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ABSTRACT

Quasar convexity is a condition that allows some first-order methods to efficiently
minimize a function even when the optimization landscape is non-convex. Previous
works develop near-optimal accelerated algorithms for minimizing this class of
functions, however, they require a subroutine of binary search which results in
multiple calls to gradient evaluations in each iteration, and consequently the total
number of gradient evaluations does not match a known lower bound. In this work,
we show that a recently proposed continuized Nesterov acceleration can be applied
to minimizing quasar convex functions and achieves the optimal bound with a
high probability. Furthermore, we find that the objective functions of training
generalized linear models (GLMs) satisfy quasar convexity, which broadens the
applicability of the relevant algorithms, while known practical examples of quasar
convexity in non-convex learning are sparse in the literature. We also show that if a
smooth and one-point strongly convex, Polyak-Łojasiewicz, or quadratic-growth
function satisfies quasar convexity, then attaining an accelerated linear rate for
minimizing the function is possible under certain conditions, while acceleration is
not known in general for these classes of functions.

1 INTRODUCTION

Momentum has been the main workhorse for training machine learning models (Kingma & Ba, 2015;
Wilson et al., 2017; Loshchilov & Hutter, 2019; Reddi et al., 2018; He et al., 2016; Simonyan &
Zisserman, 2015; Krizhevsky et al., 2012). In convex learning and optimization, several momentum
methods have been developed under different machineries, which include the ones built on Nesterov’s
estimate sequence (Nesterov, 1983; 2013), methods derived from ordinary differential equations and
continuous-time techniques, (Krichene et al., 2015; Scieur et al., 2017; Attouch et al., 2018; Su et al.,
2014; Wibisono et al., 2016; Shi et al., 2018; Diakonikolas & Orecchia, 2019), approaches based on
dynamical systems and control (Hu & Lessard, 2017; Wilson et al., 2021), algorithms generated from
playing a two-player zero-sum game via no-regret learning strategies (Wang et al., 2021a; Wang &
Abernethy, 2018; Cohen et al., 2021), and a recently introduced continuized acceleration (Even et al.,
2021). On the other hand, in the non-convex world, despite numerous empirical evidence confirms
that momentum methods converge faster than gradient descent (GD) in several applications, see e.g.,
Sutskever et al. (2013); Leclerc & Madry (2020), first-order accelerated methods that provably find a
global optimal point are sparse in the literature. Indeed, there are just few results showing acceleration
over GD that we are aware. Wang et al. (2021b) show Heavy Ball has an accelerated linear rate
for training an over-parametrized ReLU network and a deep linear network, where the accelerated
linear rate has a square root dependency on the condition number of a neural tangent kernel matrix at
initialization, while the linear rate of GD depends linearly on the condition number. When the goal is
not finding a global optimal point but a first-order stationary point, some benefits of incorporating the
dynamic of momentum can be shown (Cutkosky & Orabona, 2019; Cutkosky & Mehta, 2021; Levy
et al., 2021). Nevertheless, theoretical-grounded momentum methods in non-convex optimization are
still less investigated to our knowledge.

With the goal of advancing the progress of momentum methods in non-convex optimization in mind,
we study efficiently solving minw f(w), where the function f(·) satisfies quasar-convexity (Hinder
et al., 2020; Hardt et al., 2018; Nesterov et al., 2019; Guminov & Gasnikov, 2017; Bu & Mesbahi,
2020), which is defined in the following. Under quasar convexity, it can be shown that GD or certain
momentum methods can globally minimize a function even when the optimization landscape is
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non-convex (Hinder et al., 2020; Hardt et al., 2018; Nesterov et al., 2019; Guminov & Gasnikov,
2017; Bu & Mesbahi, 2020).
Definition 1. (Quasar convexity) Let ρ > 0. Denote w∗ a global minimizer of f(·) : Rd → R. The
function f(·) is ρ-quasar convex if for all w ∈ Rd, one has:

f(w∗) ≥ f(w) +
1

ρ
〈∇f(w), w∗ − w〉. (1)

For µ > 0, the function f(·) is (ρ, µ)-strongly quasar convex if for all w ∈ Rd, one has:

f(w∗) ≥ f(w) +
1

ρ
〈∇f(w), w∗ − w〉+

µ

2
‖w∗ − w‖2. (2)

For more characterizations of quasar convexity, we refer the reader to Hinder et al. (2020) (Appendix D
in the paper), where a thorough discussion is provided. Recall that a function f(·) is L-smooth if
f(x) ≤ f(y) + 〈∇f(y), x − y〉 + L

2 ‖x − y‖
2 for any x and y, where L > 0 is the smoothness

constant. For minimizing L-smooth and ρ-quasar convex functions, the algorithm of Hinder et al.
(2020) takes O

(
L1/2‖w0−w∗‖

ρε1/2

)
number of iterations and O

(
L1/2‖w0−w∗‖

ρε1/2
log
(

1
ρε

))
total number

of function and gradient evaluations for getting an ε-optimality gap. For L-smooth and (ρ, µ)-strongly

quasar convex functions, the algorithm of Hinder et al. (2020) takes O
(√

L/µ

ρ log
(
V
ε

))
number of

iterations and O
(√

L/µ

ρ log
(
V
ε

)
log
(
L/µ
ρ

))
number of function and gradient evaluations, where

V := f(w0) − f(w∗) + µ
2 ‖z0 − w∗‖2, and w0 and z0 are some initial points. Both results of

Hinder et al. (2020) improve those in the previous works of Nesterov et al. (2019) and Guminov
& Gasnikov (2017) for minimizing quasar and strongly quasar convex functions. A lower bound
Ω
(
L1/2‖w0−w∗‖

ρε1/2

)
on the number of gradient evaluations for minimizing quasar convex functions

via any first-order deterministic methods is also established in Hinder et al. (2020). The additional
logarithmic factors in the (upper bounds of the) number of gradient evaluations, compared to the
iteration complexity, result from a binary-search subroutine that is executed in each iteration to
determine the value of a specific parameter of the algorithm. 1 A similar concern applies to Bu &
Mesbahi (2020), where the algorithm assumes an oracle is available but its implementation needs
a subroutine which demands multiple function and gradient evaluations in each iteration. Hence,
the open questions are whether the additional logarithmic factors in the total number of gradient
evaluations can be removed and whether function evaluations are necessary for an accelerated method
to minimize quasar convex functions.

We answer them by showing an accelerated randomized algorithm that avoids the subroutine, makes
only one gradient call per iteration, and does not need function evaluations. Consequently, the
complexity of gradient calls does not incur the additional logarithmic factors as the previous works,
and, perhaps more importantly, the computational cost per iteration is significantly reduced. The
proposed algorithms are built on the continuized discretization technique that is recently introduced
by Even et al. (2021) to the optimization community, which offers a nice way to implement a
continuous-time dynamic as a discrete-time algorithm. Specifically, the technique allows one to use
differential calculus to design and analyze an algorithm in continuous time, while the discretization
of the continuized process does not suffer any discretization error thanks to the fact that the Poisson
process can be simulated exactly. Our acceleration results in this paper champion the approach, and
provably showcase the advantage of momentum over GD for minimizing quasar convex functions.

While previous works of quasar convexity are theoretically interesting, a lingering issue is that few
examples are known in non-convex machine learning. While some synthetic functions are shown
in previous works (Hinder et al., 2020; Nesterov et al., 2019; Guminov & Gasnikov, 2017), the
only practical non-convex learning applications that we are aware are given by Hardt et al. (2018),
where they show that for learning a class of linear dynamical systems, a relevant objective function
over a convex constraint set satisfies quasar convexity, and by Foster et al. (2018), where they
show that a robust linear regression with Tukey’s biweight loss and a GLM with an increasing
link function satisfy quasar convexity, under the assumption that the link function has a bounded

1For the reader’s convenience, we replicate the algorithms of Hinder et al. (2020) in Appendix A.
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second derivative (which excludes the case of Leaky-ReLU). In this work, we find that the objective
functions of learning GLMs with link functions being logistic, quadratic, ReLU, or Leaky-ReLU
satisfy (strong) quasar convexity, under mild assumptions on the data distribution. We also establish
connections between strong quasar convexity and one-point convexity (Guille-Escuret et al., 2022;
Kleinberg et al., 2018), the Polyak-Łojasiewicz (PL) condition (Polyak, 1963; Karimi et al., 2016),
and the quadratic-growth (QG) condition (Drusvyatskiy & Lewis, 2018). Our findings suggest that
investigating minimizing quasar convex functions is not only theoretically interesting, but is also
practical for certain non-convex learning applications.

To summarize, our contributions include:

• For minimizing functions satisfying quasar convexity or strong quasar convexity, we show
that the continuized Nesterov acceleration not only has the optimal iteration complexity, but
also makes the same number of gradient calls required to get an expected ε-optimality gap
or an ε-gap with high probability. The continuized Nesterov acceleration avoids multiple
gradient calls in each iteration, in contrast to the previous works. We also propose an
accelerated algorithm that uses stochastic pseudo-gradients for learning a class of GLMs.

• We find that GLMs with various link functions satisfy quasar convexity. Moreover, we
show that if a smooth one-point convex, PL, or QG function satisfies quasar convexity,
then acceleration for minimizing the function is possible under certain conditions, while
acceleration over GD is not known for these classes of functions in general in the literature.

