
SALSA: Attacking Lattice Cryptography with
Transformers

Anonymous Author(s)
Affiliation
Address
email

Abstract

Currently deployed public-key cryptosystems will be vulnerable to attacks by1

full-scale quantum computers. Consequently, “quantum resistant” cryptosystems2

are in high demand, and lattice-based cryptosystems, based on a hard problem3

known as Learning With Errors (LWE), have emerged as strong contenders for4

standardization. In this work, we train transformers to perform modular arithmetic5

and mix half-trained models with statistical cryptanalysis techniques to propose6

SALSA: a machine learning attack on LWE-based cryptographic schemes. SALSA7

can fully recover secrets for small-to-mid size LWE instances with sparse binary8

secrets, and may scale to attack real-world LWE-based cryptosystems.9

1 Introduction10

The looming threat of quantum computers has upended the field of cryptography. Public-key11

cryptographic systems have at their heart a difficult-to-solve math problem that guarantees their12

security. The security of most current systems (e.g. [57, 28, 49]) relies on problems such as integer13

factorization, or the discrete logarithm problem in an abelian group. Unfortunately, these problems14

are vulnerable to polynomial time quantum attacks on large-scale quantum computers due to Shor’s15

Algorithm [60]. Therefore, the race is on to find new post-quantum cryptosystems (PQC) built upon16

alternative hard math problems.17

Several leading candidates in the final round of the 5-year NIST PQC competition are lattice-based18

cryptosystems, based on the hardness of the Shortest Vector Problem (SVP) [3], which involves19

finding short vectors in high dimensional lattices. Many cryptosystems have been proposed based20

on hard problems which reduce to some version of the SVP, and known attacks are largely based on21

lattice-basis reduction algorithms which aim to find short vectors via algebraic techniques. The LLL22

algorithm [42] was the original template for lattice reduction, and although it runs in polynomial23

time (in the dimension of the lattice), it returns an exponentially bad approximation to the shortest24

vector. It is an active area of research [22, 47, 1] to fully understand the behavior and running time of25

a wide range of lattice-basis reduction algorithms, but the best known classical attacks on the PQC26

candidates run in time exponential in the dimension of the lattice.27

In this paper, we focus on one of the most widely used lattice-based hardness assumptions: Learning28

With Errors (LWE) [55]. Given a dimension n, an integer modulus q, and a secret vector s ∈ Zn
q ,29

the learning with errors problem is to find the secret given noisy inner products with random vectors.30

LWE-based encryption schemes encrypt a message by blinding it with a noisy inner product. Given a31

random vector a ∈ Zn
q , the noisy inner product is b := a · s + e mod q, where e is an “error” vector32

sampled from a narrow Gaussian distribution (so its entries are small, thus the reference to noise).33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Interestingly, the assumption for cryptographic applications is that the Learning With Errors problem34

is hard: given a lot of noisy inner products of random vectors with a secret vector, it should be hard35

to learn the secret vector. However, in Machine Learning we make the opposite assumption: given a36

lot of noisy data, we can still learn patterns from it. So in this paper we investigate the possibility to37

train ML models to learn from LWE samples.38

To that end, we propose SALSA, a technique for performing Secret-recovery Attacks on LWE via39

Sequence to sequence models with Attention. SALSA trains a language model to predict b from a,40

and we develop two algorithms to recover the secret vector s using this trained model.41

Our paper has three main contributions. We demonstrate that transformers can perform modular42

arithmetic on integers and vectors. We show that transformers trained on LWE samples can be43

used to distinguish LWE instances from random. This can be further turned into two algorithms44

that recover binary secrets. We show how these techniques yield a practical attack on LWE45

based cryptosystems and demonstrate its efficacy in the cryptanalysis of small and mid-size LWE46

instances with sparse binary secrets.47

2 Lattice Cryptography and LWE48

2.1 Lattices and Hard Lattice Problems49

b
1

b
2

v

Figure 1: The dots form a lattice Λ, generated by vec-
tors b1, b2. v is the shortest vector in Λ.

An integer lattice of dimension n over Z is the50

set of all integer linear combinations of n lin-51

early independent vectors in Zn. In other words,52

given n such vectors vi ∈ Zn, i ∈ Nn, we define53

the lattice Λ(v1, ..vn) := {
∑n

i=1 aivi | ai ∈54

Z}. Given a lattice Λ, the Shortest Vector Problem (SVP) asks for a nonzero vector v ∈ Λ with55

minimal norm. Figure 1 depicts a solution to this problem in the trivial case of a 2-dimensional lattice,56

where b1 and b2 generate a lattice Λ and the green vector is the shortest vector in Λ.57

The best known algorithms to find exact solutions to SVP take exponential time and space with respect58

to n, the dimension of the lattice [48]. There exist lattice reduction algorithms to find approximate59

shortest vectors, such as LLL [42] (polynomial time, but exponentially bad approximation), or BKZ60

[22]. The shortest vector problem and its approximate variants are the hard mathematical problems61

that serve as the core of lattice-based cryptography.62

2.2 LWE63

The Learning With Errors (LWE) problem, introduced in [55], is parameterized by a dimension n, the64

number of samples m, a modulus q and an error distribution χ (e.g., the discrete Gaussian distribution)65

over Zq = {0, 1, . . . , q−1}. Regev showed that LWE is at least as hard as quantumly solving certain66

hard lattice problems. Later [52, 45, 14], showed LWE to be classically as hard as standard worst-case67

lattice problems, therefore establishing a solid foundation for building cryptographic schemes on it.68

LWE and RLWE. The LWE distribution As,χ consists of pairs (A,b) ∈ Zm×n
q × Zn

q , where A69

is a uniformly random matrix in Zm×n
q , b = As + e mod q , where s ∈ Zn

q is the secret vector70

sampled uniformly at random and e ∈ Zm
q is the error vector sampled from the error distribution χ.71

We call the pair (A,b) an LWE sample, yielding n LWE instances: one row of A together with the72

corresponding entry in b is one LWE instance. There is also a ring version of LWE, known as the73

