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Abstract

In few-shot domain adaptation (FDA), classifiers for the target domain are trained1

with accessible labeled data in the source domain (SD) and few labeled data in2

the target domain (TD). However, data usually contain private information in the3

current era, e.g., data distributed on personal phones. Thus, the private information4

will be leaked if we directly access data in SD to train a target-domain classifier (re-5

quired by FDA methods). In this paper, to thoroughly prevent the privacy leakage6

in SD, we consider a very challenging problem setting, where the classifier for the7

TD has to be trained using few labeled target data and a well-trained SD classifier,8

named few-shot hypothesis adaptation (FHA). In FHA, we cannot access data in9

SD, as a result, the private information in SD will be protected well. To this end,10

we propose a target orientated hypothesis adaptation network (TOHAN) to solve11

the FHA problem, where we generate highly-compatible unlabeled data (i.e., an12

intermediate domain) to help train a target-domain classifier. TOHAN maintains13

two deep networks simultaneously, where one focuses on learning an intermediate14

domain and the other takes care of the intermediate-to-target distributional adap-15

tation and the target-risk minimization. Experimental results show that TOHAN16

outperforms competitive baselines significantly.17

1 Introduction18

In Domain Adaptation (DA) [39, 30, 31, 14], we aim to train a target-domain classifier with data in19

source and target domains. Based on the availability of data in the target domain (e.g., fully-labeled20

data, partially-labeled data and unlabeled data), DA is divided into three categories: supervised21

DA (SDA) [32], semi-supervised DA [13] and unsupervised DA (UDA) [28]. Since SDA methods22

outperform UDA methods for the same quantity of target data [23], it becomes attractive if we can23

train a good target-domain classifier using labeled-source data and few labeled-target data [34].24

Hence, few-shot domain adaptation (FDA) methods [23] are proposed to train a target-domain25

classifier with accessible labeled data from the source domain and few labeled data from the target26

domain. Compared to SDA and UDA methods, FDA methods only require few data in the target27

domain, which is suitable to solve many problems, e.g., medical image processing [36]. Existing FDA28

methods involve many approaches and applications. Structural casual model [34] has been proposed29

to overcome the problem caused by apparent distribution discrapancy. Since deep neural networks30

tend to overfit the few-labeled data in the training process, a meta-learning method becomes an31

effective solution to the FDA problem [33]. Besides, FDA methods perform well in face of generation32

[40] and virtual-to-real scene parsing [41].33

However, it is risky to directly access source data for training a target-domain classifier (required34

by FDA methods) due to the private information contained in the source domain. In the current era,35

labeled data are distributed over different physical devices and usually contain private information,36
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Figure 1: The few-shot hypothesis adaptation (FHA) and existing domain adaptation problem settings.
In FHA, we aim to train a classifier for the target domain only using few labeled target data and a
well-trained source-domain classifier. Namely, we do not access any source data when training the
target-domain classifier. This thoroughly prevents the information leakage of the source domain. The
lock means we cannot access data in the source domain.

e.g., data on personal phones or from surveillance cameras [19]. Since FDA methods [34] require37

abundant labeled source data to train a target-domain classifier, they may leak private information in38

the training process, maybe resulting in massive loss [12].39

In this paper, to thoroughly prevent the private-information leakage of the source domain in existing40

FDA methods, we propose a novel and very challenging setting, where the classifier for the target41

domain has to be trained using few labeled target data and a well-trained source-domain classifier,42

named few-shot hypothesis adaptation (FHA, see Figure 1). In the literature, researchers have adapted43

source-domain hypothesis to be a target-domain classifier when abundant unlabeled target data are44

available [19]. However, since these methods require abundant target data, they cannot address the45

