in the117

original dataset. We further demonstrate that such signals in training data actually generalize to the118

test distribution and that adversarially robust models also suffer from overinterpretation.119

• Hooker et al. [20] found sparse pixel subsets suffice to attain high classification accuracy on popular120

image classification datasets, but evaluate interpretability methods rather than demonstrate spurious121

features or discover overinterpretation.122

• Ghorbani et al. [21] introduce principles and methods for human-understandable concept-based123

explanations of ML models. In contrast, overinterpretation differs because the features we identify124

are semantically meaningless to humans, stem from single images, and are not aggregated into125

interpretable concepts. The existence of such subsets stemming from unmodified subsets of images126

suggests degeneracies in the underlying benchmark datasets and failures of modern CNN models127

to rely on more robust and interpretable signals in training datasets.128

• Geirhos et al. [22] discuss the general problem of “shortcut learning” but do not recognize that129

5% (CIFAR-10) or 10% (ImageNet) spurious pixel-subsets are statistically valid signals in these130

datasets, nor characterize pixels that provide sufficient support and lead to overinterpretation.131

• In natural language processing (NLP), Feng et al. [23] explored model pathologies using a similar132

technique, but did not analyze whether the semantically spurious patterns relied on are a statistical133

property of the dataset. Other work has demonstrated the presence of various spurious statistical134

shortcuts in major NLP benchmarks, showing this problem is not unique to CV [24].135

3 Methods136

3.1 Datasets and Models137

CIFAR-10 [2] and ImageNet [3] have become two of the most popular image classification bench-138

marks. Most image classifiers are evaluated by the CV community based on their accuracy in one139

of these benchmarks. We also use the CIFAR-10-C dataset [25] to evaluate the extent to which our140

CIFAR-10 models can generalize to out-of-distribution (OOD) data. CIFAR-10-C contains variants141

of CIFAR-10 test images altered by various corruptions (e.g., Gaussian noise, motion blur). Where142
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computing sufficient input subsets on CIFAR-10-C images, we use a uniform random sample of 2000143

images across the entire CIFAR-10-C set. We use the ILSVRC2012 ImageNet dataset.144

For CIFAR-10, we explore three common CNN architectures: a deep residual network with depth145

20 (ResNet20) [26], a v2 deep residual network with depth 18 (ResNet18) [27], and VGG16 [28].146

We train these networks using cross-entropy loss optimized via SGD with Nesterov momentum [29]147

and employ standard data augmentation strategies [27] (Section S1). After training many CIFAR-10148

networks individually, we construct four different ensemble classifiers by grouping various networks149

together. Each ensemble outputs the average prediction over its member networks (specifically,150

the arithmetic mean of their logits). For each of three architectures, we create a corresponding151

homogeneous ensemble by individually training five networks of that architecture. Each network152

has a different random initialization, which suffices to produce substantially different models despite153

having been trained on the same data [30]. Our fourth ensemble is heterogeneous, containing all 15154

networks (5 replicates of each of 3 distinct CNN architectures).155

For ImageNet, we use a pre-trained Inception v3 model [31] that achieves 22.55% and 6.44% top-1156

and top-5 error [32].157

3.2 Discovering Sufficient Features158

CIFAR-10. We interpret the feature patterns learned by CIFAR-10 CNNs using the Sufficient159

Input Subsets (SIS) procedure [4], which produces rationales (SIS subsets) of a black-box model’s160

decision-making. SIS subsets are minimal subsets of input features (pixels) whose values alone161

suffice for the model to make the same decision as on the original input. Let fc(x) denote the162

probability that an image x belongs to class c. An SIS subset S is a minimal subset of pixels of x163

such that fc(xS) � ⌧ , where ⌧ is a prespecified confidence threshold and xS is a modified input in164

which all information about values outside S are masked. We mask pixels by replacement with the165

mean value over all images (equal to zero when images have been normalized), which is presumably166

least informative to a trained classifier [4]. SIS subsets are found via a local backward selection167

algorithm applied to the function giving the confidence of the predicted (most likely) class.168

ImageNet. We scale the SIS backward selection procedure to ImageNet with the introduction of169