Ring Learning with Errors (RLWE) problem (described further in Appendix A.1).74

Search-LWE and Decision-LWE. We now state the LWE hard problems. The search-LWE problem75

is to find the secret vector s given (A,b) from As,χ. The decision-LWE problem is to distinguish76

As,χ from the uniform distribution {(A,b) ∈ Zm×n
q × Zn

q : A and b are chosen uniformly at77

random)}. [55] provided a reduction from search-LWE to decision-LWE . We give a detailed proof78

of this reduction in Appendix A.2 for the case when the secret vector s is binary (i.e. entries are 079

and 1). In Section 4.3, our Distinguisher Secret Recovery method is built on this reduction proof.80

(Sparse) Binary secrets. In LWE based schemes, the secret key vector s can be sampled from81

various distributions. For efficiency reasons, binary distributions (sampling in {0, 1}n) and ternary82

2

Loss Accuracy (%)

Epochs

0 50 100 150 200 250 0 50 100 150 200 250

Epochs

00

20

40

60

80

100

8

14

12

10

6

4

2

log q

15

21

20

19

18

17

16

Figure 2: Learning modular multiplication for
various moduli. Test loss and accuracy for q with
⌈log2(q)⌉ from 15 to 21. 300,000 training exam-
ples/epoch. One layer transformers with 512 dimen-
sions, 8 attention heads, integers encoded in base 81.

Table 1: Size of the training sets required for learn-
ing modular inversion. Base-2 logarithm of the num-
ber of examples needed to reach 95% accuracy, for
different values of ⌈log2(q)⌉ and bases. ’-’ means
95% accuracy not attained after 90 million examples.

⌈log2(q)⌉
Base

2 3 5 7 24 27 30 81 128

15 23 21 23 22 20 23 22 20 20
16 24 22 22 22 22 22 22 22 21
17 - 23 25 22 23 24 22 22 22
18 - 23 25 23 23 24 25 22 22
19 - 23 - 25 25 24 - 25 24
20 - - - - 24 25 24 24 25
21 - 24 - 25 - - - - 25
22 - - - - - 25 - - 25
23 - - - - - - - - -

distributions (sampling in {−1, 0, 1}n) are commonly used, especially in homomorphic encryption83

[5]. In fact, many implementations use a sparse secret with Hamming weight h (the number of 1’s84

in the binary secret). For instance, HEAAN uses n = 215, q = 2628, ternary secret and Hamming85

weight 64 [23]. For more on the use of sparse binary secrets in LWE, see [6, 25].86

3 Modular Arithmetic with Transformers87

Two key factors make breaking LWE difficult: the presence of error and the use of modular arithmetic.88

Machine learning (ML) models tend to be robust to noise in their training data. In the absence of a89

modulus, recovering s from observations of a and b = a · s+ e merely requires linear regression, an90

easy task for ML. Once a modulus is introduced, attacking LWE requires performing linear regression91

on an n-dimensional torus, a much harder problem.92

Modular arithmetic therefore appears to be a significant challenge for an ML-based attack on LWE.93

Previous research has concluded that modular arithmetic is difficult for ML models [51], and that94

transformers struggle with basic arithmetic [50]. However, [17] showed that transformers can compute95

matrix-vector products, the basic operation in LWE, with high accuracy. As a first step towards96

attacking LWE, we investigate whether these results can be extended to the modular case.97

We begin with the one-dimensional case, training models to predict b = as mod q from a for some98

fixed unknown value of s when as ∈ Zq. This is a form of modular inversion since the model99

must implicitly learn the secret s in order to predict the correct output b. We then investigate the100

n-dimensional case, with a ∈ Zn
q and s either in Zn

q or in {0, 1}n (binary secret). In the binary case,101

this becomes a (modular) subset sum problem.102

3.1 Methods103

Data Generation. We generate training data by fixing the modulus q (a prime with 15 ≤ ⌈log2(q)⌉ ≤104

30, see the Appendix B), the dimension n, and the secret s ∈ Zn
q (or {0, 1}n in the binary case). We105

then sample a uniformly in Zn
q and compute b = a · s mod q, to create data pair (a, b).106

Encoding. Integers are encoded in base B (usually, B=81), as a sequence of digits in {0, . . . B − 1}.107

For instance, (a, b) = (16, 3) is represented as the sequences [1,0,0,0,0] and [1,1] in base 2, or108

[2,2] and [3] in base 7. In the multi-dimensional case, a special token separates the a coordinates.109

Model Training. The model is trained to predict b from a, for an unknown but fixed value of110

s. We use sequence-to-sequence transformers [65] with one layer in the encoder and decoder, 512111

dimensions and 8 attention heads. We minimize a cross-entropy loss, and use the Adam optimizer [39]112

with a learning rate of 5× 10−5. At epoch end (300000 examples), model accuracy is evaluated over113

a test set of 10000 examples. We train until test accuracy is 95% or loss plateaus for 60 epochs.114

3.2 Results115

One-Dimensional. For a fixed secret s, modular multiplication is a function from Zq into itself, that116

can be learned by memorizing q values. Our models learn modular multiplication with high accuracy117

3

for values of q such that ⌈log2(q)⌉ ≤ 22. Figure 2 presents learning curves for different values of118

log2(q). The loss and accuracy curves have a characteristic step shape, observed in many of our119

experiments, which suggests that “easier cases” (small values of ⌊as/q⌋) are learned first.120

The speed of learning and the training set size needed to reach high accuracy depend on the problem121

difficulty, i.e. the value of q. Table 1 presents the ⌈log2⌉ of the number of examples needed to reach122

95% accuracy for different values of ⌈log2(q)⌉ and base B. Since transformers learn from scratch,123

without prior knowledge of numbers and moduli, this procedure is not data-efficient. The number of124

examples needed to learn modular multiplication is between 10q and 50q. Yet, these experiments125

prove that transformers can solve the modular inversion problem in prime fields.126

