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Abstract

Access to 3D point cloud representations has been widely facilitated by LiDAR1

sensors embedded in various mobile devices. This has led to an emerging need2

for fast and accurate point cloud processing techniques. In this paper, we revisit3

and dive deeper into PointNet++, one of the most influential yet under-explored4

networks, and develop faster and more accurate variants of the model. We first5

present a novel Separable Set Abstraction (SA) module that disentangles the vanilla6

SA module used in PointNet++ into two separate learning stages: (1) learning7

channel correlation and (2) learning spatial correlation. The Separable SA module8

requires far fewer FLOPs and is significantly faster than the vanilla version, yet it9

achieves comparable performance. We then introduce a new Anisotropic Reduction10

function into our Separable SA module and propose an Anisotropic Separable11

SA (ASSA) module that substantially increases the network’s accuracy. We later12

replace the vanilla SA modules in PointNet++ with the proposed ASSA modules,13

and denote the modified network as PointNetv3. Extensive experiments on point14

cloud classification, semantic segmentation, and part segmentation show that15

PointNetv3 outperforms PointNet++ and other methods, achieving much higher16

accuracy and faster speeds. In particular, PointNetv3 outperforms PointNet++ by17

7.0 mIoU on S3DIS Area 5, while maintaining 1.6× faster inference speed on a18

single NVIDIA 2080Ti GPU. Our scaled PointNetv3 (L) variant achieves 66.819

mIoU and outperforms KPConv, while being more than 54× faster.20

1 Introduction21

Among the various 3D object representations, point clouds have been surging in popularity, becoming22

one of the most fundamental 3D representations. This popularity stems from the increased availability23

of 3D sensors, like LiDAR, which produce point clouds as their raw output. The growing presence24

of point cloud data has been accompanied by the development of many 3D deep learning methods25

[30, 42, 21, 39, 24]. Even though these methods achieve impressive performance, they are generally26

expensive in terms of computational cost (Figure 1). With the integration of LiDAR sensors into27

hardware constrained devices, such as mobile devices and AR headsets, there is a growing interest in28

efficient models for point cloud processing. Given the limited computational power of mobile devices29

and embedded systems, the design of mobile-friendly point cloud-based algorithms should not only30

focus on providing good accuracy, but also on maintaining high computational efficiency.31

When processing point cloud data, one can always opt to convert the data into representations32

more accessible to deep learning frameworks. Popular options are multi-view methods [35, 5, 43]33

and voxel-based methods [6, 48]. Converting to these representations generally requires additional34

computations and memory, and can lead to geometric information loss [25]. It is therefore more35

desirable to operate directly on point clouds. To that extent, we are currently witnessing a surge in36

new point-based methods [29, 30, 42, 21, 39, 24]. The first of such methods was introduced by Qi37

et al. through the seminal PointNet [29] architecture. PointNet operates directly on point clouds,38
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Scaled PointNetv3 Figure 1: Tradeoffs between accuracy (mIoU

on S3DIS Area-5) and inference speed (in-
stances/second). Speed is reported as the mean
value of 200 runs on a single GTX 2080Ti GPU.
PointNetv3 scaled with different widths and
depths shown in outperforms the state-of-
the-art methods in with better accuracies and
faster speeds. Refer to Section 5.2 for details.

without the need for an intermediate representation. Despite its efficiency, PointNet merely learns39

per-point features individually and discards local information, which restrains its performance. As a40

variant of PointNet, PointNet++ [30] presents a novel Set Abstraction module that sub-samples the41

point cloud, groups the neighborhood, extracts local information via a set of multi-layer perceptrons42

(MLPs), and then aggregates the local information by a reduction layer (i.e. pooling). Figure 143

shows how PointNet++ outperforms the pioneering PointNet [29] by a large margin. PointNet++ also44

obtains better accuracy than the graph-based method DeepGCN [21], and does so with a 100× speed45

gain. PointNet++ provided a good balance between accuracy and efficiency, and was therefore widely46

utilized in various tasks like normal estimation [8], segmentation [28, 16], and object detection [33].47

After PointNet++, graph-based [34, 40, 42, 21], pseudo-grid based [38, 22, 27, 39] and adaptive48

weight-based [41, 23, 7, 45], surged as state-of-the-art in point cloud tasks. Nearly all these methods49

improve performance at the cost of speed, as shown in Figure 1. In this work, we focus on designing50

point cloud networks that are both fast and accurate. Inspired by its success, both in terms of the51

accuracy-speed balance and its wide adoption, we take a deep dive into PointNet++. We conduct an52

extensive analysis of its architectural design (refer to Section 3.1) and latency decomposition (Figure53