FHA problem well, which has been empirically verified in Table 1 and Table 2.46

The key benefit of FHA is that we do not need to access any source data, which wisely avoids the47

private-information leakage of the source domain. Moreover, the scales of images of most domains48

tend to be larger in the real world. Thus, existing FDA methods will take a long time to train a49

target-domain classifier. However, in FHA, we can train a target-domain classifier only using a50

well-trained source-domain classifier and few labeled target data.51

To address FHA, we first revisit the theory related to learning from few labeled data and try to find52

out if FHA can be addressed in principle. Fortunately, we find that, in semi-supervised learning (SSL)53

where only few labeled data available, researchers have already shown that, a good classifier can be54

learned if we have abundant unlabeled data that are compatible with the labeled data. Thus, motivated55

by the SSL, we aim to address FHA via gradually generating highly compatible data for the target56

domain. To this end, we propose a target orientated hypothesis adaptation network (TOHAN) to57

solve the FHA problem. TOHAN maintains two deep networks simultaneously, where one focuses58

on learning an intermediate domain (i.e., learning compatible data) and the other takes care of the59

intermediate-to-target distributional adaptation (Figure 2).60

Specifically, due to the scarcity of target data, we cannot directly generate compatible data for the61

target domain. Thus, we first generate an intermediate domain where data are compatible with the62

given source classifier and the few labeled target data. Then, we conduct the intermediate-to-target63

distributional adaptation to make the generated intermediate domain close to the target domain.64

Eventually, we embed the above procedures into our one-step solution, TOHAN, to make us be able65

to gradually generate an intermediate domain that contains highly compatible data for the target66

domain. According to learnability of SSL, with the generated “target-like” intermediate domain,67

TOHAN can learn a good target-domain classifier.68

We conduct experiments on 8 FHA tasks on 5 datasets (MNIST, SVHN, USPS, CIFAR-10 and STL-10).69

We compare TOHAN with 5 competitive baselines. Experiments show that TOHAN effectively70

transfers knowledge of the source hypothesis to train a target-domain classifier when we only have71

few labeled target data. In a word, our paper opens a new door to domain adaptation field, which72

solves privacy leakage and data shortage simultaneously.73
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Figure 2: Overview of target orientated hypothesis adaptation network (TOHAN). It consists
of generator G, encoder gs, gt (initialize gt=gs), classifier hs, ht (initialize ht=hs) and group
discriminator D. (a) Firstly, we train a generator G using the source classifier gs, hs and target data
Dt, then we generate intermediate data between two domains. (b) We freeze gt and ht and update
group discriminator D. (c) We freeze D and update gt and ht. In subfigures (b) and (c), they show a
data pair from G2 which two data come from the same class but different domain.

2 Few-shot Hypothesis Adaptation74

In this section, we formalize a novel and challenging problem setting, called few-shot hypothesis75

adaptation (FHA). Let X ⊂ Rd be a feature (input) space and Y := {1, . . . , N} be a label (output)76

space, and N is the number of classes. A domain for the FHA problem is defined as follows.77

Definition 1 (Domains for FHA). Given random variables Xs, Xt ∈ X , Ys, Yt ∈ Y , the source78

and target domains are joint distributions P (Xs, Ys) and P (Xt, Yt), where the joint distributions79

P (Xs, Ys) 6= P (Xt, Yt) and X is compact.80

Then the FHA problem is defined as follows.81

Problem 1 (FHA). Given a model (consisting of an encoder gs and a classifier hs) trained on82

the source domain P (Xs, Ys) and independent and identically distributed (i.i.d.) labeled data83

Dt =
{(
xit, y

i
t

)}nt

i=1
(nt ≤ 7, following [26]) drawn from the target domain P (Xt, Yt), the aim of84