Table 1 illustrates an interesting point: learning difficulty depends on the base used to represent127

integers. For instance, base 2 and 5 allow the model to learn up to ⌈log2(q)⌉ = 17 and 18, whereas128

base 3 and 7 can reach ⌈log2(q)⌉ = 21. Larger bases, especially powers of small primes, enable129

faster learning. The relation between representation base and learning difficulty is difficult to explain130

from a number theoretic standpoint. Additional experiments are in Appendix B.131

Multidimensional integer secrets. In the n-dimensional case, the model must learn the modular dot132

product between vectors a and s in Zn. The proves to be a much harder problem. For n = 2, with133

the same settings, small values of q (251, 367 and 967) can be learned with over 90% accuracy, and134

q = 1471 with 30%. In larger dimension, all models fail to learn. Increasing model depth to 2 or 4135

layers, or dimension to 1024 or 2048 and attention heads to 12 and 16, improves data efficiency (less136

training samples are needed), but does not scale to larger values of q or n > 2.137

Multidimensional binary secrets. Binary secrets make n-dimensional problems easier to learn. For138

n = 4, our models solve problems with ⌈log2(q)⌉ ≤ 29 with more than 99.5% accuracy. For n = 6139

and 8, we solve cases ⌈log2(q)⌉ ≤ 22 with more than 85% accuracy. But we did not achieve high140

accuracy for larger values of n. So in the next section, we introduce techniques for recovering secrets141

from a partially trained transformer. We then show that these additional techniques allow recovery of142

sparse binary secrets for LWE instances with 30 ≤ n ≤ 128 (so far).143

4 Introducing SALSA: LWE Cryptanalysis with Transformers144

Having established that transformers can perform integer modular arithmetic, we leverage this result to145

propose SALSA, a method for Secret-recovery Attacks on LWE via Seq2Seq models with Attention.146

4.1 SALSA Ingredients147

SALSA has three modules: a transformer model M, a secret recovery algorithm, and a secret148

verification procedure. We assume that SALSA has access to a number of LWE instances in149

dimension n that use the same secret, i.e. pairs (a, b) such that b = a · s+ e mod q, with e an error150

from a centered distribution with small standard deviation. SALSA runs in three steps. First, it uses151

LWE data to train M to predict b given a. Next SALSA runs a secret recovery algorithm. It feeds M152

special values of a, and uses the output b̃ = M(a) to predict the secret. Finally, SALSA evaluates153

the guesses s̃ by verifying that residuals r = b− a · s̃ mod q computed from LWE samples have154

small standard deviation. If so, s has been recovered and SALSA stops. If not, SALSA returns to155

step 1, and iterates.156

4.2 Model Training157

SALSA uses LWE instances to train a model that predicts b from a by minimizing the cross-entropy158

between the model prediction b′ and b. The model architecture is a universal transformer [27], in159

which a shared transformer layer is iterated several times (the output from one iteration is the input to160

the next). Our base model has two encoder layers, with 1024 dimensions and 32 attention heads, the161

second layer iterated 2 times, and two decoder layers with 512 dimensions and 8 heads, the second162

layer iterated 8 times. To limit computation in the shared layer, we use the copy-gate mechanism163

from [24]. Models are trained using the Adam optimizer with lr = 10−5 and 8000 warmup steps.164

For inference, we use a beam search with depth 1 (greedy decoding) [40, 63]. At the end of each165

epoch, we compute model accuracy over a test set of LWE samples. Because of the error added when166

4

computing b = a · s + e, exact prediction of b is not possible. Therefore, we calculate accuracy167

within tolerance τ (accτ): the proportion of predictions b̃ = M(a) that fall within τq of b, i.e. such168

that ∥b− b̃∥ ≤ τq. In practice we set τ = 0.1.169

4.3 Secret Recovery170

We propose two algorithms for recovering s: direct recovery from special values of a, and distin-171

guisher recovery using the binary search to decision reduction (Appendix A.2). For theoretical172

justification of these, see Appendix C.173

Direct Secret Recovery. The first technique, based on the LWE search problem, is analogous to a174

chosen plaintext attack. For each i ∈ Nn, a guess of the i-th coordinate of s is made by feeding model175

M the special value ai = Kei (all coordinates 0 except the i-th), with K a large integer. If si = 0,176

and the model M correctly approximates bi = ai · s+ e from ai, then we expect b̃i := M(ai) to177

be a small integer; likewise if si = 1 we expect a large integer. This technique is formalized in178

Algorithm 1. The binarize function in line 7 is explained in Appendix C. In SALSA, we run direct179

recovery with 10 different K values in order to yield 10 guesses of s.180

Distinguisher Secret Recovery. The second algorithm for secret recovery is based on the decision-181

LWE problem. It uses the output of M to determine if LWE data (a, b) can be distinguished from182

randomly generated pairs (ar, br). The algorithm for distinguisher-based secret recovery is shown in183

Algorithm 2. At a high level, the algorithm works as follows. Suppose we have t LWE instances (a, b)184

and t random instances (ar, br). For each secret coordinate si, we transform the a into a′i = ai + c,185

with c ∈ Zq random integers. We then use model M to compute M(a′) and M(ar). If the model186

has learned s and the ith bit of s is 0, then M(a′) should be significantly closer to b than M(ar) is187

to br. Iterating on i allows us to recover the secret bit by bit. SALSA runs the distinguisher recovery188

algorithm when model accτ=0.1 is above 30%. This is the theoretical limit for this approach to work.189

4.4 Secret Verification.190

Algorithm 1 Direct Secret Recovery

1: Input: M,K, n
2: Output: secret s
3: p = 0n

4: for i = 1, . . . , n do
5: a = 0n; ai = K
6: pi = M(a)
7: s = binarize(p)
8: Return: s

At the end of the recovery step, we have 10 or191

11 guesses s̃ (depending on whether the distin-192

guisher recovery algorithm was run). To verify193

them, we compute the residuals r = a · s̃ − b194

mod q for a set of LWE samples (a, b). If195

s is correctly guessed, we have s̃ = s, so196

r = a · s − b = e mod q will be distributed197

as the error e with small standard deviation σ.198

If s̃ ̸= s, r will be (approximately) uniformly199

distributed over Zq (because a · s̃ and b are uniformly distributed over Zq), and will have standard200

deviation σ(r) ≈ q/
√
(12). Therefore, we can verify if s̃ is correct by calculating the standard201

deviation of the residuals: if it is close to σ, the standard deviation of error, the secret was recovered.202