2). Interestingly, we demonstrate that both its efficiency and accuracy can be improved sharply by54

minimal modifications to the architecture. These modifications lead to a new architecture design that55

is faster and more accurate than currently available point methods (shown in in Figure 1).56

Contributions. (1) We demonstrate that the MLPs performed on the neighborhood features in the57

Set Abstraction (SA) module of PointNet++ hamper the inference speed. We greatly accelerate58

this module by introducing a new separable SA module that processes on point features directly.59

(2) We discover that all operations for processing neighbors in the SA module are isotropic and60

limit its accuracy. We propose a novel Anisotropic Reduction layer that treats each neighbor61

differently. We then insert Anisotropic Reduction into our Separable SA and propose the Anisotropic62

Separable Set Abstraction (ASSA) module that significantly increases accuracy. (3) We present63

PointNetv3, in which we replace the vanilla SA with our ASSA. PointNetv3 shows a much higher64

accuracy and faster speed compared to PointNet++ and previous methods on various tasks (point65

cloud classification, semantic segmentation, and part segmentation). We further study two regimes66

for up-scaling PointNetv3. As shown in Figure 1, our scaled PointNetv3 outperforms the previous67

state-of-the-art with a much faster inference speed. In particular, scaled PointNetv3 achieves better68

accuracy than the graph-based method DeepGCN [21] with an increase in speed of 294×, the pseudo69

grid-based method KPConv [39] (54× faster), the adaptive weight-based method PosPool*(S) [24]70

(9× faster), and the efficient 3D method PVCNN [25] (2.3× faster). Code is available in Appendix.71

2 Related Work72

Projection-based methods. Due to the unstructured nature of point clouds, convolutional neural73

networks (CNNs) that tend to work impressively well on grid stuctured data (e.g. images, texts and74

videos) fail to apply directly on point clouds. One common solution for processing point clouds is to75

project them into collections of images (views) [35, 5, 43] or 3D voxels [6, 48, 37]. Common CNN76

backbones (using 2D or 3D convolutions) can be subsequently utilized to perform these intermediate77

representations. Although projection-based methods allow for utilizing the well studied convolutional78

neural networks to point-cloud applications, they are computationally expensive as they are associated79

with the additional cost of constructing intermediate representations. Moreover, the projection of80

point clouds causes loss of important geometric information [25].81

2



Subsampling
5.5%

Grouping
2.3%

Computation
92.3%

Subsampling
6.2%

Grouping
3.1%

Computation
90.6%

Subsampling
12.6%

Grouping
5.1%

Computation
82.4%

Subsampling
24.5%

Grouping
4.3%

Computation
71.1%

(a) 1024 points (b) 4096 points (c) 10,000 points (d) 15,000 points

Figure 2: Latency Decomposition of PointNet++. We show the inference run time decomposition
of PointNet++ under different numbers of points as input on one NVIDIA GTX2080Ti GPU. The
actual computation consumes over 70% in all the cases, showing that the actual computation part is
the major speed bottleneck.

Point-based methods. Pioneering work explored the possibility of processing point clouds directly.82

Qi et al. proposed PointNet [29] that leverages point-wise MLPs to extract per point features83

individually. To better encode locality, Qi et al. further presented Set Abstraction (SA) to aggregate84

features from the points’ neighborhood, and a hierarchical architecture named PointNet++ [30]85

that learns multilevel representations and reduces computations. After PointNet++, numerous86

point-based methods considering neighborhood information were proposed. Graph-based methods87

[34, 17, 42, 40, 21, 20] represent point clouds as graphs and process point clouds with graph neural88

networks. Pseudo grid-based methods project neighborhood features onto different forms of pseudo89

grids such as tangent planes [38], grid cells [12, 47, 22, 27, 39] and spherical grid points [50] which90

allow convolving with regular kernel weights like CNNs. Adaptive weight-based methods perform91

weighted neighborhood aggregation by considering the relative positions of the points [41, 23, 7, 24]92

or point density [45]. These methods rely either on designing sophisticated and customized modules93

which usually require expensive parameter tuning for different applications [39, 22, 26], or on94

performing expensive graph kernels [42, 21] that achieve better performance than PointNet and95