2 PRELIMINARIES

Related works of gradient-based algorithms for structured non-convex optimization:
Studying gradient-based algorithms under some relaxed notions of convexity has seen a growing
interest in non-convex optimization, e.g., (Gower et al., 2021; Vaswani et al., 2019; 2022; Jin, 2020).
These variegated notions include one-point convexity (Guille-Escuret et al., 2022; Kleinberg et al.,
2018), the PL condition (Polyak, 1963; Karimi et al., 2016), the QG condition (Drusvyatskiy &
Lewis, 2018), the error bound condition (Luo & Tseng, 1993; Drusvyatskiy & Lewis, 2018), local
quasi convexity (Hazan et al., 2016), the regularity condition (Chi et al., 2019), variational coherence
(Zhou et al., 2017), and quasar convexity (Hinder et al., 2020; Hardt et al., 2018; Nesterov et al.,
2019; Guminov & Gasnikov, 2017; Bu & Mesbahi, 2020). For more details, we refer the reader to
the references therein.

The continuized technique of designing optimization algorithms:
The continuized technique was introduced in Aldous & Fill (2002) under the subject of Markov
chain and was recently used in optimization by Even et al. (2021), where they consider the following
random process and build a connection to Nesterov’s acceleration (Nesterov, 1983; 2013):

dwt = ηt(zt − wt)dt− γt∇f(wt)dN(t)

dzt = η′t(wt − zt)dt− γ′t∇f(wt)dN(t),
(3)

in which ηt, η′t, γt, γ
′
t are parameters to be chosen and dN(t) is the Poisson point measure. More

precisely, one has dN(t) =
∑
k≥1 δTk(dt), where the random times T1, T2, . . . , Tk, . . . are such that

the increments T1, T2 − T1, T3 − T2, . . . follow i.i.d. from the exponential distribution with mean
1 (so E[Tk] = k). Between the random times, the continuized process (3) reduces to a system of
ordinary differential equations:

dwt = ηt(zt − wt)dt (4)

dzt = η′t(wt − zt)dt. (5)

At the random time Tk, the dynamic (3) is equivalent to taking GD steps:

wTk = wTk− − γTk∇f(wTk−) (6)

zTk = zTk− − γ′Tk∇f(wTk−). (7)

A nice feature of this continuized technique is that one can implement the dynamic (3) without
causing any discretization error, thanks to the fact that the Poisson process can be simulated exactly.
In contrast, other continuous-time approaches (Krichene et al., 2015; Scieur et al., 2017; Attouch

3



Under review as a conference paper at ICLR 2023

et al., 2018; Su et al., 2014; Wibisono et al., 2016; Shi et al., 2018; Diakonikolas & Orecchia, 2019)
do not enjoy such a benefit. The formal statement of the continuized discretization is replicated as
follows.

Lemma 1. (Theorem 3 in Even et al. (2021)) The discretization of the continuized Nesterov accelera-
tion (3) can be implemented as w̃k := wTk , ṽk := wTk+1−, z̃k := zTk . Furthermore, the update of
the discretized process is in the following form:

ṽk = w̃k + τk(z̃k − w̃k) (8)
w̃k+1 = ṽk − γ̃k+1∇f(ṽk) (9)

z̃k+1 = z̃k + τ ′k(ṽk − z̃k)− γ̃′k+1∇f(ṽk), (10)

where τk, τ ′k, γ̃k, γ̃
′
k are random parameters that are functions of ηt, η′t, γt, and γ′t.

We replicate the proof of Lemma 1 in Appendix B. Using the continuized technique, Even et al.
(2021) analyze the continuized Nesterov acceleration (3) for minimizing smooth convex functions
and smooth strongly convex functions with an application in asynchronous distributed optimization.

3 MAIN RESULTS: APPLICATION ASPECTS

3.1 EXAMPLES OF QUASAR CONVEXITY

We start by identifying a class of functions that satisfy quasar convexity. To get the ball rolling, we
need to introduce two notions first.

Definition 2. (Cv-generalized variational coherence w.r.t. a function h(·, ·)) Denote w∗ ∈ Rd a
global minimizer of a function f(·). We say that the function f(·) is generalized variational coherent
with the parameter Cv > 0 if for all w ∈ Rd, one has: 〈∇f(w), w − w∗〉 ≥ Cvh(w,w∗), where
h(w,w∗) : Rd × Rd → R+ is a non-negative function whose inputs are w and w∗.

Observe that if a function is generalized variational coherent, then it is variational coherent, i.e.,
〈∇f(w), w −w∗〉 ≥ 0, which is a condition that allows an almost-sure convergence to w∗ via mirror
descent (Zhou et al., 2017). Also, when the non-negative function h(w,w∗) is a squared l2 norm, i.e.,
h(w,w∗) = ‖w − w∗‖22, it becomes one-point convexity, i.e., 〈∇f(w), w − w∗〉 ≥ Cv‖w − w∗‖22.
In the literature, a few non-convex learning problems have been shown to exhibit one-point convexity,
see e.g., Yehudai & Shamir (2020); Sattar & Oymak (2022); Li & Yuan (2017); Kleinberg et al.
(2018). However, Guille-Escuret et al. (2022) recently show that for minimizing the class of functions
that are one-point convex w.r.t. a global minimizer w∗ and have gradient Lipschitzness in the sense
that ‖∇f(w)−∇f(w∗)‖2 ≤ L‖w − w∗‖2 for any w ∈ Rd (which is called the upper error bound
condition in their terminology), GD is optimal among any first-order methods, which suggests that a
different condition than the upper error bound condition might be necessary to show acceleration
over GD for functions satisfying one-point convexity.

Definition 3. (Cl-generalized smoothness w.r.t. a function h(·, ·)) Denote w∗ ∈ Rd a global
minimizer of a function f(·). We say that the function f(·) is generalized smooth with the parameter
Cl > 0 if for all w ∈ Rd, one has: f(w)− f(w∗) ≤ Clh(w,w∗), where h(w,w∗) : Rd ×Rd → R+

is a non-negative function whose inputs are w and w∗.

We see that if a function f(·) is L-smooth w.r.t. a norm ‖ · ‖, then it is L
2 -generalized smooth w.r.t. the

square norm, i.e., h(w,w∗) = ‖w − w∗‖2.

Lemma 2. If f(·) is Cv-generalized variational coherent and Cl-generalized smooth w.r.t. the same
non-negative function h(·, ·), then the function satisfies ρ-quasar convexity with ρ = Cv

Cl
.

Proof. Using the definitions, we have f(w)− f(w∗) ≤ Clh(w,w∗) ≤ Cl
Cv
〈∇f(w), w − w∗〉.

Lemma 2 could be viewed as a modified result of Lemma 5 in Foster et al. (2018), where the authors
show that a GLM with the link function having a bounded second derivative and a positive first
derivative satisfies quasar convexity. In the following, we provide three more examples of quasar
convexity, while the proofs are deferred to Appendix C. For these examples, we assume that each
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sample x ∈ Rd is i.i.d. from a distribution D, and that there exists a w∗ ∈ Rd such that its label
is generated as y = σ(w>∗ x), where σ(·) : R → R is the link function of a GLM. We consider
minimizing the square loss function:

f(w) := Ex∼D
[

1
2

(
σ(w>x)− y

)2]
. (11)

3.1.1 EXAMPLE 1: (GLMS WITH INCREASING LINK FUNCTIONS)

Lemma 3. Suppose that the link function σ(z) is L0-Lipschitz and α-increasing, i.e., σ′(z) ≥ α > 0

for all z > R. Then, the loss function (11) is α2-generalized variational coherent and L2
0

2 -generalized
smooth w.r.t. h(w,w∗) = Ex∼D

[
((w − w∗)>x)2

]
. Therefore, it is ρ = 2α2

L2
0

-quasar convex.

An example of the link functions that satisfy the assumption is the Leaky-ReLU, i.e., σ(z) =
max(αz, z), where α > 0. If we further assume that the models w, w∗, and the features x in (11)
have finite length so that the input to the link function σ(·) is bounded, then the logistic link function,
i.e., σ(z) = (1 + exp(−z))−1, is another example.

3.1.2 EXAMPLE 2: (PHASE RETRIEVAL)

When the link function is quadratic, i.e., σ(z) = z2, the objective function becomes that of phase
retrieval, see e.g., Yonel & Yazici (2020); Chi et al. (2019). White et al. (2016), Yonel & Yazici
(2020) show that in the neighborhood of the global minimizers ±w∗, the function satisfies one-point
convexity in terms of the l2 norm when the data distribution D follows a Gaussian distribution,
for which a specialized initialization technique called the spectral initialization finds a point in the
neighborhood (Ma et al., 2020). As discussed earlier, one-point convexity is equivalent to generalized
coherence w.r.t. the square norm, i.e., h(w,w∗) = ‖w − w∗‖22. Therefore, by Lemma 2, to show
quasar convexity for all w in the neighborhood of ±w∗, it remains to show that the objective function
is generalized smooth w.r.t. the square norm ‖w − w∗‖22.
Lemma 4. Assume that there exists a finite constant CR > 0 such that all w ∈ Rd in the balls of
radius R centered at ±w∗ satisfy Ex∼D

[(
(w + w∗)

>x
)2 ‖x‖22] ≤ CR. Then, the loss function (11)

is 1
2CR-generalized smooth w.r.t. h(w,w∗) = ‖w − w∗‖22.

An example of the distribution D that satisfies the assumption in Lemma 4 is a Gaussian distribution.

3.1.3 EXAMPLE 3: (LEARNING A SINGLE RELU)

When the link function is ReLU, i.e., σ(z) = max{0, z}, Theorem 4.2 in Yehudai & Shamir (2020)
shows that under mild assumptions of the data distribution, e.g., D is a Gaussian, the objective
function is one-point convex in terms of the l2 norm. Therefore, as the case of phase retrieval, it
remains to show generalized smoothness w.r.t. the square norm ‖w − w∗‖22 for showing quasar
convexity.
Lemma 5. When the link function is ReLU, the loss function (11) is 1

2Ex∼D[‖x‖22]-generalized
smooth w.r.t. h(w,w∗) = ‖w − w∗‖22.