In this paper, σ = 3 and q = 251, so the stdev of r will be around 3 if s̃ = s, and 72.5 if not.203

5 SALSA Evaluation204

In this section, we present our experiments with SALSA. We generate datasets for LWE problems of205

different sizes, defined by the dimension and the density of ones in the binary secret. We use gated206

universal transformers, with two layers in the encoder and decoder. Default dimensions and attention207

heads in the encoder and decoder are 1024/512 and 16/4, but we vary them as we scale the problems.208

Models are trained on two NVIDIA Volta 32GB GPUs on an internal cluster.209

5.1 Data generation210

We generate LWE data for SALSA training/evaluation is randomly given the following parameters:211

dimension n, secret density d, modulus q, encoding base B, binary secret s, and error distribution χ.212

For all experiments, we use q = 251 and B = 81 (see §3.1), fix the error distribution χ as a discrete213

Gaussian with µ = 0, σ = 3 [5], and generate a random s.214

We vary the problem size n (the LWE dimension) and the density d (the proportion of ones in the215

secret) to test attack success and to observe how it scales. For problem size, we experiment with216

5

dimension n

Test Loss

Test Accuracy

A
cc

u
ra

cy
 (

%
)

L
o
ss

Training Epoch

5 10 15 20 25 30 350

0

25

50

5.25

5.50

5.00

4.75

4.50

30

50

70

90

110

128

Figure 3: Full secret recovery: Curves for loss and
accτ = 0.1, for varying n with Hamming weight 3.
For n < 100, model has 1024/512 embedding, 16/4
attention heads. For n ≥ 100, model has 1536/512
embedding, 32/4 attention heads.

Table 2: Full secret recovery. Highest density values
at which the secret was recovered for each n, q = 251.
For n < 100, the model has 1024/512 embedding,
16/4 attention heads. For n ≥ 100, the model has
1536/512 embedding, 32/4 attention heads.

Dim.
n

Density
d

log2
samples

Runtime
(hours)

30 0.1 21.93 1.2
0.13 24.84 21

50 0.06 22.39 5.5
0.08 25.6 18.5

70 0.04 22.52 4.5

90 0.03 24.14 35.0

110 0.03 21.52 32.0

128 0.02 22.25 23.0

n = 30 to n = 128. For density, we experiment with 0.002 ≤ d ≤ 0.15. For a given n, we select d217

so that the Hamming weight of the binary secret (h = dn), is larger than 2. Appendix D.2 contains218

an ablation study of data parameters. We generate data using the RLWE variant of LWE, described in219

Appendix A. For RLWE problems, each a is a line of a circulant matrix generated from an initial220

vector ∈ Zn
q . RLWE problems exhibit more structure than traditional LWE due to the use of the221

circulant matrix, which may help our models learn.222

5.2 Results223

Algorithm 2 Distinguisher Secret Recovery

1: Input: M, n, q, accτ , τ
2: Output: secret s
3: s = 0n

4: advantage, bound = accτ − 2 · τ, τ · q
5: t = min{50, 2

advantage2 }
6: ALWE,BLWE = LWESamples(t, n, q)
7: for i = 1, . . . n do
8: Aunif ∼ U{0, q − 1}n×t

9: Bunif ∼ U{0, q − 1}t
10: c ∼ U{0, q − 1}t
11: A′

LWE = ALWE

12: A′
LWE[:, i] = (ALWE[:, i] + c) mod q

13: B̃LWE = M(A′
LWE)

14: B̃unif = M(Aunif)

15: dl = |B̃LWE −BLWE|
16: du = |B̃unif −Bunif |
17: cLWE = #{j | dlj < bound, j ∈ Nt}
18: cunif = #{j | duj < bound, j ∈ Nt}
19: if (cLWE−cunif) ≤ advantage ·t/2 then
20: si = 1
21: Return: s

Table 2 presents problem sizes n and densities224

d for which secrets can be fully recovered, to-225

gether with the time and the logarithm of number226

of training samples needed. SALSA can recover227

binary secrets with Hamming weight 3 for di-228

mensions up to 128. Hamming weight 4 secrets229

can be recovered for n < 70.230

For a fixed Hamming weight, the time needed231

to recover the secret increases with n, partly be-232

cause the length of the input sequence fed into233

the model is proportional to n. On the other234

hand, the number of samples needed remains235

stable as n grows. This is an important result,236

because all the data used for training the model237

must be collected (e.g. via eavesdropping), mak-238

ing sample size an important metric. For a given239

n, scaling to higher densities requires more time240

and data, and could not be achieved with the241

architecture we use for n > 50. As n grows,242

larger models are needed: our standard archi-243

tecture, with 1024/512 dimensions and 16/4244

attention heads (encoder/decoder) was sufficient245

for n ≤ 90. For n > 90, we needed 1536/512246

dimensions and 32/4 attention heads.247

Figure 3 illustrates model behavior during training. After an initial burn-in period, the loss curve248

(top graph) plateaus until the model begins learning the secret. Once loss starts decreasing, model249

accuracy with 0.1q tolerance (bottom graph) increases sharply. Full secret recovery (vertical lines250

6

Table 3: Architecture Experiments We test the effect of model layers, loops, gating, and encoder dimension
and report the log2 samples required for secret recovery (n = 50, Hamming weight 3).