PointNet++ at the expense of computational complexity.96

Efficient Neural Networks. Efficient neural networks is a class of architectures that target mobile97

and embedded systems applications. These networks are usually designed to provide a balance98

between accuracy and efficiency (e.g. latency, FLOPs, memory, and power). MobileNet [10] utilizes99

depth-wise separable convolutions to reduce the required FLOPs and latency of a regular CNN100

for image processing. Depth-wise separable convolutions disentangle convolutions into learning101

channel correlations using point-wise convolutions and learning spatial correlations using depth-102

wise convolutions. Other efficient neural networks usually leverage either depth-wise separable103

convolutions with better designed architectures to improve performance [32, 4, 49] or study new104

efficient operations to replace the regular convolutions [26, 44]. In 3D, efficient neural networks105

include ShellNet [50], PVCNN [25], Grid-GCN [46], RandLA-Net [11], SegGCN [19] and LPNs106

[18]. ShellNet [50] and SegGCN [19] speed up the pseudo grid-based methods by aggregating107

neighborhood features through efficient 1D convolutions or fuzzy spherical convolutions on the108

predefined pseudo grids like shells. PVCNN [25] and Grid-GCN [46] reduce the time spent in109

querying neighborhood by combining voxelization in point based methods. RandLA-Net [11] reduces110

the subsampling complexity by leveraging random sampling and further improves the speed by111

operating on a large-scale point cloud directly without chunking. LPN [18] improves the speed of112

convolving neighborhood features by a simple group wise matrix multiplication. Nevertheless, all113

the efficient methods mentioned above require performing convolutions on neighborhood features,114

which we deem through extensive experiments as unnecessary. Therefore, our algorithm achieves115

much faster speeds compared to these methods (ref to Section 4). It is also worthwhile to mention116

that our method can be made even faster with the voxelization trick in PVCNN and Grid-GCN to117

further reduce the latency of neighborhood querying. We leave that as future work and focus on our118

own contributions.119

3 Methodology120

3.1 Preliminary: PointNet++121

PointNet++ [30] improves PointNet [29] by providing two main contributions: (1) Developing a122

U-Net [31] like architecture to process a set of points, which are sampled in a metric space in123

a hierarchical fashion. This mechanism captures multi-scale features and reduces the required124
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computation. (2) Developing a Set Abstraction (SA) module to process and abstract the locality from125

the local neighbors to a new set of points with fewer elements. The SA module is used as the basic126

building block to be stacked to form the backbone of PointNet++.127

Analysis of the Set Abstraction Module. The vanilla SA module proposed in PointNet++ consists128

of two parts: point subsampling and feature aggregation, as illustrated in Figure 3(a). The subsampling129

layer takes a point cloud X = {P, F} as an input and leverages iterative farthest-point sampling to130

acquire X ′, a subset of X . P and F denote the coordinates and features, respectively. The feature131

aggregation block is built for learning locality from local neighbors and is composed of a grouping132

layer, an MLP block, and a reduction layer. The grouping layer obtains the neighborhood composed133

of K neighbors for each point in X ′ using the ball query, with X as the support set. The resulting134

point neighborhood is denoted as N (X ′). The MLP block consists of L layers of MLPs, and each135

MLP is followed by a Batch Normalization (BN [13]) layer and a ReLU activation. By default,136

PointNet++ sets L = 3. The number of feature aggregation blocks inside one SA module, referred137

to as depth D in this paper, is set to D = 2. The reduction layer (a.k.a, pooling) aggregates the138

neighborhood information by a reduction function, e.g. mean, max, or sum. The feature aggregation139

is formulated as shown in Equation (1):140

f l+1
i = R

({
MLPs((pj − pi)||f lj)|j ∈ N (i)