3.2 EXAMPLES OF STRONG QUASAR CONVEXITY

In this subsection, we switch to investigate strong quasar convexity. We establish its connections to
one-point convexity, the PL condition, and the QG condition.

3.2.1 ONE-POINT CONVEX FUNCTIONS WITH QUASAR CONVEXITY

It turns out that if a Cv-one-point convex function f(·) satisfies ρ-quasar convexity, then it also
satisfies strong quasar convexity. Specifically, we have the following lemma.
Lemma 6. Suppose that the function f(·) satisfies Cv-one-point convexity and ρ̂-quasar convexity.

Then, it is also
(
ρ = ρ̂

θ , µ = 2Cv(θ−1)
ρ̂

)
-strongly quasar convex for any θ > 1.

The proof is deferred to Appendix C.4. By Lemma 6, phase retrieval and ReLU regression illustrated
in the previous subsection can also be strongly quasar convex.

5



Under review as a conference paper at ICLR 2023

3.2.2 POLYAK-ŁOJASIEWICZ (PL) OR QUADRATIC-GROWTH (QG) FUNCTIONS WITH QUASAR
CONVEXITY

Recall that a function f(·) satisfies ν-QG w.r.t. a global minimizer w∗ ∈ Rd if f(w) − f(w∗) ≥
ν
2‖w − w∗‖

2 for some ν > 0 and all w ∈ Rd (Drusvyatskiy & Lewis, 2018; Karimi et al., 2016).
Recall also that a function f(·) satisfies ν-PL if 2ν(f(w) − f(w∗)) ≤ ‖∇f(w)‖2 for some ν > 0
and all w ∈ Rd (Karimi et al., 2016). It is known that a ν-PL function satisfies ν-QG, see e.g.,
Appendix A in Karimi et al. (2016). The notion of PL has been discovered in various non-convex
problems recently (Altschuler et al., 2021; Oymak & Soltanolkotabi, 2019; Chizat, 2021; Merigot
et al., 2021). We show in Lemma 7 below that if a ν-QG function f(·) satisfies quasar convexity, then
it also satisfies strong quasar convexity.
Lemma 7. Suppose that the function f(·) is ν-QG and ρ̂-quasar convex w.r.t. a global minimizer w∗.
Then, it is also (ρ = ρ̂θ, µ = ν(1−θ)

θ )-strongly quasar convex for any θ < 1.

Lemma 8 in the following shows that GLMs with increasing link functions satisfy QG under certain
distributions D, e.g., Gaussian, and hence they are strongly quasar convex by Lemma 7 and Lemma 3.
Lemma 8. Following the setting of Lemma 3, assume that the smallest eigenvalue of the matrix
Ex∼D[xx>] satisfies λmin(Ex∼D[xx>]) > 0. Then, the function (11) is α2λmin(Ex∼D[xx>])-QG.

The proofs of Lemma 7 and Lemma 8 are available in Appendix C.5.

4 MAIN RESULTS: ALGORITHMIC ASPECTS

We first analyze the continuized Nesterov acceleration (3) and its discrete-time version (8)-(10) for
minimizing quasar convex functions.
Theorem 1. Assume that the function f(·) is L-smooth and ρ-quasar convex. Let ηt = 2

ρt , η
′
t =

0, γt = 1
L , and γ′t = ρt

2L . Then, the update wt of the continuized algorithm (3) satisfies

E[f(wt)− f(w∗)] ≤ 2L‖z0−w∗‖2
ρ2t2 .

Furthermore, for the update w̃k of the discrete-time algorithm (8)-(10), if the parameters are chosen

as τk = 1−
(

Tk
Tk+1

)2/ρ

, τ ′k = 0, γ̃k = 1
L , and γ̃′k = ρTk

2L , then

E
[
T 2
k (f(w̃k)− f(w∗))

]
≤ 2L‖z̃0−w∗‖2

ρ2 .

It is noted that the expectation E is with respect to the Poisson process, which is the only source of
randomness in the continuized Nesterov acceleration. By applying some concentration inequalities,
we can get a bound on the optimal gap with a high probability from Theorem 1.
Corollary 1. The update w̃k of the algorithm (8)-(10) with the same parameters indicated in
Theorem 1 satisfies f(w̃k)− f(w∗) ≤ 2c0L‖z̃0−w∗‖2

(1−c)2ρ2k2 , with probability at least 1− 1
c2k −

1
c0

for any
c ∈ (0, 1) and c0 > 1.

Corollary 1 implies that K = O
(
L1/2‖z̃0−w∗‖

ρε1/2

)
number of gradient calls is sufficient for the discrete-

time algorithm to get an ε-optimality gap with a high probability, since the discrete-time algorithm
only queries one gradient in each iteration k.

Next we analyze the convergence rate for minimizing (ρ, µ)-strongly quasar-convex functions.
Theorem 2. Assume that the function f(·) is L-smooth and (ρ, µ)-strongly quasar convex, where
µ > 0. Let γt = 1

L , γ′t = 1√
µL

, η′t = ρ
√

µ
L , and ηt =

√
µ
L . Then, the update wt of the continuized

algorithm (3) satisfies
E[f(wt)− f(w∗)] ≤

(
f(w0)− f(w∗) + µ

2 ‖z0 − w∗‖2
)

exp
(
−ρ
√

µ
L t
)
.

Furthermore, for the update w̃k of the discrete-time algorithm (8)-(10), if the parameters are chosen as

τk = 1
1+ρ

(
1− exp

(
−(1 + ρ)

√
µ
L (Tk+1 − Tk)

))
, τ ′k =

ρ(1−exp(−(1+ρ)
√

µ
L (Tk+1−Tk)))

ρ+exp(−(1+ρ)
√

µ
L (Tk+1−Tk))

, γ̃k = 1
L ,

and γ̃′k = 1√
µL

, then

E
[
exp

(
ρ
√

µ
LTk

)
(f(w̃k)− f(w∗))

]
≤ f(w̃0)− f(w∗) + µ

2 ‖z̃0 − w∗‖2.
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Corollary 2. The update w̃k of the algorithm (8)-(10) with the same parameters indicated in
Theorem 2 satisfies f(w̃k)− f(w∗) ≤ c0

(
f(w̃0)− f(w∗) + µ

2 ‖z̃0 − w∗‖2
)

exp
(
−ρ
√

µ
L (1− c)k

)
,

with probability at least 1− 1
c2k −

1
c0

for any c ∈ (0, 1) and c0 > 1.

The proof of the above theorems and corollaries are available in Appendix D. Denote V :=
f(w̃0)− f(w∗) + µ

2 ‖z̃0 −w∗‖2. Theorem 2 and Corollary 2 show that the proposed algorithm takes

O

(√
L/µ

ρ log
(
V
ε

))
number of iterations with the same number of gradient evaluations to get an

ε-expected optimality gap and an ε-optimality gap with a high probability respectively. Together
with Theorem 1 and Corollary 1, these theoretical results show that the continuized Nesterov accel-
eration has an advantage compared to the existing algorithms of minimizing quasar and strongly
quasar-convex functions (Hinder et al., 2020; Bu & Mesbahi, 2020; Nesterov et al., 2019; Guminov
& Gasnikov, 2017), as it avoids multiple gradient calls in each iteration and does not need function
evaluations to have an ε-gap with a high probability. On the other hand, it should be emphasized that
the guarantees in the aforementioned works are deterministic bounds, while ours is an expected one
or a high-probability bound.

Recall Lemma 2 suggests that Cv-one-point convexity and L-smoothness implies ρ = 2Cv
L quasar

convexity. Furthermore, Lemma 6 states that ρ̂ quasar convexity and Cv-one-point convexity actually
implies

(
ρ = ρ̂

θ , µ = 2Cv(θ−1)
ρ̂

)
-strongly quasar convex for any θ > 1. By combining Lemma 2 and

Lemma 6, we find that Cv-one-point convexity and L-smoothness implies (ρ = 2Cv
Lθ , µ = L(θ − 1))-

strong quasar convexity, for any θ > 1. By substituting (ρ = 2Cv
Lθ , µ = L(θ− 1)) into the complexity

O

(√
L/µ

ρ log
(
V
ε

))
indicated by Corollary 2, we see that the required number of iterations to get

an ε gap with high probability for minimizing functions that satisfy Cv-one-point convexity and
L-smoothness via the proposed algorithm is O

(
L
Cv

θ√
θ−1

log
(
V
ε

))
= O

(
L
Cv

log
(
V
ε

))
, where we

simply let θ = 2. On the other hand, Guille-Escuret et al. (2022) consider minimizing a class
of functions that satisfies Cv-one-point convexity and a condition called the L-upper error bound
condition (L-EB+). A function satisfies L-EB+ if ‖∇f(w) − ∇f(w∗)‖2 ≤ L‖w − w∗‖2 for a
fixed minimizer w∗ and any w ∈ Rd. Guille-Escuret et al. (2022) show that the optimal iteration
complexity k to have ‖wk−w∗‖

2
2

‖w0−w∗‖22
= ε̂ for minimizing the class of functions via any first-order algorithm

is k = Θ

((
L
Cv

)2

log
(

1
ε̂

))
and that the optimal complexity is simply attained by GD. Our result

does not contradict to this lower bound result, because L-smoothness and L-EB+ are different.
L-EB+ is about gradient Lipschitzness between a minimizer w∗ and any w, not for any pair of points
in Rd, and hence does not imply L-smoothness. Also, L-smoothness does not imply L-EB+.

Lastly, it is noted that both theorems (and corollaries) require the L-smoothness condition. The reader
might raise a question whether the smoothness holds for the case when a GLM with the link function
is ReLU or Leaky-ReLU. For this case, it has been shown that the objective (11) satisfies smoothness
when the data distribution is a Gaussian distribution, e.g., Lemma 5.2 in Zhang et al. (2018).