Regular vs. UTs
(1024/512, 16/4, 8/8)

Ungated vs. Gated
(1024/512, 16/4, 8/8)

UT Loops
(1024/512, 16/4, X/X)

Encoder Dim.
(X/512, 16/4, 2/8)

Decoder Dim.
(1024/X, 16/4, 2/8)

Regular UT Ungated Gated 2/8 4/4 8/2 512 2048 3040 256 768 1024 1536

26.3 22.5 26.5 22.6 23.5 26.1 23.2 23.3 20.1 19.7 22.5 21.8 23.9 24.3

Table 4: Secret recovery when max a value is
bounded. Results shown are fraction of the secret
recovered by SALSA for n = 50 with varying d
when a values are ≤ p ·Q. Green means that s was
fully recovered. Yellow means all of the 1 bits were re-
covered, but not all 0 bits. Red means SALSA failed.

d
Max a value as fraction of q

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0.16 1.0 1.0 1.0 1.0 1.0 1.0 0.88
0.18 1.0 1.0 1.0 1.0 0.82 0.86 0.84
0.20 1.0 1.0 1.0 1.0 1.0 0.82 0.82
0.22 0.98 1.0 1.0 0.98 0.80 0.78 0.86
0.24 1.0 1.0 1.0 0.98 0.78 0.78 0.80
0.26 1.0 1.0 0.88 0.92 0.76 0.76 0.76
0.28 0.98 1.0 0.80 0.74 0.74 0.76 0.74
0.30 0.98 1.0 0.93 0.76 0.72 0.74 0.74

Ratio of samples needed for secret recovery (with reuse)

to samples needed for secret recovery (no reuse)

of times samples are reused

R
at

io

Expected

Observed0.15

0.2

0.1

0.05

0
5 10 15 20 25

Figure 4: Reusing LWE samples yields a signifi-
cant decrease in the number of samples needed for
secret recovery. Shown here is the ratio of samples
required for secret recovery with reuse to the samples
required for secret recovery without reuse, both ex-
pected (top curve) and observed (bottom curve, better
than expected).

in the bottom graph) happens shortly after, often within one or two epochs. Direct secret recovery251

accounts for 55% of recoveries, while the distinguisher only accounts for 18% of recoveries (see252

Appendix C.3). 27% of the time, both methods succeed simultaneously.253

One key conclusion from these experiments is that the secret recovery algorithms enable secret254

recovery long before the transformer has been trained to high accuracy (even before training loss255

settles at a low level). Frequently, the model only needs to begin to learn for the attack to succeed.256

5.3 Experiments with model architecture257

SALSA’s base model architecture is a Universal Transformer (UT) with a copy-gate mechanism.258

Table 3 demonstrates the importance of these choices. For problem dimension n = 50, replacing the259

UT by a regular transformer with 8 encoder/decoder layers, or removing the copy-gate mechanism260

increases the data requirement by a factor of 14. Reducing the number of iterations in the shared261

layers from 8 to 4 has a similar effect. Reducing the number of iterations in either the encoder or262

decoder (i.e. from 8/8 to 8/2 or 2/8) may further speed up training. Asymmetric transformers (e.g.263

large encoder and small decoder) have proved efficient for other math problems, e.g. [37], [17], and264

asymmetry helps SALSA as well. Table 3 demonstrates that increasing the encoder dimension from265

1024 to 3040, while keeping the decoder dimension at 512, results in a 7-fold reduction in sample266

size. Additional architecture experiments are presented in Appendix D.1.267

5.4 Increasing dimension and density268

To attack real-world LWE problems, SALSA must handle larger dimension n and density d. Our269

experiments with architecture suggest that increasing model size, and especially encoder dimension,270

is the key factor to scaling n. Empirical observations indicate that scaling d is a much harder problem.271

We hypothesize that this is due to the subset sum modular addition at the core of LWE with binary272

secrets. For a secret with Hamming weight h, the base operation a · s + e mod q is a sum of273

h integers, followed by a modulus. For small values of h, the modulus operation is not always274

necessary, as the sum might not exceed q. As density increases, so does the number of times the sum275

“wraps around” the modulus, perhaps making larger Hamming weights more difficult to learn. To276

test this hypothesis, we limited the range of the coordinates in a, so that ai < r, with r = αq and277

0.3 < α < 0.7. For n = 50, we recovered secrets with density up to 0.3, compared to 0.08 with the278

full range of coordinates (see Table 4). Density larger than 0.3 is no longer considered a sparse secret.279

7

5.5 Increasing error size280
Table 5: log2 samples needed for secret recovery
when σ = ⌊

√
n⌋. Results averaged over 6 SALSA runs

at each n/σ level.

n/σ 30/5 50/7 70/8 90/9

logSamples 18.0 18.5 19.3 19.6

Theoretically for lattice problems to be hard, σ281

should scale with
√
n, although this is often ig-282

nored in practice, e.g. [5]. Consequently, we283

run most SALSA experiments with σ = 3, a284

common choice in existing RLWE-based sys-285

tems. Here, we investigate how SALSA performs as σ increases. First, to match the theory, we run286

experiments where σ = ⌊
√
n⌋, h = 3 and found that SALSA recovers secrets even as σ scales with287

n (see Table 5, same model architecture as Table 2). Second, we evaluate SALSA’s performance for288

fixed n/h values as σ increases. We fix n = 50 and h = 3 and evaluate for σ values up to σ = 24.289

Secret recovery succeeds for all tests, although the number of samples required for recovery linearly290

increases (see Figure 7 in Appendix). For both sets of experiments, we reuse samples up to 10 times.291

6 SALSA in the Wild292

Problem Size. Currently, SALSA can recover secrets from LWE samples with n up to 128 and293

density d = 0.02. It can recover higher density secrets for smaller n (d = 0.08 when n = 50). As294

mentioned in Section 2.2, sparse binary secrets are used in real world LWE homomorphic encryption,295

and attacking these implementations is a future goal for SALSA. Admittedly, SALSA must scale to296

attack larger n before it can break full-strength homomorphic encryption implementations. However,297

other parameters of full-strength homomorphic encryption such as secret density (the secret vector in298

HEAAN has d < 0.002) and error size ([5] recommends σ = 3.2) are within SALSA’s reach.299

Other LWE-based schemes use secret dimensions that seem achievable given our current results. For300

example, in the LWE-based public key encryption scheme Crystal-Kyber [9], the secret dimension is301

k×256 for k = {2, 3, 4}, an approachable range for SALSA based on initial results. The LWE-based302

signature scheme Crystal-Dilithium has similar n sizes [29]. However, these schemes don’t use303

sparse binary secrets, and adapting SALSA nonbinary secrets is an avenue for future work.304