})
, (1)

whereR is the reduction function across the neighborhood dimension, which is used for aggregating141

the neighborhood information. pi, f li , N (i) and || denote the coordinates, the features in the lth layer142

of the network, the neighborhood of the ith point, and the concatenation operator across the channel143

dimension, respectively. The main issues with the vanilla SA module are: (1) the computational144

cost is unnecessarily high. MLPs are unnecessarily performed on the neighborhood features, which145

causes a considerable amount of latency in PointNet++. One straightforward remedy is to use MLPs146

to learn a feature embedding on the point features directly instead of doing so on the neighborhood147

features. This reduces the FLOPs of each MLP by a factor of K. (2) All operations on neighbors are148

unnecessarily isotropic. In other words, the MLPs and the reduction layer treat all local neighbors149

equally. This severely limits the representation capability of the network.150

Latency Decomposition. Figure 2 shows the latency decomposition of PointNet++ [30] with151

different numbers of points as input. Here, the latency, which is the overall run time for the inference152

stage, was measured using a single Nvidia GeForce RTX 2080Ti GPU and one Intel(R) Xeon(R)153

CPU E5-2687W v4 @ 3.00GHz. We note here that latency is measured on the same hardware setting154

throughout this work. The latency of PointNet++ can be decomposed into three main contributing155

factors: (1) point subsampling, (2) grouping, (3) actual computations. The actual computations of156

PointNet++ mainly come from processing neighborhood features by MLPs shown in Equation 1. Note157

that we consider the time spent on data access implicitly in each part. Point clouds with four different158

input sizes were studied: 1024, 4096, 10, 000, and 15, 000. The first two input sizes are commonly159

encountered in classification tasks [2], and the last two are usually input sizes for patch-based160

segmentation [30, 39] and LiDAR-based object detection [33]. Clearly, computations contribute161

to the majority of latency (over 70 %), especially for small input sizes. This suggests that the162

computational complexity could be the major speed bottleneck for networks involving PointNet++.163

3.2 Anisotropic Separable Set Abstraction (ASSA)164

In this section, we gradually introduce the modified vanilla SA modules. Initially, we focus on165

speeding up vanilla SA. This is achieved through proposing two modules, namely, PreConv SA166

module and Separable SA module. Later, we focus our attention on improving the accuracy by167

proposing an Anisotropic SA module.168

PreConv Set Abstraction module. We propose PreConv SA module to perform all MLPs before169

the grouping layer, as shown in Figure 3(b). PreConv SA performs the MLPs on the point features170

directly, and not on the K local neighbors. This reduces the required FLOPs by K times. PreConv171

SA speeds up PointNet++ by ∼ 55% (15,000 points), as shown in Section 5.1. Additionally, PreConv172

SA is equivalent to vanilla SA in the case where the (pj − pi) term is not included in Equation (1).173

We show the proof of this equivalence in the Appendix.174

Separable Set Abstraction module. Next, we present Separable Set Abstraction, shown in Figure175

3(c), which is more accurate than PreConv SA, yet requires the same latency. The main idea of176
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Figure 3: Comparison of proposed variants of the Set Abstraction (SA) module and the Vanilla
SA module. (a) Vanilla SA [30] applies MLPs on neighbor features. (b) The proposed PreConv SA
applies MLPs on the point features directly. (c) Our Separable SA separates the MLPs to also process
on the aggregated features from a local neighbors. (d) Our final ASSA module replaces the reduction
layer in Separable SA with a new Anisotropic Reduction layer. X,X ′, X ′′, X ′′′ are the input points,
the subsampled points, the output of the first feature aggregation block, and the final output of the
module, respectively. The shortcut layer is the residual connection with a linear mapping.

Separable SA is borrowed from depth-wise separable convolutions [10], where the regular convolu-177

tion is split into one point-wise convolution (MLPs), one depth-wise convolution (channel shared178

convolution), and then another point-wise convolution. Separable SA evenly separates the MLPs179

before and after the reduction layer and further adds a residual connection between the outputs of180

the two parts of MLPs. The main reasons why the Separable Set Abstraction module is better than181

PreConv are: (1) after reduction MLPs further process the aggregated neighborhood information,182

which were previously missed in PreConv; (2) The residual connection not only stabilizes training,183

but also provides better feature embedding. We will later show why introducing residual connections184

leads to better embedding by relating such connections with recent findings in graph convolution185

field. The Separable SA module without the residual connection is similar to GCNConv proposed by186

Kipf [15], which merely learns the pooled (e.g. mean, max, sum) neighborhood information. The187

Separable SA module equipped with the residual connection is similar to SAGEConv proposed by188

Hamilton [9]. SAGEConv improves GCNConv by aggregating the neighborhood information and189

then adding it to the transformed node feature to learn a better embedding. Details of GCNConv and190