Continuized accelerated algorithm with stochastic pseudo-gradients for GLMs: We also propose
a stochastic algorithm to recover an unknown GLM w∗ ∈ Rd that generates the label y of a sample
x ∈ Rd via y = σ(w>∗ x), where σ(·) is the link function. A natural metric for this task is the distance
to the unknown target w∗, i.e., f(w) := 1

2‖w − w∗‖
2
2, However, since we do not have access to

w∗, we cannot use the gradients of f(·) for the update. Instead, let us consider using stochastic
pseudo-gradients, defined as g(w; ξ) :=

(
σ(w>x)− y

)
x, where ξ := (x, y) represents a random

sample drawn from the data distribution. Assume that the first derivative of the link function is
positive, i.e., σ′(·) ≥ α > 0. Then, the expectation of the dot product between the pseudo-gradient
and the gradient∇f(w) over the data distribution satisfies

Eξ[〈g(w; ξ),∇f(w)〉] = Eξ[〈
(
σ(w>x)− y

)
x,w − w∗〉] = Ex[〈

(
σ(w>x)− σ(w>∗ x)

)
x,w − w∗〉]

= Ex
[

(σ(w>x)−σ(w>∗ x))
w>x−w>∗ x

(
(w − w∗)>x

)2] ≥ αEx [((w − w∗)>x)2] ,
(12)

7
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which implies that taking a negative of pseudo-gradient step should make progress on minimizing the
distance 1

2‖w − w∗‖
2
2 on expectation when w has not converged to w∗. That is, the update wt+1 =

wt − ηg(wt; ξ) could be shown to converge to the target w∗ ∈ Rd under certain conditions, where
η > 0 is the step size. In fact, this algorithm is called (stochastic) GLMtron in the literature (Kakade
et al., 2011). We introduce a continuized acceleration of it in the following. But before that, let us
provide some necessary ingredients first.

Denote a matrix H(w) := Ex[ψ(w>x,w>∗ x)xx>], where ψ(a, b) := σ(a)−σ(b)
a−b . When the data

matrix satisfies Ex[xx>] � θId for some θ > 0 and when the derivative of the link function σ(·)
satisfies σ′(·) ≥ α > 0, one has H(w) � µId � 0, where µ := αθ. We assume that for any
w ∈ Rd, it holds that Ex

[
ψ(w>x,w>∗ x)2‖x‖22xx>

]
� R2H(w) for some constant R2 > 0, and

also that Ex
[
ψ(w>x,w>∗ x)2‖x‖2H(w)−1xx>

]
� κ̃H(w) for some constant κ̃ > 0, where we denote

‖x‖2H(w)−1 := x>H(w)−1x and H(w)−1 is the inverse of H(w). Define κ := R2

µ . Then, we

have κ̃ ≤ κ, because Ex
[
ψ(w>x,w>∗ x)2‖x‖2H(w)−1xx>

]
� 1

µEx
[
ψ(w>x,w>∗ x)2‖x‖22xx>

]
�

R2

µ H(w) = κH(w). The assumptions can be viewed as a generalization of the assumptions made in
Jain et al. (2018); Even et al. (2021) for the standard least-square regression, in which case one has
σ(z) = z and hence ψ(·, ·) = 1.

Our continuized acceleration with stochastic pseudo-gradient steps can be formulated as:

dwt = ηt(zt − wt)dt− γt
∫

Ξ
g(wt; ξ)dN(t, ξ)

dzt = η′t(wt − zt)dt− γ′t
∫

Ξ
g(wt; ξ)dN(t, ξ),

(13)

where ηt, η′t, γt, γ
′
t are parameters, ξ ∈ Ξ represents an i.i.d. random variable associated with a sample

used to compute a stochastic pseudo-gradient g(w; ξ), and dN(t, ξ) = Σk≥1δ(Tk,ξk)(dt, dξ) is the
Poisson point measure on R≥0 × Ξ. We have Theorem 3 in the following, and its proof is available
in Appendix E, where we also provide a convergence guarantee of the discrete-time algorithm.

Theorem 3. (Continuized algorithm (13) for GLMs) Choose η′t =
√

µ
κ̃R2 , ηt =

√
µ
κ̃R2 , γt = 1

R2 ,
and γ′t = 1√

µκ̃R2
. Then, the update wt of (13) satisfies

E
[

1
2‖wt − w∗‖

2
2

]
≤ 1

2

(
‖w0 − w∗‖22 + µ‖z0 − w∗‖2H(w0)−1

)
exp

(
−
√

µ
κ̃R2 t

)
.

5 EXPERIMENTS

We compare the proposed continuized acceleration with GD and the accelerated method of Hin-
der et al. (2020) (AGD). For the method of Hinder et al. (2020), we use their implementation
available online (Hinder et al., 2021). Our first set of experiments consider optimizing the
empirical risks of GLMs with link functions being logistic, ReLU, and quadratic, i.e., solving
minw

1
n

∑n
i=1

[
1
2

(
σ(w>xi)− yi

)2]
, where n is the number of samples. Each data point xi is sam-

pled from the normal distribution N(0, Id) and the label yi is generated as yi = σ(w>∗ xi), where
w∗ ∼ N(0, Id) is the true vector and σ(·) is the link function. In the experiments, we set the number
of samples n = 1000 and the dimension d = 50. The initial point of all the algorithms w0 ∈ Rd is
a close-to-zero point, and is sampled as w0 ∼ 10−2ζ, where ζ ∼ N(0, Id). Since the continuized
acceleration has randomness due to the Poisson process, it was replicated 10 runs in the experiments,
and the averaged results over these runs are reported. Both the continuized acceleration and AGD
of Hinder et al. (2021) need the knowledge of L, ρ, and µ for setting their parameters theoretically.
We instead use the grid search and report the result under the best configuration of these parameters
for each method. More precisely, we search L and µ over {. . . , 10q, 5× 10q, 10q+1, . . . } with the
constraint that L > µ, where q ∈ {−2,−1, . . . , 4}, and search ρ ∈ {0.01, 0.1, 0.5}.
Figure 1 shows the results, where we compare the performance of the algorithms in terms of the
function value versus iteration, the number of gradient calls, and CPU time (seconds). From the
first column of the figure, one can see that the proposed continuized acceleration is competitive with
AGD of Hinder et al. (2020) in terms of the number of iterations. From the middle and the last
column, the continuized acceleration shows its promising results over AGD and GD when they are

8
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(a) Logistic link (x: iteration). (b) Logistic link (x: # calls). (c) Logistic link (x: time).

(d) ReLU link (x: iteration). (e) ReLU link (x: # calls). (f) ReLU link (x: time).

(g) Quadratic link (x: iteration). (h) Quadratic link (x: # calls). (i) Quadratic link (x: time).

Figure 1: Comparison of the continuized Nesterov acceleration, GD, and AGD (Hinder et al., 2020).

(a) Leaky-ReLU link (α = 0.01). (b) Leaky-ReLU link (α = 0.1) (c) Leaky-ReLU link (α = 0.5)

Figure 2: Distance ‖wk − w∗‖ v.s. iteration k.

measured in terms of the number of gradient calls and CPU time, which confirms that the cost of
AGD per iteration is indeed higher than the continuized acceleration and showcases the advantage of
the continuized acceleration. Our second set of experiments compare stochastic GLMtron and the
proposed continuized acceleration of it (accelerated stochastic GLMtron), in which both algorithms
randomly select a sample to compute a stochastic pseudo-gradient at each step of the update. We
consider learning a GLM with a Leaky-ReLU, i.e., σ(z) = max(αz, z) under different values of α.
Figure 2 shows the effectiveness of accelerated stochastic GLMtron, as it is significantly faster than
stochastic GLMtron for recovering the true vector w∗.

6 CONCLUSION

We show that the continuized Nesterov acceleration outperforms the previous accelerated methods
for minimizing quasar convex functions. Compared to the previous approaches, the continuized
discretization technique provides a relatively easy way to design and analyze an accelerated algorithm
for quasar convex functions. Hence, it would be interesting to check whether this technique could
offer any other benefits in non-convex optimization. Specifically, can the technique help design fast
algorithms for minimizing other classes of non-convex functions? On the other hand, while examples
of quasar convex functions are provided in this paper, a natural question is if this property holds
more broadly in modern machine learning applications. Exploring the possibilities might be another
interesting direction.
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A ALGORITHMS OF HINDER ET AL. (2020)

We replicate the algorithms in Hinder et al. (2020) using our notations for the reader’s reference.
Their algorithms use a subroutine of binary search to determine the “mixing” parameter τk.

Algorithm 1: AGD for (ρ, µ)-strongly quasar convex function minimization in Hinder et al.
(2020)

1: Set τk = ρ
√

µ
L , γ̃k = 1

L , and γ̃′k = 1√
µL

2: for k = 0, 1, . . . ,K do
3: αk ← BINARYLINESEARCH

(
f, wk, zk, b = ρµ

2 , c =
√

L
µ , ε̃ = 0

)
.

4: τk ← 1− αk.
5: vk = wk + τk(zk − wk).
6: wk+1 = vk − γ̃k+1∇f(vk).
7: zk+1 = zk + τ ′k(vk − zk)− γ̃′k+1∇f(vk).
8: end
9: return wK

Algorithm 2: AGD for ρ-quasar convex function minimization in Hinder et al. (2020)

1: Set τk = 0, γ̃k = 1
L , and γ̃′k = ρ

Lθk
, where θk = θk−1

2

(√
(θk−1)2 + 4− θk−1

)
for k ≥ 0 and

θ−1 = 1.
2: for k = 0, 1, . . . ,K do
3: αk ← BINARYLINESEARCH

(
f, wk, zk, b = 0, c = ρ

(
1
θk
− 1
)
, ε̃ = ρε

2

)
.