Sample Efficiency. A key requirement of real-world LWE attacks is sample efficiency. In practice,305

an attacker will only have access to a small set of LWE instances (a, b) for a given secret s. For306

instance, in Crystal-Kyber, there are only (k + 1)n LWE instances available with k = 2, 3 or 4 and307

n = 256. The experiments in [20, 11] use less than 500 LWE instances. The TU Darmstadt challenge308

provides n2 LWE instances to attackers.309

The log2 samples column of Table 2 lists the number of LWE instances needed for model training.310

This number is much larger than what is likely available in practice, so it is important to reduce sample311

requirements. Classical algebraic attacks on LWE require LWE instances to be linearly independent,312

but SALSA does not have this limitation. Thus, we can reduce SALSA’s sample use in several ways.313

First, we can reuse samples during training. Figure 4 confirms that this allows secret recovery with314

fewer samples. Second, we can use integer linear combinations of given LWE samples to make new315

samples which have the same secret but a larger error σ. Appendix E contains the formula for the316

number of new samples we can generate with this method (up to 242 new samples from 100 samples).317

Comparison to Baselines. Most existing attacks on LWE such as uSVP and dual attack use an318

algebraic approach that involves building a lattice from LWE instances such that this lattice contains319

an exceptionally short vector which encodes the secret vector information. Attacking LWE then320

involves finding the short vector via lattice reduction algorithms like BKZ [22]. For LWE with sparse321

binary secrets, the main focus of this paper, various techniques can be adapted to make algebraic322

attacks more efficient. [20, 11] and [23] provide helpful overviews of algebraic attacks on sparse323

binary secrets. More information about attacks on LWE is in Appendix A.3.324

Compared to existing attacks, SALSA’s most notable feature is its novelty. We do not claim that to325

have better runtime, neither do we claim the ability to attack real-world LWE problems (yet). Rather,326

we introduce a new attack and demonstrate with non-toy successes that transformers can be used327

to attack LWE. Given our goal, no serious SALSA speedup attempts have been made so far, but a328

few simple improvements could reduce runtime. First, the slowest step in SALSA is model training,329

8

which can be greatly accelerated by distributing it across many GPUs. Second, our transformers are330

trained from scratch, so pre-training them on such basic tasks as modular arithmetic could save time331

and data. Finally, the amount of training needed before the secret is recovered depends in large part332

on the secret guessing algorithms. New algorithms might allow SALSA to recover secrets faster.333

Since SALSA does not involve finding the shortest vector in a lattice, it has an advantage over the334

algebraic attacks – with all LWE parameters fixed and in the range of SALSA, SALSA can attack the335

LWE problem for a smaller modulus q compared to the algebraic attacks. This is because the target336

vector is relatively large in the lattice when q is smaller and is harder to find. For instance, in [20],337

their Table 2 shows that when the block size is 45, for n = 90, their attack does not work for q less338

than 10 bits, but we can handle q as small as 8 bits (Table 20).339

7 Related Work340

Use of ML for cryptanalysis. The fields of cryptanalysis and machine learning are closely re-341

lated [56]. Both seek to approximate an unknown function F using data, although the context342

and techniques for doing so vary significantly between the fields. Because of the similarity343

between the domains, numerous proposals have tried to leverage ML for cryptanalysis. ML-344

based attacks have been proposed against a number of cryptographic schemes, including block345

ciphers [4, 61, 38, 10, 30, 12, 21], hash functions [31], and substitution ciphers [2, 62, 8]. Although346

our work is the first to use recurrent neural networks for lattice cryptanalysis, prior work has used347

them for other cryptographic tasks. For example, [32] showed that LSTMs can learn the decryption348

function for polyalphabetic ciphers like Enigma. Follow-up works used variants of LSTMs, including349

transformers, to successfully attack other substitution ciphers [2, 62, 8].350

Use of transformers for mathematics. The use of language models to solve problems of mathematics351

has received much attention in recent years. A first line of research explores math problems set up in352

natural language. [58] investigated their relative difficulty, using LSTM [34] and transformers, while353

[33] showed large transformers could achieve high accuracy on elementary/high school problems. A354

second line explores various applications of transformers on formalized symbolic problems. [41]355

showed that symbolic math problem could be solved to state-of-the-art accuracy with transformers.356

[66] discussed their limits when generalizing out of their training distribution. Transformers have357

been applied to dynamical systems [18], transport graphs [19], theorem proving [53], SAT solving358

[59], and symbolic regression [13, 26]. A third line of research focuses on arithmetic/numerical359

computations and has had slower progress. [51] and [50] discussed the difficulty of performing360

arithmetic operations with language models. Bespoke network architectures have been proposed361

for arithmetic operations [35, 64], and transformers were used for addition and similar operations362

[54]. [17] showed that transformers can learn numerical computations, such as linear algebra, and363

introduced the shallow models with shared layers used in this paper.364

8 Conclusion365

In this paper, we demonstrate that transformers can be trained to perform modular arithmetic. Building366

on this capability, we design SALSA, a method for attacking the LWE problem with binary secrets, a367

hardness assumption at the foundation of many lattice-based cryptosystems. We show that SALSA368

can break LWE problems of medium dimension (up to n = 128), comparable to those in the369

Darmstadt challenge [15], with sparse binary secrets. This is the first paper to use transformers to370

solve hard problems in lattice-based cryptography. Future work will attempt to scale up SALSA to371

attack higher dimensional lattices with more general secret distributions.372

The key to scaling up to larger lattice dimensions seems to be to increase the model size, especially373

the dimensions, the number of attention heads, and possibly the depth. Large architectures should374

scale to higher dimensional lattices such as n = 256 which is used in practice. Density, on the other375

hand, is constrained by the performance of transformers on modular arithmetic. Better representations376

of finite fields could improve transformer performance on these tasks. Finally, our secret guessing377

algorithms enable SALSA to recover secrets from low-accuracy transformers, therefore reducing the378

data and time needed for the attack. Extending these algorithms to take advantage of partial learning379

should result in better performance.380

9

References381

[1] On the complexity of the bkw algorithm on lwe. Designs, Codes and Cryptography, 74(2):26,382

2015.383

[2] Ezat Ahmadzadeh, Hyunil Kim, Ongee Jeong, and Inkyu Moon. A novel dynamic attack on384

classical ciphers using an attention-based lstm encoder-decoder model. IEEE Access, 9:60960–385