SAGEConv are available in the Appendix. Another minor change from PreConv SA to Spearable SA191

is that we query the neighborhood using the subsampled point cloud X ′ as the support set to further192

reduce computational complexity from the second aggregation block.193

Anisotropic Separable Set Abstraction module. PreConv SA and Separable SA cut down compu-194

tational complexity at the expense of accuracy, e.g. Separable SA leads to a reduction of 3 mIoU on195

S3DIS Area 5 compared to PointNet++ (Section 5.1). There are two reasons for the drop in accuracy.196

First, geometric information is not well encoded in the current variants of the SA module. The197

geometric information can be represented by any relative information (edge information) between198

the neighbor and the center, e.g. the relative position (pj − pi) in PointNet++. The experiments in199

Section 5.1 show that geometric information is essential for point feature embedding. While vanilla200

SA module Equation (1) encodes geometric information fairly well by a set of MLPs, our two SA201

modules discard geometric information for the sake of efficiency. Second, the reduction layer is an202

isotropic operation that treats each neighbor the same and thus leads to a sub-optimal representation.203

Recall in a depth-wise separable convolution, the depth-wise convolution uses different weights to204

summarize features from the 3 × 3 receptive field. However, simply introducing the depth-wise205
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convolution kernel to point neighborhood aggregation does not work, as: (1) the neighbors are not206

necessarily ordered for the sake of efficiency; (2) the convolution kernel is shared by all the points207

and neighbors and leads to poor neighborhood aggregation where the local geometric varies. We208

propose an efficient geometric-aware Anisotropic Reduction layer to effectively aggregate the point209

neighborhood information. The term “Anisotropic” indicates that our reduction layer considers each210

neighbor differently. We insert Anisotropic Reduction into the separable SA module and present our211

final variant of the SA module, the Anisotropic Separable Set Abstraction (ASSA) module. ASSA is212

formulated as follows:213

fresi = MLPs(f li )

f l+1
i = fresi + MLPs

({
R

(
∆xijf

res
j ||∆yijf

res
j ||∆zijf

res
j

r

)
|j ∈ N (i)

}) (2)

∆xij = xj−xi, ∆yij and ∆zij are the relative positions between the neighbor j and the center i in the214

x, y, z dimension, respectively. The relative positions are used as scaling weights for aggregating the215

features across the neighborhood dimension, and they are normalized by the radius of the ball query r.216

The neighborhood features are scaled by the three corresponding relative positions individually. The217

three scaled neighborhood features are then concatenated together and passed into the reduction layer.218

To reduce the computational complexity caused by the concatenation of the three scaled features, we219

set the last MLP before reduction as a bottleneck layer. This layer reduces the number of channels220

by a factor of 3. The output of the reduction layer is then processed by another MLP block and is221

added to the output before reduction. Due to the channel mismatch, the output of before reduction222

MLPs is mapped by a linear layer (a.k.a the shortcut layer) before the addition. We highlight that223

our Anisotropic Reduction does not rely on any heuristic grouping (as done in PosPool [24]), and224

we make full use of the information from the neighborhood features. The pseudo code for ASSA in225

PyTorch-like style is available in the Appendix.226

It is worth noting that all MLPs in ASSA are processed on the point features directly, not on the227

neighborhood, which greatly reduces the computations compared to Equation (1). In particular, for228

one aggregation block with L = 3 MLPs, ASSA reduces the FLOPs consumed in vanilla SA by:229
C×C×N×K×L

C×C×N×L+3×C×N×K+3×C×N ≈ K times. Typically, K is around 32. All of our SA variants are230

permutation invariant, which favors 3D deep learning on point clouds. More details of the ASSA231

module and its comparison with previous modules are provided in the Appendix.232

3.3 PointNetv3233

We replace the vanilla SA module in PointNet++ [30] with our proposed ASSA module. The other234

parts are kept the same as PointNet++, including the number of SA modules (4), the number of235

aggregation blocks in SA (D = 2), the layers of MLPs in an aggregation block (L = 3), the channel236

sizes, the neighborhood querying configurations (ball query algorithm with maximum neighborhood237

size K and radius r) and the subsampling configurations (farthest point sampling). The modified238

architecture of PointNet++ is referred to as PointNetv3, the third version of PointNet [29]. Section 4239

will show that PointNetv3 can achieve much higher accuracies compared to PointNet and PointNet++240

and is indeed faster on various vision tasks.241

3.4 Scaling PointNetv3242

Since the PointNetv3 is much faster than both PointNet++ [30] and the state-the-of-art networks,243

we now present two ways to up-scale PointNetv3 to improve its accuracy. We consider two scaling244

regimes: width scaling and depth scaling. We show the performance of each scaling regime in the245

ablation study presented in Section 5.2.246

Width Scaling Regime. In width scaling regime, we modified the channel size of PointNetv3.247