FHA is to train a classifier ht : X → Y with gs, hs and Dt such that ht can accurately classify85

target data drawn from P (Xt, Yt).86

Comparison with Few-shot Learning. The main difference between FHA and FSL is the prior87

knowledge [38]. The prior knowledge of FSL mainly includes various types of numerical information88

and comes from the same distribution with their tasks [38]. For example, [37] uses the data itself as89

prior knowledge, and [29] uses the pairwise similarity, which is relatively weaker than the former. In90

addition, model-agnostic meta learning (MAML) requires data to optimize a meta-learner as prior91

knowledge [6]. However, the prior knowledge of FHA is just a well-trained classifier and training92

data of this classifier come from different distribution with P (Xt, Yt).93

Comparison with UDA. The main differences between FHA and UDA focus on amount and label of94

data on two domains. For source domain, UDA requires a large amount of labeled data, while FHA95

only requires a well-trained model. For target domain, UDA requires a large amount of unlabeled96

data, while FHA requires few labeled data.97

Comparison with Few-shot Domain Adaptation. With the development of FSL, researchers also98

apply ideas of FSL into domain adaptation, called few-shot domain adaptation (FDA). FADA [23]99

is a representative FDA method, which pairs data from source domain and data from target domain100

and then follows the adversarial domain adaptation method. Casual mechanism transfer [34] is101

another novel FDA method dealing with a meta-distributional scenario, in which the data generating102

mechanism is invariant among domains. Nevertheless, FDA methods still need to access many labeled103

source data for training, which may cause the private-information leakage of the source domain.104

Comparison with Hypothesis Transfer Learning. In the hypothesis transfer learning (HTL), we105

can only access a well-trained source-domain classifier and small labeled or abundant unlabeled106

target data. [17] requires small labeled target data and uses the Leave-One-Out error find the optimal107

transfer parameters. Later, SHOT [19] is proposed to solve the HTL with many unlabeled target data108

by freezing the source-domain classifier and learning a target-specific feature extraction module. As109

for the universal setting, a two-stage learning process [16] has been proposed to address the HTL110

problem. Compared with FHA, HTL still requires at least small target data (e.g., at least 12 samples111
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in binary classification problem [17], or at least two of labeling percentage [1]). In FHA, we focus112

on a more challenging situation: only few data (e.g., one sample per class) are available. Besides,113

previous solutions to HTL mainly focus on mortifying existing hypotheses or loss functions used for114

fine-tuning. However, our solution stems from the learnability of semi-supervised learning (Section 3)115

and try to generate more compatible data, which is quite different from previous works. In this paper,116

we modify the newest HTL method, SHOT [19], as one of our baselines. The modified SHOT can117

leverage labeled target data to train a good target-domain classifier.118

3 How to Learn from Few-shot Data in Principle119

From the view of statistical learning theory [35], it is unrealistic to directly learn an accurate target-120

domain classifier only with few labeled data. However, the amount of labeled data in semi-supervised121

learning (SSL) [43] is also few (e.g., one sample per class), but SSL methods still achieves good122

performance across various learning tasks, which motivates us to consider solving FHA in the view123

of SSL. First, we will show theoretical analysis regarding learnability of SSL.124

Learnability of SSL. For simplicity, we consider the 0-1 semi-supervised classification problem.125

Let c∗ : X → {0, 1} be the optimal target classifier and H = {h : X → {0, 1}} is a hypothesis126

space. Let err(h) = Ex∼P [h(x) 6= c∗(x)] be the true error rate of a hypothesis h over a distribution127

P . In SSL, its learnability mainly dependents on the compatibility χ : H×X 7→ [0, 1] that measures128

how “compatible” h is to an unlabeled data x. Let χ(h, P ) = Ex∼P [χ(h, x)] be the expectation of129

compatibility of data from P on a classifier h. If the unlabeled data and c∗ are highly compatible130

(i.e., χ(c∗, P ) closes to 1), then, in theory, we can learn a good classifier with few labeled data and131

sufficient unlabeled data. Specifically, we have the following theorem (see proof in Appendix B).132

Theorem 1. Let χ̂(h, S) = 1
|S|
∑
x∈S χ(h, x) be the empirical compatibility over unlabeled dataset133

S. LetH0 = {h ∈ H : êrr(h) = 0}. If c∗ ∈ H and χ(c∗, P ) = 1− t, then mu unlabeled data and134

ml labeled data are sufficient to learn to error ε with probability 1− δ, for135

mu = O
(
V Cdim(χ(H))