Batched Gradient SIS, a gradient-based method to find sufficient input subsets on high-dimensional170

inputs. The sufficient input subsets discovered by Batched Gradient SIS are guaranteed to be sufficient,171

but may be larger than those discovered by the original exhaustive SIS algorithm. Here we find172

small SIS subsets with Batched Gradient SIS (Figure S10). Rather than separately masking every173

remaining pixel at each iteration to find the pixel whose masking least reduces f , we use the gradient174

of f with respect to the input pixels x and mask M , rMf(x � (1 � M)), to order pixels (via a175

single backward pass). Instead of masking only one pixel per iteration, we mask larger subsets of176

k � 1 pixels per iteration. Given p input features, our Batched Gradient FindSIS procedure finds177

each SIS subset in O( pk ) evaluations of rf (as opposed to O(p2) evaluations of f in FindSIS [4]).178

The complete Batched Gradient SIS algorithm is presented in Section S5.179

3.3 Detecting Overinterpretation180

We produce sparse variants of all train and test set images retaining 5% (CIFAR-10) or 10% (Im-181

ageNet) of pixels in each image. Our goal is to identify sparse pixel-subsets that contain feature182

patterns the model identifies as strong class-evidence as it classifies an image. We identify pixels183

to retain based on sorting by SIS BackSelect [4] (CIFAR-10) or our Batched Gradient BackSelect184

procedure (ImageNet). These backward selection (BS) pixel-subset images contain the final pixels185

(with their same RGB values as in the original images) while all other pixels’ values are replaced with186

zero. Note that we apply backward selection to the function giving the confidence of the predicted187

class from the original model to prevent adding information about the true class for misclassified188

images, and we use the true labels for training/evaluating models on pixel-subsets. As backward189

selection is applied locally on each image, the specific pixels retained differ across images.190

We train new classifiers on solely these pixel-subsets of training images and evaluate accuracy on191

corresponding pixel-subsets of test images to determine whether such pixel-subsets are statistically192

valid for generalization in the benchmark. We use the same training setup and hyperparameters193

(Section 3.1) without data augmentation of training images (results with data augmentation in194
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Figure 1: Sufficient input subsets (SIS) for a sample of CIFAR-10 test images (top). Each SIS image
shown below is classified by the respective model with � 99% confidence.

Table S1). We consider a model to overinterpret its input when these signals can generalize to test195

data but lack semantic meaning (Section 3.4).196

3.4 Human Classification Benchmark197

To evaluate whether sparse pixel-subsets of images can be accurately classified by humans, we asked198

four participants to classify images containing various degrees of masking. We randomly sampled199

100 images from the CIFAR-10 test set (10 images per class) that were correctly and confidently200

(� 99% confidence) classified by our models, and for each image, kept only 5%, 30%, or 50% of201

pixels as ranked by backward selection (all other pixels masked). Backward selection image subsets202

are sampled across our three models. Since larger subsets of pixels are by construction supersets203

of smaller subsets identified by the same model, we presented each batch of 100 images in order204

of increasing subset size and shuffled the order of images within each batch. Users were asked to205

classify each of the 300 images as one of the 10 classes in CIFAR-10 and were not provided training206

images. The same task was given to each user (and is shown in Section S4).207

4 Results208

4.1 CNNs Classify Images Using Spurious Features209

CIFAR-10. Figure 1 shows example SIS subsets (threshold 0.99) from CIFAR-10 test images210

(additional examples in Section S2). These SIS subset images are confidently and correctly classified211

by each model with � 99% confidence toward the predicted class. We observe these SIS subsets212

are highly sparse and the average SIS size at this threshold is < 5% of each image (see Figure 5),213

suggesting these CNNs confidently classify images that appear nonsensical to humans (Section 4.3),214

leading to concern about their robustness and generalizability.215

We retain 5% of pixels in each image using local backward selection and mask the remaining216

95% with zeros (Section 3.3) and find models trained on full images classify these pixel-subsets as217

accurately as full images (Table 1). Figure 2a shows the pixel locations and confidence of these 5%218

pixel-subsets across all CIFAR-10 test images. Moreover, the CNNs are more confident on these219

pixels subsets than on full images: the mean drop in confidence for the predicted class between220

original images and these 5% subsets is �0.035 (std dev. = 0.107), �0.016 (0.094), and �0.012221

(0.074) computed over all CIFAR-10 test images for our ResNet20, ResNet18, and VGG16 models,222

respectively, suggesting severe overinterpretation (negative values imply greater confidence on the223
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(a) CIFAR-10 (b) ImageNet

Figure 2: Heatmaps of pixel locations comprising pixel-subsets. Frequency indicates fraction of
subsets containing each pixel. (a) 5% pixel-subsets across CIFAR-10 test set for each model. Mean
confidence indicates confidence on 5% pixel-subsets. (b) Sufficient input subsets (threshold 0.9)
across ImageNet validation images from Inception v3.