4: τk ← 1− αk.
5: vk = wk + τk(zk − wk).
6: wk+1 = vk − γ̃k+1∇f(vk).
7: zk+1 = zk + τ ′k(vk − zk)− γ̃′k+1∇f(vk).
8: end
9: return wK

Algorithm 3: BINARYLINESEARCH(f, w, z, b, c, ε̃,[guess]) (Hinder et al., 2020)

1: Assumptions: f is L-smooth, w, z ∈ Rd; b, c, ε̃ ≥ 0; “guess” (optional) is in [0, 1] if provided.
2: Define g(α) := f(αw + (1− α)z) and p := b‖w − z‖2.
3: if guess provided and cg(guess) + guess(g′(guess)− guess · p) ≤ cg(1) + ε̃ then return

guess;
4: if g′(1) ≤ ε̃+ p then return 1;
5: else if c = 0 or g(0) ≤ g(1) + ε̃

c then return 0;
6: τ ← 1− ε̃+p

L‖w−z‖2 .
7: lo← 0,hi← τ, α← τ .
8: while cg(α) + α(g′(α)− αp) > cg(1) + ε̃ do

α← (lo + hi)/2
if g(α) ≤ g(τ) then

hi← α;
else

lo← α;
end

9: return α.
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B PROOF OF LEMMA 1

Lemma 1 (Theorem 3 in Even et al. (2021)) The discretization of the continuized Nesterov accelera-
tion (3) can be implemented as w̃k := wTk , ṽk := wTk+1−, z̃k := zTk . Furthermore, the update of
the discretized process is in the following form:

ṽk = w̃k + τk(z̃k − w̃k) (14)
w̃k+1 = ṽk − γ̃k+1∇f(ṽk) (15)

z̃k+1 = z̃k + τ ′k(ṽk − z̃k)− γ̃′k+1∇f(ṽk), (16)

where τk, τ ′k, γ̃k, γ̃
′
k are random parameters that are functions of ηt, η′t, γt, and γ′t.

Proof. We replicate the proof in (Even et al., 2021) for completeness. Recall between random times,
we have the ODEs

dwt = ηt(zt − wt)dt (17)

dzt = η′t(wt − zt)dt. (18)

Integrating from Tk to Tk+1−,

ṽk = wTk+1− = wTk + τk(zTk − wTk) = w̃k + τk(z̃k − w̃k) (19)

zTk+1− = zTk + τ ′′k (wTk − zTk) = z̃k + τ ′′k (w̃k − z̃k), (20)

where τk and τ ′′k depend on ηt and η′t respectively. Combing the above two equations, we have

zTk+1− = z̃k + τ ′′k (
1

1− τk
(ṽk − τkz̃k)− z̃k) = z̃k + τ ′k(ṽk − z̃k), (21)

where τ ′k :=
τ ′′k

1−τk . Furthermore, from (6) and (7), we have

w̃k+1 = wTk+1
= wTk+1− − γTk+1

∇f(wTk+1−) = ṽk − γTk+1
∇f(ṽk), (22)

z̃k+1 = zTk+1
= zTk+1− − γ′Tk+1

∇f(wTk+1−)
(21)
= z̃k + τ ′k(ṽk − z̃k)− γ′Tk+1

∇f(ṽk). (23)

Hence, γ̃k+1 = γTk+1
and γ̃′k+1 = γ′Tk+1

.

C MISSING PROOFS IN SECTION 3

C.1 PROOF OF LEMMA 3

Lemma 3 Suppose that the link function σ(z) is L0-Lipschitz and α-increasing, i.e., σ′(z) ≥ α > 0

for all z > R. Then, the loss function (11) is α2-generalized variational coherent and L2
0

2 -generalized
smooth w.r.t. h(w,w∗) = Ex∼D

[
((w − w∗)>x)2

]
. Therefore, the function (11) is ρ = 2α2

L2
0

-quasar
convex.

Proof. We first show generalized variational coherence. We have

〈∇f(w), w − w∗〉
(a)
= Ex∼D

[(
σ(w>x)− σ(w>∗ x)

)
σ′(w>x)〈w − w∗, x〉

]
= Ex∼D

[(
σ(w>x)−σ(w>∗ x)

(w−w∗)>x

)
σ′(w>x)((w − w∗)>x)2

]
(b)

≥ α2Ex∼D
[
((w − w∗)>x)2

]
= α2h(w,w∗),

(24)

where (a) uses that y = σ(w>∗ x), (b) uses that σ(w>x)−σ(w>∗ x)
w>x−w>∗ x

≥ 0 as σ′(·) ≥ α > 0. Now let us
switch to show generalized smoothness. We have

f(w)− f(w∗) = Ex∼D
[

1
2

(
σ(w>x)− σ(w>∗ x)

)2]
≤ L2

0

2 Ex∼D
[
((w − w∗)>x)2

]
=

L2
0

2 h(w,w∗),
(25)
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where the inequality is due to L0-Lipschitzness of σ(·). We can now invoke Lemma 2 to conclude
that the objective function is ρ = 2α2

L2
0

-quasar convex.

C.2 PROOF OF LEMMA 4

Lemma 4 Assume that there exists a finite constant CR > 0 such that all w ∈ Rd in the balls of
radius R centered at ±w∗ satisfy Ex∼D

[(
(w + w∗)

>x
)2 ‖x‖22] ≤ CR. Then, the loss function (11)

is 1
2CR-generalized smooth w.r.t. h(w,w∗) = ‖w − w∗‖22.

Proof. We have

f(w)− f(w∗) = Ex∼D
[

1
2

(
(w>x)2 − (w>∗ x)2

)2]
= Ex∼D

[
1

2

(
(w>x)− (w>∗ x)

)2 (
(w>x) + (w>∗ x)

)2]
≤ 1

2
‖w − w∗‖22Ex∼D

[(
(w + w∗)

>x
)2 ‖x‖22] ≤ 1

2
CR‖w − w∗‖22.

(26)

C.3 PROOF OF LEMMA 5

Lemma 5 When the link function is ReLU, the loss function (11) is 1
2Ex∼D[‖x‖22]-generalized

smooth w.r.t. h(w,w∗) = ‖w − w∗‖22.

Proof. We have

f(w)− f(w∗) = Ex
[

1
2

(
σ(w>x)− σ(w>∗ x)

)2] ≤ Ex
[

1
2

(
w>x− w>∗ x

)2]
≤ Ex

[
1

2
‖w − w∗‖22‖x‖22

]
≤ 1

2Ex[‖x‖22]‖w − w∗‖22,

(27)

where the first inequality uses that ReLU is 1-Lipschitz.

C.4 PROOF OF LEMMA 6

Lemma 6 Suppose that the function f(·) satisfies Cv-one-point convexity and ρ̂-quasar convexity.

Then, it is also
(
ρ = ρ̂

θ , µ = 2Cv(θ−1)
ρ̂

)
-strongly quasar convex for any θ > 1.

Proof. We have

f(w)− f(w∗) ≤ 1
ρ̂ 〈∇f(w), w − w∗〉 = θ

ρ̂ 〈∇f(w), w − w∗〉 − θ−1
ρ̂ 〈∇f(w), w − w∗〉

≤ θ
ρ̂ 〈∇f(w), w − w∗〉 − θ−1

ρ̂ Cv‖w − w∗‖2,
(28)

where the last inequality uses the definition of Cv-one-point convexity. Rearranging the above
inequality, we get f(w∗) ≥ f(w) + 1

ρ̂/θ 〈∇f(w), w∗ − w〉+ 2Cv(θ−1)/ρ̂
2 ‖w∗ − w‖2.

C.5 PROOF OF LEMMA 7 AND LEMMA 8

Lemma 7 Suppose that the function f(·) is ν-QG and ρ̂-quasar convex w.r.t. a global minimizer w∗.
Then, it is also (ρ = ρ̂θ, µ = ν(1−θ)

θ )-strongly quasar convex for any θ < 1.
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Proof. By ρ̂-quasar convexity, we have

〈∇f(w), w − w∗〉 ≥ ρ̂(f(w)− f(w∗)) = ρ̂θ(f(w)− f(w∗)) + ρ̂(1− θ)(f(w)− f(w∗))

≥ ρ̂θ(f(w)− f(w∗)) + ρ̂(1−θ)ν
2 ‖w − w∗‖2,

(29)

where the last inequality uses the definition of ν-QG. Rearranging the above inequality, we get
f(w∗) ≥ f(w) + 1

ρ̂θ 〈∇f(w), w∗ − w〉+ ν(1−θ)/θ
2 ‖w∗ − w‖2, which shows the result.

Lemma 8 Following the setting of Lemma 3, assume that the smallest eigenvalue of the matrix
Ex∼D[xx>] satisfies λmin(Ex∼D[xx>]) > 0. Then, the function (11) is α2λmin(Ex∼D[xx>])-QG.

Proof. We have

f(w)− f(w∗) = Ex∼D
[

1

2

(
σ(w>x)− σ(w>∗ x)

)2]
= Ex∼D

[
1

2

(
σ(w>x)− σ(w>∗ x)

w>x− w>∗ x
(w>x− w>∗ x)

)2
]

≥ 1

2
α2Ex∼D

[
(w>x− w>∗ x)2

]
=

1

2
α2(w − w∗)>Ex∼D

[
xx>

]
(w − w∗)

≥ 1

2
α2λmin(Ex∼D[xx>])‖w − w∗‖2,

(30)

where the second-to-last inequality uses that the derivative of the link function satisfies σ′(·) ≥ α.

D PROOF OF THEOREM 1 AND THEOREM 2

Theorem 1 Assume that the function f(·) is L-smooth and ρ-quasar convex. Let ηt = 2
ρt , η

′
t =

0, γt = 1
L , and γ′t = ρt

2L . Then, the update wt of the continuized algorithm (3) satisfies

E[f(wt)− f(w∗)] ≤
2L‖z0 − w∗‖2

ρ2t2
.