ε2
log

1

ε
+

1

ε2
log

2

δ

)
(1)

and136

ml =
2

ε

[
ln(2HP,χ(t+ 2ε)[2ml, P ]) + ln

4

δ

]
, (2)

where χ(H) = {χh : h ∈ H}, χh(·) = χ(h, ·), and HP,χ(t+ 2ε)[2ml, P ] is the expected number137

of splits of 2ml data drawn from P using hypotheses inH of compatibility more than 1− t− 2ε. In138

particular, with probability at least 1− δ, we have err(ĥ) ≤ ε, where139

ĥ = argmax
h∈H0

χ̂(h, S). (3)

Remark 1. If unlabeled data are highly compatible to c∗, t is small, which results in a smaller ml.140

Namely, with the smaller ml, we can still achieve a low error rate. In view of Theorem 1, it is clear141

that SSL will be learnable if many compatible unlabeled data are available. Motivated by SSL, we142

wonder if we can generate compatible data to help our learning task. The answer is affirmative.143

Solving FHA in Principle. Motivated by Theorem 1, finding many highly compatible unlabeled144

data is a breakthrough point for FHA. Hence, generating unlabeled target data is a straightforward145

solution. However, due to the shortage of existing target data, directly generating them is unrealistic.146

To solve this problem, we can ask for help from the source classifier. In our paper, we first try to147

generate intermediate domain Pm containing knowledge of source and target domains, which are148

compatible with both source classifier and target classifier, i.e.,149

Pm = argmax
P

[χ(hs, P ) + χ(ht, P )], (4)

where χ(hs, P ) (resp. χ(ht, P )) measures how compatible hs (resp. ht) is with unlabeled data150

distribution P . Then, we will adapt intermediate domain Pm to the target domain via distributional151

adaptation with the training procedure going on. Finally, we can obtain many unlabeled data that is152

compatible with hs and ht (more compatible with ht), meaning that, based on Theorem 1, we can153
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address FHA in principle. According to Eq. (4), it can be seen that we can have two straightforward154

solutions: maximizing χ(hs, P ) or χ(ht, P ), corresponding to S+FADA and T+FADA in benchmark155

solutions. The results in Table 1 and Table 2 indicate that these two straightforward solutions cannot156

address FHA well, which motivate us to maximize them simultaneously, which is realized below.157

4 Target Orientated Hypothesis Adaptation Network for FHA Problem158

In this section, we propose a powerful one-step approach: target orientated hypothesis adaptation159

network (TOHAN, see Figure 2). TOHAN can generate data that are highly compatible with both160

source classifier and target classifier and adapt the knowledge of these data to target domain gradually.161

Intermediate domain generation. The first step of TOHAN is to generate intermediate domain162

data (see Figure 2a). We input Gaussian random noise z to a generator Gn (taking the nth class for163

an example), then the generator outputs the generated data. We aim to generate data satisfying two164

conditions: (1) the generated data Gn(z) can be correctly classified by the given source classifier165

fs = hs ◦ gs, and (2) Gn(z) becomes closer to target domain with training procedure going on.166

Thus, there are two loss functions regarding to the intermediate domain generation. The first one is167

introduced below.168

Without loss of the generality, we assume Gn(z) generates B images, where B is the batchsize in169

the training process of TOHAN. When Gn(z) is inputted to the source-domain classifier fs, we will170

obtain an B ×N matrix GM
n , where the ith row in GM

n represents probability of the ith generated171

image belonging to each class. Thus, the nth column in GM
n represents the probability that the B172

generated images belongs to the nth class, and we denote the nth column in GM
n as ln. Since Gn(z)173

aims to generate data belonging to the nth class, we should update parameters of GM
n to make each174

element in ln close to 1. Namely, the first loss function to train the Gn can be defined as175