Figure 3: Sufficient input subsets (threshold 0.9) for example ImageNet validation images. The
bottom row shows the corresponding images with all pixels outside of each SIS subset masked but
are still classified by the Inception v3 model with � 90% confidence.

5% subsets). We find pixel-subsets chosen via backward selection are significantly more predictive224

than equally large pixel-subsets chosen uniformly at random from each image (Table 1).225

We also find SIS subsets confidently classified by one model do not transfer to other models. For226

instance, 5% pixel-subsets derived from CIFAR-10 test images using one ResNet18 model (which227

classifies them with 94.8% accuracy) are only classified with 25.8%, 29.2%, and 27.5% accuracy by228

another ResNet18 replicate, ResNet20, and VGG16 models, respectively, suggesting there exist many229

different statistical patterns that a flexible model might learn to rely on, and thus CIFAR-10 image230

classification remains a highly underdetermined problem. Training classifiers that make predictions231

for the right reasons may require clever regularization strategies and architecture design to ensure232

models favor salient features over spurious pixel subsets.233

While recent work has suggested semantics can be better captured by models that are robust to234

adversarial inputs that fool standard neural networks via human-imperceptible modifications to235

images [19, 33], we explore a wide residual network that is adversarially robust for CIFAR-10236

classification [19] and find evidence of overinterpretation (Figure 1). This finding suggests adversarial237

robustness alone does not prevent models from overinterpreting spurious signals in CIFAR-10.238

ImageNet. We also find models trained on ImageNet images suffer from severe overinterpretation.239

Figure 3 shows example SIS subsets (threshold 0.9) found via Batched Gradient SIS on images240

confidently classified by the pre-trained Inception v3 (additional examples in Figures S8 and S9).241

These SIS subsets appear visually nonsensical, yet the network classifies them with � 90% confidence.242

We find SIS pixels are concentrated outside of the actual object that determines the class label. For243

example, in the “pizza” image, the SIS is concentrated on the shape of the plate and the background244

table, rather than the pizza itself, suggesting the model could generalize poorly on images containing245

different circular items on a table. In the “giant panda” image, the SIS contains bamboo, which246

likely appeared in the collection of ImageNet photos for this class. In the “traffic light” and “street247
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Table 1: Accuracy of CIFAR-10 classifiers trained and evaluated on full images, 5% backward
selection (BS) pixel-subsets, and 5% random pixel-subsets. Where possible, we report accuracy as
mean ± standard deviation (%) over five runs. For training on BS subsets, we run BS on all images
for a single model of each type and average over five models trained on these subsets.

Model Train On Evaluate On CIFAR-10 Test Acc. CIFAR-10-C Acc.

ResNet20

Full Images
Full Images 92.52± 0.09 69.44± 0.52
5% BS Subsets 92.48 70.65
5% Random 9.98± 0.03 10.02± 0.01

5% BS Subsets 5% BS Subsets 92.49± 0.02 70.58± 0.03

5% Random 5% Random 50.25± 0.19 44.04± 0.33

Input Dropout (Full) Input Dropout (Full) 91.02± 0.25 75.46± 0.74

ResNet18

Full Images
Full Images 95.17± 0.21 75.08± 0.20
5% BS Subsets 94.76 75.15
5% Random 10.08± 0.15 10.08± 0.07

5% BS Subsets 5% BS Subsets 94.96± 0.04 75.25± 0.05

5% Random 5% Random 51.27± 0.82 45.24± 0.45

Input Dropout (Full) Input Dropout (Full) 94.15± 0.26 80.35± 0.39

VGG16

Full Images
Full Images 93.69± 0.12 74.14± 0.45
5% BS Subsets 93.27 73.95
5% Random 10.02± 0.18 9.97± 0.18

5% BS Subsets 5% BS Subsets 92.60± 0.08 73.27± 0.18

5% Random 5% Random 53.66± 1.96 46.88± 1.27

Input Dropout (Full) Input Dropout (Full) 91.09± 0.15 80.43± 0.24

Ensemble
(ResNet18) Full Images Full Images 96.07 77.00

5% Random 9.98 10.01

sign” images, the SIS consists of pixels in sky, suggesting that autonomous vehicle systems that may248

depend on these models should be carefully evaluated for overinterpretation pathologies.249