Furthermore, for the update w̃k of the discrete-time algorithm (8)-(10), if the parameters are chosen

as τk = 1−
(

Tk
Tk+1

)2/ρ

, τ ′k = 0, γ̃k = 1
L , and γ̃′k = ρTk

2L , then

E[T 2
k (f(w̃k)− f(w∗))] ≤

2L‖z̃0 − w∗‖2

ρ2
.

Theorem 2 Assume that the function f(·) is L-smooth and (ρ, µ)-strongly quasar convex, where
µ > 0. Let γt = 1

L , γ′t = 1√
µL

, η′t = ρ
√

µ
L , and ηt =

√
µ
L . Then, the update wt of the continuized

algorithm (3) satisfies

E[f(wt)− f(w∗)] ≤
(
f(w0)− f(w∗) +

µ

2
‖z0 − w∗‖2

)
exp

(
−ρ
√
µ

L
t

)
.

Furthermore, for the update w̃k of the discrete-time algorithm (8)-(10), if the parameters are chosen as

τk = 1
1+ρ

(
1− exp

(
−(1 + ρ)

√
µ
L (Tk+1 − Tk)

))
, τ ′k =

ρ(1−exp(−(1+ρ)
√

µ
L (Tk+1−Tk)))

ρ+exp(−(1+ρ)
√

µ
L (Tk+1−Tk))

, γ̃k = 1
L ,

and γ̃′k = 1√
µL

, then

E[exp

(
ρ

√
µ

L
Tk

)
(f(w̃k)− f(w∗))] ≤ f(w̃0)− f(w∗) +

µ

2
‖z̃0 − w∗‖2.
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The proof follows that of Theorem 2 in Even et al. (2021) with some modifications to account for
(strong) quasar convexity. We will consider a Lyapunov function for the continuized process (3),
defined as:

φt := At (f(wt)− f(w∗)) +
Bt
2
‖zt − w∗‖2. (31)

We will show that φt is a super-martingale under certain choices of parameters ηt, η′t, γt, γ
′
t, At, and

Bt. Let us first denote the process w̄t := (t, wt, zt), whose dynamic is:

dw̄t = b(w̄t)dt+G(w̄t)dN(t), b(w̄t) =

[
1

ηt(zt − wt)
η′t(wt − zt)

]
, G(w̄t) =

[
0

−γt∇f(wt)
−γ′t∇f(wt)

]
. (32)

Then, by Proposition 2 of Even et al. (2021), we have

φt = φ0 +

∫ t

0

〈∇φ(w̄s), b(w̄s)〉ds+

∫ t

0

(φ(w̄s +G(w̄t))− φ(w̄s)) ds+Mt, (33)

where Mt is a martingale. Therefore, to show φt is a supermartingale, it suffices to show:

It := 〈∇φ(w̄t), b(w̄t)〉+ φ(w̄t +G(w̄t))− φ(w̄t) ≤ 0. (34)

For the first term of It. we have

〈∇φ(w̄t), b(w̄t)〉 = ∂tφ(w̄t) + 〈∂wφ(w̄t), ηt(zt − wt)〉+ 〈∂zφ(w̄t), η
′
t(wt − zt)〉

=
dAt
dt

(f(wt)− f∗) +
1

2

dBt
dt
‖zt − w∗‖2

+Atηt〈∇f(wt), zt − wt〉+Btη
′
t〈zt − w∗, zt − wt〉.

(35)

By (ρ, µ)-strongly quasar-convexity, we have

f(wt)− f(w∗) ≤
1

ρ
〈∇f(wt), wt − w∗〉 −

µ

2
‖wt − w∗‖2. (36)

Furthermore, the following inequality holds,

〈zt − w∗, wt − zt〉 ≤
1

2
(‖wt − w∗‖2 − ‖zt − w∗‖2), (37)

because 〈zt−w∗, wt−zt〉 = 〈zt−w∗, wt−w∗〉−‖zt−w∗‖2 ≤ ‖zt−w∗‖‖wt−w∗‖−‖zt−w∗‖2 ≤
1
2 (‖wt − w∗‖2 − ‖zt − w∗‖2). Combining (35)-(37) gives

〈∇φ(w̄t), b(w̄t)〉 ≤
(

1

ρ

dAt
dt
−Atηt

)
〈∇f(wt), wt − w∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖wt − w∗‖2

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − w∗‖2 +Atηt〈∇f(wt), zt − w∗〉.

(38)

For the second term of It, we have

φ(w̄t +G(w̄t))− φ(w̄t) = At (f(wt − γt∇f(wt))− f∗)

+
Bt
2

(
‖zt − γ′t∇f(wt)− w∗ + γt∇f(wt)‖2 − ‖zt − w∗‖2

)
.

(39)

Since by smoothness, we have

f(wt−γt∇f(wt))−f(wt) ≤ 〈∇f(wt),−γt∇f(wt)〉+
L

2
‖γt∇f(wt)‖2 = −γt(2−Lγt)

1

2
‖∇f(wt)‖2.

(40)
So the second term can be bounded as

φ(w̄t +G(w̄t))− φ(w̄t) ≤
(
Bt(γ

′
t)

2 −Atγt(2− Lγt)
) 1

2
‖∇f(wt)‖2 − βγ′t〈zt − w∗,∇f(wt)〉.

(41)
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Combining (34), (38), (41), we have

It ≤
(

1

ρ

dAt
dt
−Atηt

)
〈∇f(wt), wt − w∗〉+

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖wt − w∗‖2

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − w∗‖2 + (Atηt −Btγ′t)〈∇f(wt), zt − w∗〉

+
(
Bt(γ

′
t)

2 −Atγt(2− Lγt)
) 1

2
‖∇f(wt)‖2.

(42)

Now let us determine the parameters ηt, η′t, γt, γ
′
t, At and Bt. We start by taking γt = 1

L . Since we
need It ≤ 0, we want to satisfy

1

ρ

dAt
dt

= Atηt,
dBt
dt

= Btη
′
t, Atηt = Btγ

′
t, Btη

′
t =

dAt
dt

µ, Bt(γ
′
t)

2 =
At
L
. (43)

Let us choose

γ′t =

√
At
LBt

, ηt =
Btγ

′
t

At
=

√
Bt
LAt

, η′t =
dAt
dt

µ

Bt
=
ρAtηtµ

Bt
= ρµ

√
At
LBt

, (44)

which ensures that the last three conditions of (43) are satisfied. It remains to show that the first two
hold:

1

ρ

dAt
dt

= Atηt,
dBt
dt

= Btη
′
t = ρµ

√
AtBt
L

. (45)

We have

d

dt
(
√
At) =

1

2
√
At

dAt
dt

(a)
=

ρ

2

√
Bt
L
,

d

dt
(
√
Bt) =

1

2
√
Bt

dBt
dt

(b)
=
ρµ

2

√
At
L
, (46)

where (a) uses that dAtdt = ρAtηt = ρAt

√
Bt
LAt

from (45), and (b) uses dBt
dt = ρµ

√
AtBt
L from (45).

The equations on (46) imply that

d2

dt2
(
√
At) =

ρ2µ

4L

√
At,

√
Bt =

2
√
L

ρ

d

dt
(
√
At). (47)

D.1 ρ-QUASAR-CONVEX

Proof. (of Theorem 1)

For the case of µ = 0, we choose A0 = 0 and B0 = 1. From (46), we have d
dt (
√
Bt) = 0 so that

Bt = 1 and that d
dt (
√
At) = ρ

2
√
L

, consequently,
√
At = ρ t

2
√
L

. From (44), we conclude γt = 1
L ,

γ′t = ρt
2L , η′t = 0, and ηt = 2

ρt . Therefore, as φt is a super-martingale, we get

E[AT (f(wT )− f∗)] ≤ E[φT ] ≤ φ0 = ‖z0 − w∗‖2 (48)

So we have

E[f(wT )− f∗] ≤
4L‖z0 − w∗‖2

ρ2t2
. (49)

This proves the first part of Theorem 1.

The ODEs (4)-(5) become

dwt = ηt(zt − wt)dt =
2

ρt
(zt − wt)dt (50)

dzt = η′t(wt − zt)dt = 0. (51)

Integrating the ODEs from time t0 to t,

wt = zt0 +

(
t0
t

)2/ρ

(wt0 − zt0) (52)

zt = zt0 . (53)
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Using Lemma 1 with t0 = Tk, t = Tk+1−, (52) becomes

ṽk = z̃k

(
1−

(
Tk
Tk+1

)2/ρ
)

+ w̃k

(
Tk
Tk+1

)2/ρ

(54)

This together with (8) implies that τk = 1 −
(

Tk
Tk+1

)2/ρ

, while comparing (20) and (53) leads to

τ ′′k = 0 and τ ′k =
τ ′′k

1−τk = 0. Moreover, we have γ̃k = γTk = 1
L and γ̃′k = γ′Tk = ρTk

2L . This proves
the second part of Theorem 1.

D.2 (ρ, µ)-STRONGLY QUASAR-CONVEX

Proof. (of Theorem 2)

From (44), we choose γt = 1
L , γ′t = 1√

µL
, η′t = ρ

√
µ
L , ηt =

√
µ
L . We have√

At =
√
A0 exp

(
ρ

2

√
µ

L
t

)
,

√
Bt =

√
A0
√
µ exp

(
ρ

2

√
µ

L
t

)
. (55)

Then, we can conclude that

E[AT (f(wT )− f∗)] ≤ E[φT ] ≤ φ0 = A0 (f(w0)− f(w∗)) +A0
µ

2
‖z0 − w∗‖2 (56)

So we have

E[f(wT )− f∗] ≤
(

(f(w0)− f(w∗)) +
µ

2
‖z0 − w∗‖2

)
exp

(
−ρ
√
µ

L
t

)
. (57)

This proves the first part of Theorem 2.