LsGn
=

1

B
‖ln − 1‖22 , (5)

where 1 is a B-by-1 vector whose elements are 1.176

As discussed before, we also want to reduce the distance between the generated data Gn(z) and177

the target data whose labels are n. In this way, we can make the generated data close to the target178

domain and attain an intermediate domain Dm. Following [20], we adopt an augmented L1 distance179

‖X − Y ‖1 =
∑
i ωi |Xi − Yi|, where ωi = |Xi − Yi|2 /‖X − Y ‖2. Compared to ordinary `1 norm,180

the augmented L1 distance encourages larger gradients for feature dimensions with higher residual181

error [20]. Compared to the `2 norm, since L1 distance is more robust to outliers [25], it is better to182

measure the distance between generated images and target images. Thus, the second loss to train Gn183

is defined as follows,184

LtGn
=

1

MBK

B∑
i=1

K∑
k=1

∥∥xim − xkt ∥∥1 , (6)

where M = max
x1,x2∈X

‖x1 − x2‖1 (X is compact and ‖ · ‖1 is continuous) and Gn(z) := {xim}Bi=1.185

Combining Eq. (5) and Eq. (6), we obtain the total loss to train the generator Gn:186

LGn = LsGn
+ λLtGn

=
1

B
‖ln − 1‖22 +

λ

MBK

B∑
i=1

K∑
k=1

∥∥xim − xkt ∥∥1 , (7)

where λ is a hyper-parameter between two losses to tradeoff the weight of knowledge of source-187

domain and target-domain. To ensure that generated data are high-quality images, we train the188

generator Gn (n = 1, . . . , N ) for some steps all alone. And we claim that optimizing Eq. (7) is189

corresponding to Eq. (4). More specifically, Eq (5) (resp. Eq. (6)) is corresponding to χ(hs, Pm)190

(resp. χ(ht, Pm)). Then we conduct intermediate-to-target distributional adaptation (see the next191

paragraph) and generation simultaneously.192

Intermediate-to-target distributional adaptation. Now, we focus on how to construct domain-193

invariant representations (DIP) between the intermediate domain and the target domain. Through194

DIP, classifier for the intermediate domain can be used to classify target data well.195
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Since we only have few target data per class, so we aim to “augment” them. Following [23], we196

can overcome the shortage of target data by pairing them with corresponding intermediate data.197

Specifically, we create 4 groups of data pairs: G1 consists of data pairs from the intermediate domain198

with the same label, G2 consists of pairs from different domains (one from the intermediate and one199

from the target domain) but with the same label, G3 consists of pairs from the same domain with200

different labels, and G4 consists of pairs from different domains (one from the intermediate and one201

from the target domain) and with different labels.202

Based on the above four groups, we construct a four-class group discriminator D to decide which203

of the four groups a given data pair belongs to, which differs from classical adversarial domain204

adaptation [7, 13]. The group discriminator D aims to classify the data pair groups. As a classification205

problem, we train D with the standard categorical cross-entropy loss:206

LD = −Ê

[
4∑
i=1

yGi log (D (φ (Gi)))

]
, (8)

where Ê[·] represents the empirical mean value, yGi is the label of group Gi, and φ(Gi) :=207

[gt(x1), gt(x2)], (x1, x2) ∈ Gi, and gt is the encoder on target domain. Note that we will freeze gt208

when minimizing the above loss function (see Figure 2b).209

Next, we turn to train gt and ht with the group discriminator D fixed, which confuses D unable210

to distinguish between G1 and G2 (also G3 and G4). However, we need D to correctly discriminate211

positive pairs (G1, G2) from negative pairs (G3, G4). This means that domain confusion and classifi-212

cation are realized at the same time. We firstly initial gt and ht with the same weight as gs and hs,213

respectively. Motivated by non-saturating game [8], we minimize the following loss to update gt and214

ht (see Figure 2c):215

Lh◦g = −βÊ [yG1 log (D (φ (G2)))− yG3 log (D (φ (G4)))] + Ê [` (ft (Xt) , f
∗
t (Xt))] , (9)

where β is a hyper-parameter to tradeoff confusion and classification and ` is the cross-entropy loss.216

ft := gt ◦ ht is the target model and f∗t is the optimal target model. Corresponding to Theorem 1,217

optimizing the first term in Eq. (9) increases compatibility of target classifier with intermediate218

data, and optimizing the second term in Eq. (9) reduces ˆerr(ht), resulting in a smaller err(ht).219