PointNetv3 is built upon PointNet++ [30], which uses hand-crafted channel size for each convolution248

layer. To make the scaling more programmable and user-friendly for scaled PointNetv3, we make the249

output of each feature aggregation block inside one ASSA module to have the same channel size, and250

concatenate them as the output of the module. After this modification, we can easily study the effect251

of width scaling on the accuracy and the speed, by simply changing the initial channel size C. Depth252

Scaling Regime. The second way to scale the architecture is to increase the depth of the network.253

Since a single isotropic aggregation block in the ASSA module is analogous to a single layer of254
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depthwise separable convolution (Section 3.2), we controls the depth scaling by changing the number255

of aggregation blocks D stacked in the ASSA module. D is set to 2 by default in PointNetv3. We can256

decrease D to 1 to make PointNetv3 faster or increase D to improve its accuracy. Among all width257

or depth scaled versions of PointNetv3, we emphasize PointNetv3 (L), a large PointNetv3 network258

with C = 128 and D = 3. In most of the experiments, we compare PointNetv3 and PointNetv3 (L)259

with the state-of-the-art.260

4 Experiments261

Methods mIOU Inference Speed
% instances/second

PointNet [29] 41.1 185.0
DeepGCN [21] 52.5 0.8
PointCNN [22] 57.3 124.1
Grid-GCN [46] 57.8 123.5
PVCNN [25] 59.0 89.8
PosPool∗(S) [24] 61.3 21.0
SegGCN [19] 63.6 29.3
KPConv [39] 65.4 1.2 (24.2)
PosPool∗ [24] 66.7 8.3

PointNet++ [30] 55.6 116.6
PointNetv3 62.6 (+7.0) 188.6 (1.6×)
PointNetv3 (L) 66.8 (+11.3) 65.6

Table 1: S3DIS scores (mIoU) on Area-5. PointNetv3
outperforms PointNet++ and other methods with much
higher accuracy and faster speed. PointNetv3 (L) performs
better than the state-of-the-art KPConv [39] and PosPool∗
[24] while being over 7.9× faster.

We studied the accuracy and speed262

of PointNetv3 and PointNetv3 (L)263

on S3DIS semantic segmentation [1],264

ShapeNet part segmentation [3], and265

ModelNet40 point cloud classification266

[2]. To enable a fair comparison, the267

same data processing and evaluation pro-268

tocols adopted by the state-of-the-art269

method PosPool [24] were used in our270

experiments.271

4.1 3D Scene Segmentation272

Setups. We conducted extensive exper-273

iments on the Stanford large-scale 3D274

Indoor Spaces (S3DIS) dataset [1]. Fol-275

lowing [22, 25, 24], we trained all our276

models on Area 1, 2, 3, 4, and 6 and277

tested them on Area 5. We optimized all of our networks using SGD with weight decay 0.001,278

momentum 0.98 and initial learning rate (LR) 0.02. We trained 600 epochs and used an exponential279

LR decay. At each inference time, a single RTX 2080Ti GPU was used to measure the speed for280

each method using a batch size of 16; each item in the batch has 15, 000 points (16× 15, 000). If the281

batch size was too large to feed into the GPU, we lowered the batch size. Note that we focus on the282

speed since FLOPs and the model parameter size are not indicative of the actual latency [26, 25].283

The inference speed is calculated as the number of instances evaluated in one second (ins./sec.). The284

average speed over 200 runs is reported. Other methods were measured in similar manner. Note285

KPCOnv [39] has to compute the pseudo kernels for each point cloud during data preprocessing. For286

a fair comparison, we show the speed of calculating the pseudo kernels on the fly. We also include287

the speed of KPConv with preprocessed pseudo kernels in () in the table.288

Comparison with state-of-the-art. Table 1 compares the proposed PointNetv3 and PointNetv3 (L)289

with PointNet++ [30] and the state-of-the-art on S3DIS. PointNetv3 outperforms PointNet++ by 7290

mIoU and is 1.6× faster. PointNetv3 also achieves much better accuracy than the two efficient point291

cloud processing algorithms PVCNN [25] and Grid-GCN [46], while also being over 1.5× faster.292