Figure 2b shows SIS pixel locations from a random sample of 1000 ImageNet validation images. We250

find concentration along image borders, suggesting the model relies heavily on image backgrounds251

and suffers from severe overinterpretation. This is a serious problem as objects determining ImageNet252

classes are often located near image centers, and thus this network fails to focus on salient features.253

4.2 Sparse Subsets are Real Statistical Patterns254

The overconfidence of CNNs for image classification [34] may lead one to wonder whether the255

observed overconfidence on semantically meaningless SIS subsets is an artifact of calibration rather256

than true statistical signals in the dataset. We train models on 5% pixel-subsets of CIFAR-10 training257

images found via backward selection (Section 3.3). We find models trained solely on these pixel-258

subsets can classify corresponding test image pixel-subsets with minimal accuracy loss compared to259

models trained on full images (Table 1). As a baseline to the 5% pixel-subsets identified by backward260

selection, we create variants of all images where the 5% pixel-subsets are selected at random from261

each image (rather than by backward selection) and use the same random pixel-subsets for training262

each new model. Models trained on random subsets have significantly lower test accuracy compared263

to models trained on 5% pixel-subsets from backward selection (Table 1). We observe, however, that264

random 5% subsets of images still capture enough signal to predict roughly 5 times better than blind265

guessing, but do not capture nearly enough information for models to make accurate predictions.266

We found that the 5% backward selection pixel-subsets did not contain model specific features,267

and thus reflected valid predictive signals regardless of the model architecture employed for subset268

discovery. Our hypothesis was that 5% pixel-subsets discovered with one architecture would provide269

robust performance when used to train and evaluate a second architecture. We found this hypothesis270
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supported for all six pairs of subset discovery and train-test architectures evaluated (Table S2). These271

results demonstrate that the highly sparse subsets found via backward selection offer a valid predictive272

signal in the CIFAR-10 benchmark exploited by models to attain high test accuracy.273

We observe similar results on ImageNet. Inception v3 trained on 10% pixel-subsets of ImageNet274

training images achieves 71.4% accuracy (mean over 5 runs) on the corresponding pixel-subset275

ImageNet validation set (Table S4). Additional ImageNet results for Inception v3 and ResNet-50,276

including training and evaluation on random subsets, are provided in Table S4.277

4.3 Humans Struggle to Classify Sparse Subsets278

We find a strong correlation between the fraction of unmasked pixels in each image and human279

classification accuracy (R2 = 0.94, Figure S7). Human accuracy on 5% pixel-subsets of CIFAR-10280

images (mean = 19.2%, std dev = 4.8%, Table S3) is significantly lower than on original, unmasked281

images (roughly 94% [35]), though greater than random guessing, presumably due to correlations282

between labels and features such as color (e.g., blue sky suggests airplane, ship, or bird).283

However, CNNs (even when trained on full images and achieve accuracy on par with human accuracy284

on full images) classify these sparse image subsets with very high accuracy (Table 1), indicating285

benchmark images contain statistical signals that are not salient to humans. Models solely trained286

to minimize prediction error may thus latch onto these signals while still accurately generalizing to287

test data, but may behave counterintuitively when fed images from a different source that does not288

share these exact statistics. The strong correlation between the size of CIFAR-10 pixel-subsets and289

the corresponding human classification accuracy suggests larger subsets contain more semantically290

salient content. Thus, a model whose decisions have larger corresponding SIS subsets presumably291

exhibits less overinterpretation than one with smaller SIS subsets, as we investigate in Section 4.4.292

4.4 SIS Size is Related to Model Accuracy293

Given that smaller SIS contain fewer salient features according to human classifiers, models that294

justify their classifications based on sparse SIS subsets may be limited in terms of attainable accuracy,295

particularly in out-of-distribution settings. Here, we investigate the relationship between a single296

model’s predictive accuracy and the size of the SIS subsets in which it identifies class-evidence. We297

draw no conclusions between models as they are uncalibrated. For each of our three classifiers, we298

compute the average SIS size increase for correctly classified images as compared to incorrectly299

classified images (expressed as a percentage). We find SIS subsets of correctly classified images are300

consistently significantly larger than those of misclassified images at all SIS confidence thresholds for301

both CIFAR-10 test images (Figure 4) and CIFAR-10-C OOD images (Figure S3). This is especially302

striking given model confidence is uniformly lower on the misclassified inputs (Figure S4). Lower303

confidence would normally imply a larger SIS subset at a given confidence level, as one expects304

fewer pixels can be masked before the model’s confidence drops below the SIS threshold. Thus, we305

can rule out overall model confidence as an explanation of the smaller SIS of misclassified images.306