60970, 2021.386

[3] Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth387

annual ACM symposium on Theory of computing, pages 99–108, 1996.388

[4] Mohammed M Alani. Neuro-cryptanalysis of des and triple-des. In International Conference389

on Neural Information Processing, pages 637–646. Springer, 2012.390

[5] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,391

Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, et al. Homomorphic encryption392

standard. In Protecting Privacy through Homomorphic Encryption, pages 31–62. Springer,393

2021.394

[6] Martin R. Albrecht. On dual lattice attacks against small-secret lwe and parameter choices in395

helib and seal. In EUROCRYPT, 2017.396

[7] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic Perret. Lazy397

modulus switching for the bkw algorithm on lwe. In Hugo Krawczyk, editor, Public-Key398

Cryptography – PKC 2014, pages 429–445, Berlin, Heidelberg, 2014. Springer Berlin Heidel-399

berg.400

[8] Nada Aldarrab and Jonathan May. Can sequence-to-sequence models crack substitution ciphers?401

arXiv preprint arXiv:2012.15229, 2020.402

[9] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,403

John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien . Stehlé. Crystals-kyber (version404

3.02) – submission to round 3 of the nist post-quantum project. 2021.405

[10] Seunggeun Baek and Kwangjo Kim. Recent advances of neural attacks against block ciphers.406

In Proc. of SCIS. IEICE Technical Committee on Information Security, 2020.407

[11] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary lwe. In Willy Susilo408

and Yi Mu, editors, Information Security and Privacy, pages 322–337, Cham, 2014. Springer409

International Publishing.410

[12] Adrien Benamira, David Gerault, Thomas Peyrin, and Quan Quan Tan. A deeper look at411

machine learning-based cryptanalysis. In Annual International Conference on the Theory and412

Applications of Cryptographic Techniques, pages 805–835. Springer, 2021.413

[13] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Paras-414

candolo. Neural symbolic regression that scales. arXiv preprint arXiv:2106.06427, 2021.415

[14] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical416

hardness of learning with errors. In Proceedings of the Forty-Fifth Annual ACM Symposium417

on Theory of Computing, STOC ’13, page 575–584, New York, NY, USA, 2013. Association418

for Computing Machinery.419

[15] Johannes Buchmann, Niklas Büscher, Florian Göpfert, Stefan Katzenbeisser, Juliane Krämer,420

Daniele Micciancio, Sander Siim, Christine van Vredendaal, and Michael Walter. Creating421

cryptographic challenges using multi-party computation: The lwe challenge. In Proceedings422

of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, page 11–20, New423

York, NY, USA, 2016. ACM.424

10

[16] Johannes A. Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer. On the hardness425

of lwe with binary error: Revisiting the hybrid lattice-reduction and meet-in-the-middle attack.426

In AFRICACRYPT, 2016.427

[17] François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.428

[18] François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical429

computations from examples. arXiv preprint arXiv:2006.06462, 2020.430

[19] François Charton, Amaury Hayat, Sean T. McQuade, Nathaniel J. Merrill, and Benedetto Piccoli.431

A deep language model to predict metabolic network equilibria, 2021.432

[20] Hao Chen, Lynn Chua, Kristin E. Lauter, and Yongsoo Song. On the concrete security of lwe433

with small secret. IACR Cryptol. ePrint Arch., 2020:539, 2020.434

[21] Yi Chen and Hongbo Yu. Bridging machine learning and cryptanalysis via edlct. Cryptology435

ePrint Archive, 2021.436

[22] Yuanmi Chen and Phong Q. Nguyen. Bkz 2.0: Better lattice security estimates. In Dong Hoon437

Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, 2011.438

[23] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of dual and439

meet-in-the-middle attack on sparse and ternary secret lwe. IEEE Access, 7:89497–89506,440

2019.441

[24] Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router: Adaptive control442

flow in transformers improves systematic generalization, 2021.443

[25] Benjamin R. Curtis and Rachel Player. On the feasibility and impact of standardising sparse-444

secret LWE parameter sets for homomorphic encryption. In Michael Brenner, Tancrède Lepoint,445

and Kurt Rohloff, editors, Proceedings of the 7th ACM Workshop on Encrypted Computing446

& Applied Homomorphic Cryptography, WAHC@CCS 2019, London, UK, November 11-15,447

2019. ACM, 2019.448

[26] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and François Charton.449

Deep symbolic regression for recurrent sequences, 2022.450

[27] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Uni-451

versal transformers. arXiv preprint arXiv:1807.03819, 2018.452

[28] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on453

Information Theory, 22, 1976.454

[29] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,455

and Damien Stehlé. Crystals-dilithium – algorithm specifications and supporting documentation456

(version 3.1). 2021.457

[30] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep learning. In Annual458

International Cryptology Conference, pages 150–179. Springer, 2019.459

[31] Sergij V Goncharov. Using fuzzy bits and neural networks to partially invert few rounds of460

some cryptographic hash functions. arXiv preprint arXiv:1901.02438, 2019.461

[32] Sam Greydanus. Learning the enigma with recurrent neural networks. arXiv preprint462

arXiv:1708.07576, 2017.463

[33] Kaden Griffith and Jugal Kalita. Solving arithmetic word problems with transformers and464

preprocessing of problem text. CoRR, abs/2106.00893, 2021.465

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,466

9(8):1735–1780, 1997.467

11

[35] Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint468

arXiv:1511.08228, 2015.469

[36] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of470

Operations Research, 12(3):415–440, 1987.471

[37] Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A. Smith. Deep encoder,472

shallow decoder: Reevaluating the speed-quality tradeoff in machine translation. CoRR,473

abs/2006.10369, 2020.474

[38] Hayato Kimura, Keita Emura, Takanori Isobe, Ryoma Ito, Kazuto Ogawa, and Toshihiro475

Ohigashi. Output prediction attacks on spn block ciphers using deep learning. IACR Cryptol.476

ePrint Arch., 2021, 2021.477

[39] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint478

arXiv:1412.6980, 2014.479

[40] Philipp Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation480

models. In Conference of the Association for Machine Translation in the Americas. Springer,481