The ODEs (4)-(5) become

dwt = ηt(zt − wt)dt =

√
µ

L
(zt − wt)dt (58)

dzt = η′t(wt − zt)dt = ρ

√
µ

L
(wt − zt)dt. (59)

The solutions are

wt =
ρwt0 + zt0

1 + ρ
+
wt0 − zt0

1 + ρ
exp

(
−(1 + ρ)

√
µ

L
(t− t0)

)
(60)

= wt0 +
1

1 + ρ

(
1− exp

(
−(1 + ρ)

√
µ

L
(t− t0)

))
(zt0 − wt0) (61)

zt =
ρwt0 + zt0

1 + ρ
+ ρ

zt0 − wt0
1 + ρ

exp

(
−(1 + ρ)

√
µ

L
(t− t0)

)
(62)

= zt0 +
ρ

1 + ρ

(
1− exp

(
−(1 + ρ)

√
µ

L
(t− t0)

))
(wt0 − zt0). (63)

Taking t0 = Tk, t = Tk+1−, the above becomes

ṽk = w̃k +
1

1 + ρ

(
1− exp

(
−(1 + ρ)

√
µ

L
(Tk+1 − Tk)

))
(z̃k − w̃k) (64)

z̃Tk+1− = z̃k +
ρ

1 + ρ

(
1− exp

(
−(1 + ρ)

√
µ

L
(Tk+1 − Tk)

))
(w̃k − z̃k) (65)

Comparing equation (64) and (14), we know that τk = 1
1+ρ

(
1− exp

(
−(1 + ρ)

√
µ
L (Tk+1 − Tk)

))
.

Furthermore, by using (64), we get

w̃k − z̃k =
1

1− 1
1+ρ

(
1− exp

(
−(1 + ρ)

√
µ
L (Tk+1 − Tk)

)) (ṽk − z̃k). (66)
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Based on (65), (66), and (21), we conclude that τ ′k =
ρ(1−exp(−(1+ρ)

√
µ
L (Tk+1−Tk)))

ρ+exp(−(1+ρ)
√

µ
L (Tk+1−Tk))

. Moreover, we

have γ̃k = γTk = 1
L and γ̃′k = γ′Tk = 1√

µL
. This proves the second part of Theorem 2.

D.3 PROOF OF COROLLARY 1 AND COROLLARY 2

Corollary 1: The update w̃k of the algorithm (8)-(10) with the same parameters indicated in
Theorem 1 satisfies f(w̃k)− f(w∗) ≤ 2c0L‖z̃0−w∗‖2

(1−c)2ρ2k2 , with probability at least 1− 1
c2k −

1
c0

for any
c ∈ (0, 1) and c0 > 1.

Proof. Using Markov’s inequality and Theorem 1, we get

Pr
[
T 2
k (f(w̃k)− f(w∗)) ≥ C0

]
≤ E[T 2

k (f(w̃k)−f(w∗))]
C0

≤ 2L‖z̃0−w∗‖2/ρ2
C0

. (67)

Let C0 := c02L‖z̃0 −w∗‖2/ρ2, where c0 > 1 is a universal constant. Then, with probability 1− 1
c0

,

T 2
k (f(w̃k)− f(w∗)) ≤ 2c0L‖z̃0−w∗‖2

ρ2 . (68)

By Chebyshev’s inequality, we have Pr (|Tk − E[Tk]| ≥ cE[Tk]) ≤ Var(Tk)
c2(E[Tk])2 , where c > 0 is a

universal constant. Hence, we have Tk ≥ (1− c)E[Tk] = (1− c)k with probability at least 1− 1
c2k ,

where we used the fact that E[Tk] = Var[Tk] = k as Tk is the sum of k Poisson random variables
with mean 1. Combining this lower bound of Tk and (68) leads to the result.

Corollary 2: The update w̃k of the algorithm (8)-(10) with the same parameters indicated in
Theorem 2 satisfies f(w̃k)− f(w∗) ≤ c0

(
f(w̃0)− f(w∗) + µ

2 ‖z̃0 − w∗‖2
)

exp
(
−ρ
√

µ
L (1− c)k

)
,

with probability at least 1− 1
c2k −

1
c0

for any c ∈ (0, 1) and c0 > 1.

Proof. Using Markov’s inequality and Theorem 2, we get

Pr
[
exp

(
ρ
√

µ
LTk

)
(f(w̃k)− f(w∗)) ≥ C0

]
≤ E[exp(ρ

√
µ
LTk)(f(w̃k)−f(w∗))]

C0
≤ f(w̃0)−f(w∗)+

µ
2 ‖z̃0−w∗‖

2

C0
.

(69)
Let C0 := c0

(
f(w̃0)− f(w∗) + µ

2 ‖z̃0 − w∗‖2
)
, where c0 > 1 is a universal constant. Then, with

probability 1− 1
c0

,

exp
(
ρ
√

µ
LTk

)
(f(w̃k)− f(w∗)) ≤ c0

(
(f(w̃0)− f(w∗)) + µ

2 ‖z̃0 − w∗‖2
)

(70)

By Chebyshev’s inequality, we have Pr (|Tk − E[Tk]| ≥ cE[Tk]) ≤ Var(Tk)
c2(E[Tk])2 , where c > 0 is a

universal constant. Hence, we have Tk ≥ (1− c)E[Tk] = (1− c)k with probability at least 1− 1
c2k ,

where we used the fact that E[Tk] = Var[Tk] = k as Tk is the sum of k Poisson random variables
with mean 1. Combining this lower bound of Tk and (70) leads to the result.

E PROOF OF THEOREM 3

Theorem 3 (Continuized algorithm (13) for GLMs) Choose η′t =
√

µ
κ̃R2 , ηt =

√
µ
κ̃R2 , γt = 1

R2 ,
and γ′t = 1√

µκ̃R2
. Then, the update wt of (13) satisfies

E
[

1

2
‖wt − w∗‖2

]
≤ 1

2

(
‖w0 − w∗‖2 + µ‖z0 − w∗‖2H(w0)−1

)
exp

(
−
√

µ

κ̃R2
t

)
.

Proof. Let us denote Ht := H(wt) = Ex[ψ(w>t x,w
>
∗ x)xx>] and consider a Lyapunov function for

the continuized process (3), defined as:

φt :=
At
2
‖wt − w∗‖2 +

Bt
2
‖zt − w∗‖2H−1

t
. (71)
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We first show that φt is a super-martingale under certain values of parameters ηt, η′t, γt, γ
′
t, At, and

Bt. Let us denote the process w̄t := (t, wt, zt), which satisfies the following equation:

dw̄t = b(w̄t)dt+

∫
Ξ

G(w̄t; ξ)dN(t, ξ), b(w̄t) =

[
1

ηt(zt − wt)
η′t(wt − zt)

]
, G(w̄t; ξ) =

[
0

−γtg(wt; ξ)
−γ′tg(wt; ξ)

]
.

(72)
Then, by Proposition 2 of Even et al. (2021), we have

φt = φ0 +

∫ t

0

Isds+Mt, (73)

where Mt is a martingale and It is

It := 〈∇φ(w̄t), b(w̄t)〉+ Eξ[φ(w̄t +G(w̄t; ξ))− φ(w̄t)] (74)

For the first term of It, we have

〈∇φ(w̄t), b(w̄t)〉 = ∂tφ(w̄t) + 〈∂wφ(w̄t), ηt(zt − wt)〉+ 〈∂zφ(w̄t), η
′
t(wt − zt)〉

=
1

2

dAt
dt
‖wt − w∗‖2 +

1

2

dBt
dt
‖zt − w∗‖2H−1

t
+Atηt〈wt − w∗, zt − wt〉+Btη

′
t〈zt − w∗, H−1

t (wt − zt)〉.
(75)

Since Ht = Ex[ψ(w>t x,w
>
∗ x)xx>] � µId, we have

µ

2
‖wt − w∗‖2H−1

t
≤ 1

2
‖wt − w∗‖2. (76)

Using (76), we have
1

2
‖wt − w∗‖2 ≤ ‖wt − w∗‖2 −

µ

2
‖wt − w∗‖2H−1

t
. (77)

Furthermore, the following inequalities hold,

〈zt − w∗, H−1
t (wt − zt)〉 ≤

1

2
(‖wt − w∗‖2H−1

t
− ‖zt − w∗‖2H−1

t
). (78)

This is because 〈zt − w∗, H
−1
t (wt − zt)〉 = 〈zt − w∗, H

−1
t (wt − w∗)〉 − ‖zt − w∗‖2H−1

t

≤
1
2

(
‖wt − w∗‖2H−1

t

− ‖zt − w∗‖2H−1
t

)
.

Combining (75)-(78), we get

〈∇φ(w̄t), b(w̄t)〉 ≤
dAt
dt
‖wt − w∗‖2 +

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖wt − w∗‖2H−1

t

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − w∗‖2H−1

t
+Atηt〈wt − w∗, zt − wt〉.

(79)

For the second term of It, we have

Eξ[φ(w̄t +G(w̄t; ξ))− φ(w̄t)]

= Eξ
[
At
2

(
‖wt − γtg(wt; ξ)− w∗‖2 − ‖wt − w∗‖2

)
+
Bt
2

(
‖zt − γ′tg(wt; ξ)− w∗‖2H−1

t
− ‖zt − w∗‖2H−1

t

)]
= Eξ

[
Atγ

2
t

2
‖g(wt; ξ)‖2 −Atγt〈wt − w∗, g(wt; ξ)〉+

Bt(γ
′
t)

2

2
‖g(wt; ξ)‖2H−1

t
−Btγ′t〈zt − w∗, H−1

t g(wt; ξ)〉
]
.