PointNetv3 (L) achieves state-of-the-art performance with a mIoU of 66.8% on S3DIS, with very high293

speed. PointNetv3 (L) is 294× faster than the graph-based method DeepGCN [21], 54.6× faster294

than the state-of-the-art pesudo grid-based method KPConv [39], 7.9× faster than the state-of-the-art295

adaptive weight-based method PosPool* [24], and 2.2× faster than the best-performing efficient296

method SegGCN [19]. Note that PosPool* refers to PosPool with sinusoidal position weight, and that297

PosPool* (S) denotes the small model.298

4.2 3D Object Classification299

Setup. As a common practice, we benchmark PointNetv3 on the ModelNet40 [2] object classification300

dataset. We adopted a similar training setting as that on S3DIS except that we used LR 0.001 and a301

cosine LR decay in this experiment. At the inference time, a single RTX 2080Ti GPU was used to302

measure the speed for the classification task using 16× 10, 000 points as input.303
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Methods OA Inference Speed
% instances/second

PointNet [29] 89.2 483.8
SpiderCNN [47] 90.5 < 275.7
PointCNN [22] 92.5 183.4
PosPool∗(S) [24] 92.6 48.8
DGCNN [42] 92.9 11.6
KPConv [39] 92.9 (30.1)
Grid-GCN [46] 93.1 172.0
PosPool∗ [24] 93.2 27.6

PointNet++ [30] 90.7 275.7
PointNetv3 92.7 (+2.0) 586.4 (2.1×)
PointNetv3 (L) 93.0 (+2.3) 153.2

Table 2: Comparison of our PointNetv3
and PointNetv3 (L) with other methods
on ModelNet40 point cloud classification.
PointNetv3 outperforms PointNet++ with 2.0
higher overall accuracy (OA) than PointNet++
and is 2.13 times faster . PointNetv3 (L)
achieves on par accuracy with the state-of-
the-art while maintaining a high speed.

Methods mIoU Inference Speed
% instances/second

PointNet [29] 83.7 1883.5
PosPool∗ (S) [24] 85.1 107.7
DGCNN [42] 85.2 151.4
LPN [18] 85.7 190.6
PosPool∗ [24] 85.8 58.0
PointCNN [22] 86.1 626.4
RS-CNN [23] 86.2 <350.4
KPConv [39] 86.2 (56.3)

PointNet++ [30] 85.1 350.4
PointNetv3 85.4 (+0.3) 782.5 (2.2×)
PointNetv3 (L) 86.1 (+1.0) 438.5 (1.3×)

Table 3: Comparison of the part-averaged
IoU (mIoU) of our PointNetv3 and
PointNetv3 (L) with other methods on
ShapeNetPart part segmentation. Both of
PointNetv3 and PointNetv3 (L) outperform
PointNet++ with a higher speed. PointNetv3
(L) achieves a comparable accuracy as the
state-of-the-art while being much faster.

Comparison with state-of-the-art. Table 2 compares PointNetv3 and PointNetv3 (L) with the304

state-of-the-art. PointNetv3 outperforms PointNet++ by 2 units in overall accuracy and is 2.1× faster305

than PointNet++. PointNetv3 (L) achieves on par accuracy as the state-of-the-art methods KPConv306

[39] and PosPool* [24] while being 5.0× and 4.4× faster, respectively.307

4.3 3D Part Segmentation308

Data. ShapeNetPart is a commonly used benchmark for 3D part segmentation. The networks were309

optimized using Adam [14] with momentum 0.9. The other training parameters were the same as310

ModelNet40 experiment. The speed of each method was measured with an input of 16× 2048 points.311

We report the part-averaged IoU (mIoU) as the evaluation metric for accuracy.312

Comparison with state-of-the-art. Table 3 shows that PointNetv3 again outperforms PointNet++313

with a sharp increase (2.2×) in speed on the ShapeNetPart part segmentation dataset. PointNetv3314

(L) also achieves 1 unit higher mIoU than PoinetNet++ with a 1.3× faster speed. Additionally,315

PointNetv3 (L) attains on par accuracy, 86.1% mIoU, with the state-of-the-art and is much faster. For316

example, PointNetv3 (L) is nearly 7.8× faster than KPConv [39].317

5 Ablation Study318 Aggregation mIoU Speed
% ins./sec.

Vanilla SA 55.6 116.6
PreConv SA 48.7 180.9
Separable SA (SSA) 52.4 180.0
SSA + Attentive Pooling[11] 59.0 142.0
SSA + PosPool[24] 62.0 168.4
Anisotropic Separable SA 62.6 188.6

Table 4: Ablation study of the proposed SA vari-
ants. All proposed SA variants achieve a faster speed
than the vanilla SA. Our ASSA further improves the
accuracy of the Separable SA module and outperforms
other methods, while also being faster.