2004.482

[41] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv483

preprint arXiv:1912.01412, 2019.484

[42] H.W. jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.485

Mathematische Annalen, 261:515–534, 1982.486

[43] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption.487

In Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, pages 319–339, Berlin,488

Heidelberg, 2011. Springer Berlin Heidelberg.489

[44] Mingjie Liu and Phong Q. Nguyen. Solving bdd by enumeration: An update. In Ed Dawson, ed-490

itor, Topics in Cryptology – CT-RSA 2013, pages 293–309, Berlin, Heidelberg, 2013. Springer491

Berlin Heidelberg.492

[45] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest493

vectors, and the minimum distance problem. In Shai Halevi, editor, Advances in Cryptology -494

CRYPTO 2009, pages 577–594, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.495

[46] Daniele Micciancio. On the hardness of learning with errors with binary secrets. 14(13):1–17,496

2018.497

[47] Daniele Micciancio and Oded Regev. Lattice-based Cryptography, pages 147–191. Springer498

Berlin Heidelberg, Berlin, Heidelberg, 2009.499

[48] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the500

shortest vector problem, pages 1468–1480. 2010.501

[49] Victor S Miller. Use of elliptic curves in cryptography. In Conference on the theory and502

application of cryptographic techniques. Springer, 1985.503

[50] Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers504

with simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.505

[51] Theodoros Palamas. Investigating the ability of neural networks to learn simple modular506

arithmetic. 2017.507

[52] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: Extended508

abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,509

New York, NY, USA, 2009. ACM.510

12

[53] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.511

arXiv preprint arXiv:2009.03393, 2020.512

[54] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:513

Generalization beyond overfitting on small algorithmic datasets, 2022.514

[55] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In515

Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, New516

York, NY, USA, 2005. ACM.517

[56] Ronald L Rivest. Cryptography and machine learning. In International Conference on the518

Theory and Application of Cryptology, pages 427–439. Springer, 1991.519

[57] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures520

and public-key cryptosystems. Communications of the ACM, 1978.521

[58] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical522

reasoning abilities of neural models, 2019.523

[59] Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and524

Vijaykrishnan Narayanan. Transformer-based machine learning for fast sat solvers and logic525

synthesis. arXiv preprint arXiv:2107.07116, 2021.526

[60] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In527

Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee,528

1994.529

[61] Jaewoo So. Deep learning-based cryptanalysis of lightweight block ciphers. Security and530

Communication Networks, 2020, 2020.531

[62] Shivin Srivastava and Ashutosh Bhatia. On the learning capabilities of recurrent neural networks:532

A cryptographic perspective. In Proc. of ICBK, pages 162–167. IEEE, 2018.533

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural534

networks. In Proc. of NeurIPS, 2014.535

[64] Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural536

arithmetic logic units. arXiv preprint arXiv:1808.00508, 2018.537

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,538

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPs, pages539

6000–6010, 2017.540

[66] Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models:541

on systematic generalization in symbolic mathematics, 2021.542

Checklist543

1. For all authors...544

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s545

contributions and scope? [Yes]546

(b) Did you describe the limitations of your work? [Yes]547

(c) Did you discuss any potential negative societal impacts of your work? [No] At present,548

we run a proof of concept that cannot be used in real world implementations. Significant549

additional scaling work will be necessary before these techniques will be relevant to550

attacking real-world cryptosystems.551

(d) Have you read the ethics review guidelines and ensured that your paper conforms to552

them? [Yes]553

13

2. If you are including theoretical results...554

(a) Did you state the full set of assumptions of all theoretical results? [N/A]555

(b) Did you include complete proofs of all theoretical results? [N/A]556

3. If you ran experiments...557

(a) Did you include the code, data, and instructions needed to reproduce the main experi-558

mental results (either in the supplemental material or as a URL)? [No] The source code559

will be released after publication of the paper.560

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they561

were chosen)? [Yes] See §5562

(c) Did you report error bars (e.g., with respect to the random seed after running experi-563

ments multiple times)? [No] Since our results are binary (e.g. secret recovered or not),564

we do not report error bars.565

(d) Did you include the total amount of compute and the type of resources used (e.g., type566

of GPUs, internal cluster, or cloud provider)? [Yes] See §5567

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...568

(a) If your work uses existing assets, did you cite the creators? [N/A]569

(b) Did you mention the license of the assets? [N/A]570

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]571

572

(d) Did you discuss whether and how consent was obtained from people whose data you’re573

using/curating? [N/A]574

(e) Did you discuss whether the data you are using/curating contains personally identifiable575

information or offensive content? [N/A]576

5. If you used crowdsourcing or conducted research with human subjects...577

(a) Did you include the full text of instructions given to participants and screenshots, if578

applicable? [N/A]579

(b) Did you describe any potential participant risks, with links to Institutional Review580

Board (IRB) approvals, if applicable? [N/A]581

(c) Did you include the estimated hourly wage paid to participants and the total amount582

spent on participant compensation? [N/A]583

14

	Introduction
	Lattice Cryptography and LWE
	Lattices and Hard Lattice Problems
	LWE

	Modular Arithmetic with Transformers
	Methods
	Results

	Introducing SALSA: LWE Cryptanalysis with Transformers
	SALSA Ingredients
	Model Training
	Secret Recovery
	Secret Verification.

	SALSA Evaluation
	Data generation
	Results
	Experiments with model architecture
	Increasing dimension and density
	Increasing error size

	SALSA in the Wild
	Related Work
	Conclusion
	Further Details of LWE
	Ring Learning with Errors (§2)
	Search to Decision Reduction for Binary Secrets (§2)
	Overview of Attacks on LWE

	Additional Modular Arithmetic Results (§3)
	Additional information on SALSA Secret Recovery (§4.3)
	Direct Secret Recovery
	Distinguisher-Based Secret Recovery
	Secret Recovery in Practice

	Additional SALSA Results (§5.2)
	Effect of Architecture for (R)LWE Attacks
	Effect of data parameters for (R)LWE Attacks
	Effect of training parameters on (R)LWE Attacks

	Improving SALSA's Sample Efficiency