This result suggests the sparse SIS subsets highlighted in this paper are not just a curiosity, but may307

be leading to poor generalization on real images.308

4.5 Mitigating Overinterpretation309

Ensembling. Model ensembling is known to improve classification performance [36, 37]. As we310

found pixel-subset size to be strongly correlated with human pixel-subset classification accuracy311

(Section 4.3), our metric for measuring how much ensembling may alleviate overinterpretation is the312

increase in SIS subset size. We find ensembling uniformly increases test accuracy as expected but313

also increases the SIS size (Figure 5), hence mitigating overinterpretation.314

We conjecture the cause of both the increase in the accuracy and SIS size for ensembles is the same.315

We observe that SIS subsets are generally not transferable from one model to another — i.e., an SIS316

for one model is rarely an SIS for another (Section 4.1). Thus, different models rely on different317

independent signals to arrive at the same prediction. An ensemble bases its prediction on multiple318

such signals, increasing predictive accuracy and SIS subset size by requiring simultaneous activation319

of multiple independently trained feature detectors. We find SIS subsets of the ensemble are larger320

than the SIS of its individual members (examples in Figure S2).321
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Figure 4: Percentage increase in mean SIS size
of correctly classified compared to misclassified
CIFAR-10 test images. Positive values indicate
larger mean SIS size for correctly classified im-
ages. Error bars indicate 95% confidence interval
for the difference in means.

Figure 5: Mean SIS size on CIFAR-10 test images
as SIS threshold varies. SIS size indicates fraction
of pixels necessary for model to make the same
prediction at each confidence threshold. Model
accuracies are shown in the legend. 95% confi-
dence intervals are shaded around each mean.

Input Dropout. We apply input dropout [38] to both train and test images. We retain each input322

pixel with probability p = 0.8 and set the values of dropped pixels to zero. We find a small decrease323

in CIFAR-10 test accuracy for models regularized with input dropout though find a significant (⇠ 6%)324

increase in OOD test accuracy on CIFAR-10-C images (Table 1, Figure S5). Figure 5 shows a325

corresponding increase in SIS subset size for these models, suggesting input dropout applied at train326

and test time helps to mitigate overinterpretation. We conjecture that random dropout of input pixels327

disrupts spurious signals that lead to overinterpretation.328

5 Discussion329

We find that modern image classifiers overinterpret small nonsensical patterns present in popular330

benchmark datasets, identifying strong class evidence in the pixel-subsets that constitute these patterns.331

We introduced the Batched Gradient SIS method for the efficient discovery of such patterns. Despite332

their lack of salient features, these sparse pixel-subsets are underlying statistical signals that suffice333

to accurately generalize from the benchmark training data to the benchmark test data. We found that334

different models rationalize their predictions based on different sufficient input subsets, suggesting335

optimal image classification rules remain highly underdetermined by the training data. In high-stakes336

applications, we recommend ensembles of networks or regularization via input dropout.337

Our results call into question model interpretability methods whose outputs are encouraged to align338

with prior human beliefs of proper classifier operating behavior [39]. Given the existence of non-339

salient pixel-subsets that alone suffice for correct classification, a model may solely rely on such340

patterns. In this case, an interpretability method that faithfully describes the model should output341

these nonsensical rationales, whereas interpretability methods that bias rationales toward human342

priors may produce results that mislead users to think their models behave as intended.343

Mitigating overinterpretation and the broader task of ensuring classifiers are accurate for the right344

reasons remain significant challenges for ML. While we identify strategies for partially mitigating345

overinterpretation, additional research needs to develop ML methods that rely exclusively on well-346

formed interpretable inputs, and methods for creating training data that do not contain spurious347

signals. One alternative is to regularize CNNs by constraining the pixel attributions generated via348

a saliency map [40–42]. Unfortunately, such methods require a human annotator to highlight the349

correct pixels as an auxiliary supervision signal. Saliency maps have also been shown to provide350

unreliable insights into model operating behavior and must be interpreted as approximations [43].351

In contrast, our SIS subsets constitute actual pathological examples that have been misconstrued by352

the model. An important application of our methods is the evaluation of training datasets to ensure353

decisions are made on interpretable rather than spurious signals. We found popular image datasets354

contain such spurious signals, and the resulting overinterpretation may be difficult to overcome with355

ML methods alone. We provide an open-source implementation of our methods.356
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