An ablation study was conducted on S3DIS319

[1] Area-5. We show the effectiveness of the320

proposed SA variants and the effect of the321

two scaling regimes on the performance of322

PointNetv3.323

5.1 Ablation on Proposed SA variants324

The proposed PreConv SA and Separable325

SA modules achieve faster inference speeds.326

Table 4 shows the speed and the accuracy of327

the proposed PreConv Set Abstraction (SA)328

module, the Separable SA module, and the329

Anisotropic Separable SA (ASSA) module330

compared to the vanilla SA. All of our proposed SA modules lead to a sharp increase (over 1.6×) in331

inference speed. The proposed Separable SA module can boost the accuracy of PreConv by 3.7 mIoU,332

which verifies the effectiveness of separable MLPs and residual connections. Comparing the ASSA333
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module with the Separable SA module, one can clearly see the importance of encoding the geometric334

information and the effect of the anisotropic operation to achieve higher accuracy. Additionally, we335

provide a comparison of our proposed Anisotropic Reduction with the Attentive Pooling used in336

RandLA-Net [11] and the PosPool proposed in [24]. Our method clearly outperforms both of these337

methods in terms of accuracy and inference speed.338

5.2 Ablation on Scaling Regimes339

We now study the effects of ablating the width and depth of a network on its accuracy and inference340

speed. The initial channel size of the network is referred to as width (denoted by C), whereas the341

number of aggregation layers inside a single SA module is referred to as depth (denoted by D).342

Width scaling. Figure 4 (left) shows the effect of the width scaling regime. When the width of the343

network is small, increasing the width leads to a significant improvement in accuracy. For example,344

simply increasing the width C from 3 to 8 sharply improves the accuracy from 41.21 mIoU to 53.95345

with a negligible drop in inference speed. However, when the network is wide enough (C ≥ 128),346

increasing the width further only leads to a marginal improvement in accuracy, yet reduces the347

inference speed noticeably.348

Depth scaling. Figure 4 (right) shows the effect of the depth scaling regime. We study the depth349

scaling with C = 128, which is the sweet point of width scaling. When the network is shallow, with350

a depth of D ≤ 3, increasing the depth leads to an obvious increase in accuracy, similarly to width351

scaling. However, depth scaling rapidly saturates as the depth increases. Additionally, depth scaling352

leads to a linear reduction in speed.353
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Figure 4: Effect of Width (left) and Depth Scaling (right). Increasing either the width (the initial
channel size) or the depth (the number of aggregation layers in a single SA module) leads to an
improvement in accuracy and drop in inference speed.

6 Conclusion354

In this paper, we dove deeper into the architecture of PointNet++. We noticed that PointNet++355

suffers from a computational burden attributed to the MLPs that process the neighborhood features in356

the set abstraction (SA) module. We also found out that the accuracy of PointNet++ is limited by357

the isotropic nature of its operations. To solve these issues, we proposed a PreConv SA module, a358

Separable SA module, and finally an Anisotropic Separable SA (ASSA) module that aim to reduce the359

computational cost and improve the accuracy. We then replaced the vanilla SA module in PointNet++360

with our ASSA module, and proposed a fast and accurate architecture, namely, PointNetv3. Extensive361

experiments were conducted to verify the presented claims, and showed that PointNetv3 achieves362

largely improved accuracy and much faster speed on various point cloud tasks, such as classification,363

semantic segmentation, and part segmentation. We also studied up-scaling PointNetv3. The scaled364

PointNetv3 set new state-of-the-art on various tasks with faster speeds. For future work, one could365

leverage both random sampling [11] and voxelization tricks [25, 46] to further improve the inference366

speed. Alternatively, one could consider studying compound scaling, like that in EfficientNet [36].367
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