(80)

Let us upper-bound the first two terms in (80). We have

Eξ[‖g(wt; ξ)‖2] = Ex[
(
σ(w>t x)− y

)
x,
(
σ(w>t x)− y

)
x〉]

= Ex[ψ(w>t x,w
>
∗ x)2((wt − w∗)>x)2‖x‖2]

= 〈wt − w∗,Ex
[
ψ(w>t x,w

>
∗ x)2‖x‖2xx>

]
wt − w∗〉

≤ R2〈wt − w∗,Ex
[
ψ(w>t x,w

>
∗ x)xx>

]
wt − w∗〉] = R2‖wt − w∗‖2Ht ,

(81)
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where in the last inequality we used

Ex
[
ψ(w>t x,w

>
∗ x)2‖x‖2xx>

]
� R2Ex

[
ψ(w>t x,w

>
∗ x)xx>

]
= R2Ht. (82)

Furthermore, we have

Eξ[〈g(wt; ξ), wt − w∗〉] = Ex[〈
(
σ(w>x)− σ(w>∗ x)

)
x,wt − w∗〉]

= (wt − w∗)>Ex[ψ(w>x,w>∗ x)xx>](wt − w∗) = ‖wt − w∗‖2Ht .
(83)

Therefore, the first two terms in (80) can be bounded as

Eξ
[
Atγ

2
t

2
‖g(wt; ξ)‖2 −Atγt〈wt − w∗, g(wt; ξ)〉

]
≤
(
Atγ

2
tR

2

2
−Atγt

)
‖wt − w∗‖2Ht . (84)

Now let us switch to upper-bound the last two terms in (80). We have

Eξ[‖g(wt; ξ)‖2H−1
t

] = Ex
[(
σ(w>t x)− y

)
x,H−1

t

(
σ(w>t x)− y

)
x〉
]

= Ex
[
ψ(w>t x,w

>
∗ x)2((wt − w∗)>x)2‖x‖2

H−1
t

]
= 〈wt − w∗,Ex

[
ψ(w>t x,w

>
∗ x)2‖x‖2

H−1
t
xx>

]
, wt − w∗〉

≤ κ̃Ex[〈wt − w∗, ψ(w>t x,w
>
∗ x)xx>(wt − w∗)〉] = κ̃‖wt − w∗‖2Ht ,

(85)

where in the last inequality, we used the assumption that

Ex
[
ψ(w>t x,w

>
∗ x)2‖x‖2

H−1
t
xx>

]
� κ̃Ex[ψ(w>t x,w

>
∗ x)xx>] = κ̃Ht. (86)

We also have

Eξ
[
γ′t〈zt − w∗, H−1

t g(wt, ξ)〉
]

= Eξ
[
γ′t〈zt − w∗, H−1

t

(
σ(w>t x)− σ(w>∗ x)

)
x〉
]

= Eξ
[
γ′t〈zt − w∗, H−1

t ψ(w>t x,w
>
∗ x)xx>(wt − w∗)〉

]
= γ′t〈zt − w∗, wt − w∗〉.

(87)

So the last two terms in (80) can be bounded as

Eξ
[
Bt(γ

′
t)

2

2
‖g(wt; ξ)‖2H−1

t
−Btγ′t〈zt − w∗, H−1

t g(wt; ξ)〉
]
≤ Bt(γ

′
t)

2κ̃

2
‖wt − w∗‖2Ht −Btγ

′
t〈zt − w∗, wt − w∗〉.

(88)

Therefore, combining (84), (88), and (80), we have

Eξ[φ(w̄t +G(w̄t; ξ))− φ(w̄t)]

≤
(
Atγ

2
tR

2

2
−Atγt +

Bt(γ
′
t)

2κ̃

2

)
‖wt − w∗‖2Ht −Btγ

′
t〈zt − w∗, wt − w∗〉.

(89)

Combining (74), (79), and (89), we have:

It ≤
(
dAt
dt
−Atηt

)
‖wt − w∗‖2 +

(
Btη

′
t −

dAt
dt

µ

)
1

2
‖wt − w∗‖2H−1

t

+

(
dBt
dt
−Btη′t

)
1

2
‖zt − w∗‖2H−1

t
+ (Atηt −Btγ′t) 〈wt − w∗, zt − w∗〉

+

(
Atγ

2
tR

2

2
−Atγt +

Bt(γ
′
t)

2κ̃

2

)
‖wt − w∗‖2Ht .

(90)

Now let us determine ηt, η′t, γt, γ
′
t, At, and Bt. We start by taking γt = 1

R2 . We want It ≤ 0, so we
want to satisfy

dAt
dt

= Atηt,
dBt
dt

= Btη
′
t, Atηt = Btγ

′
t, Btη

′
t =

dAt
dt

µ, Bt(γ
′
t)

2 =
At
κ̃R2

. (91)
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Let us choose

γ′t =

√
At

Btκ̃R2
, ηt =

Btγ
′
t

At
=

√
Bt

κ̃R2At
, η′t =

dAt
dt

µ

Bt
=
Atηtµ

Bt
= µ

√
At

κ̃R2Bt
, (92)

which ensures that the last three conditions of (91) are satisfied. It remains to show that the first two
hold:

dAt
dt

= Atηt,
dBt
dt

= Btη
′
t = µ

√
AtBt
κ̃R2

. (93)

We have

d

dt
(
√
At) =

1

2
√
At

dAt
dt

(a)
=

1

2

√
Bt
κ̃R2

,
d

dt
(
√
Bt) =

1

2
√
Bt

dBt
dt

(b)
=
µ

2

√
At
κ̃R2

, (94)

where (a) uses that dAtdt = Atηt = At

√
Bt

κ̃R2At
and (b) uses that dBtdt = Btη

′
t = µ

√
At

κ̃R2Bt
from

(92) and (93). The equations on (94) imply that

d2

dt2
(
√
At) =

µ

4κ̃R2

√
At,

√
Bt = 2

√
κ̃R2

d

dt
(
√
At). (95)

Let us choose γt = 1
R2 , γ′t = 1√

µκ̃R2
, η′t =

√
µ
κ̃R2 , ηt =

√
µ
κ̃R2 . We have

√
At =

√
A0 exp

(
1

2

√
µ

κ̃R2
t

)
,

√
Bt =

√
A0
√
µ exp

(
1

2

√
µ

κ̃R2
t

)
. (96)

Then, we can conclude that

E[At
1

2
‖wt − w∗‖2] ≤ E[φt] ≤ φ0 =

(
A0

2
‖w0 − w∗‖2 +

B0

2
‖z0 − w∗‖2H(w0)−1

)
. (97)

So we have

E[
1

2
‖wt − w∗‖2] ≤ 1

A0

(
A0

2
‖w0 − w∗‖2 +

B0

2
‖z0 − w∗‖2H(w0)−1

)
exp

(
−
√

µ

κ̃R2
t

)
, (98)

and we have B0

A0
= µ from (96) and we can choose A0 = 1. This proves Theorem 3.

Now let us switch to determine the corresponding parameters of the discrete-time algorithm (8)-(10),
where the gradient∇(wt) is now replaced with the stochastic pseudo-gradient g(wt; ξt). The ODEs
(4)-(5) become

dwt = ηt(zt − wt)dt =

√
µ

κ̃R2
(zt − wt)dt (99)

dzt = η′t(wt − zt)dt =

√
µ

κ̃R2
(wt − zt)dt. (100)

The solutions are

wt =
wt0 + zt0

2
+
wt0 − zt0

2
exp

(
−2

√
µ

κ̃R2
(t− t0)

)
(101)

= wt0 +
1

2

(
1− exp

(
−2

√
µ

κ̃R2
(t− t0)

))
(zt0 − wt0) (102)

zt =
wt0 + zt0

2
+
zt0 − wt0

2
exp

(
−2

√
µ

κ̃R2
(t− t0)

)
(103)

= zt0 +
1

2

(
1− exp

(
−2

√
µ

κ̃R2
(t− t0)

))
(wt0 − zt0). (104)

Taking t0 = Tk, t = Tk+1−, the above becomes

ṽk = w̃k +
1

2

(
1− exp

(
−2

√
µ

κ̃R2
(Tk+1 − Tk)

))
(z̃k − w̃k) (105)

z̃Tk+1− = z̃k +
1

2

(
1− exp

(
−2

√
µ

κ̃R2
(Tk+1 − Tk)

))
(w̃k − z̃k). (106)
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Comparing equation (105) and (14), we know τk = 1
2

(
1− exp

(
−2
√

µ
κ̃R2 (Tk+1 − Tk)

))
and

τ ′′k = 1
2

(
1− exp

(
−2
√

µ
κ̃R2 (Tk+1 − Tk)

))
. Furthermore, by using (105), we get

w̃k − z̃k =
1

1− 1
2

(
1− exp

(
−2
√

µ
κ̃R2 (Tk+1 − Tk)

)) (ṽk − z̃k). (107)

Based on (106), (107), and (21), we conclude that τ ′k =
1−exp(−2

√
µ

κ̃R2 (Tk+1−Tk))
1+exp(−2

√
µ

κ̃R2 (Tk+1−Tk))
. Moreover, we

have γ̃k = γTk = 1
R2 and γ̃′k = γ′Tk = 1√

µκ̃R2
. We can now conclude that the corresponding

discrete-time algorithm under the above choice of parameters satisfies

E
[
exp

(√
µ

κ̃R2
Tk

)
1

2
‖w̃k − w∗‖2

]
≤
(

1

2
‖w̃0 − w∗‖2 +

µ

2
‖z̃0 − w∗‖2H(w̃0)−1

)
. (108)
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