Compared to [23], Eq. (9) means that we train target-domain classifier by confusing D and improving220

classification accuracy simultaneously.221

TOHAN: A one-step solution to FHA. Although we can sequentially combine the above two222

steps to solve the FHA problem (i.e., a two-step solution), the fixed intermediate domain (generated223

by the first step) may have large distributional discrepancy with target domain. As a result, such224

two-step solution may not obtain a good target-domain classifier. To address this issue, we introduce225

a one-step solution TOHAN. The ablation study verifies that TOHAN outperforms such two-step226

solution (see ST+F and TOHAN in Table 3).227

The entire training procedures of TOHAN are shown in Algorithm 1. Since the convergence speed of228

generator G is relatively slow, the quality of generated data is poor at the beginning of the training229

process of G. Thus, we will train the generator G for certain epochs before doing intermediate-to-230

target distributional adaptation (lines 2 to 5). When the generator can generate high-quality images,231

we will train the generator and conduct adaptation altogether.232

We train every generator Gn (n = 1, 2, . . . , N ) separately, and we generate intermediate domain data233

using the latest generators. Then, we pair intermediate data with target data and pre-train the group234

discriminator D (lines 6 to 8). Next, we pair the intermediate data with target data and conduct the235

adaptation (lines 9 to 12). After conducting intermediate-to-target distributional adaptation, we will236

obtain better gt and ht, i.e. classifying the intermediate domain data more accurately. With the better237

target-domain classifier, we can make the generated intermediate data get closer to the target domain,238

in turn, these generated intermediate data furthermore promote the adaptation performance.239

Why does TOHAN prevent the leakage of private information effectively? As mentioned240

above, TOHAN generates intermediate domain data containing knowledge of source domain and241

target domain. The knowledge of source domain is mainly the underlying features, dominating which242

class an intermediate data belongs to. However, the high-level, visual and useful features of source243

domain are rare in the generated intermediate data (Figure 6). Thus, it is clear that the high-level244
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Algorithm 1 Target orientated hypothesis adaptation network (TOHAN)
Input: encoder gs, classifier hs, Dt =

{
xit, y

i
t

}nt

i=1
, learning rate γ1, γ2, γ3 and γ4, total epoch Tmax,

pretraining D epoch Td, adaptation epoch Tf , network parameter {θGn}
N
n=1, θh◦g , θD .

1: Initialize {θGn}
N
n=1 and θD;

for t = 1, 2, ....., Tmax do
2: Initialize Dm = ∅
for n = 0, 1, . . . , N − 1 do

3: Generate random noise z;
4: Generate data Gn(z) then add them to Dm

5: Update θGn ← θGn − γ1∇LGn (z,Dt) using Eq. (7);
end
if t = Tmax − Tf then

for i = 1, 2, . . . , Td do
6: Sample G1, G3 from Dm ×Dm;
7: Sample G2, G4 from Dm ×Dt;
8: Update θD ← θD − γ2∇LD

(
{Gi}4i=1

)
using Eq. (8);

end
end
if t ≥ Tmax − Tf then

9: Sample G1, G3 from Dm ×Dm;
10: Sample G2, G4 from Dm ×Dt;
11: Update θh◦g ← θh◦g − γ3Lh◦g({Gi}4i=1, xm, xt) using Eq. (9);
12: Update θD ← θD − γ4∇LD

(
{Gi}4i=1

)
using Eq. (8);

end
end
Output: the neural network ht ◦ gt.

features of intermediate data mostly come from target domain. Therefore, the useful knowledge245

of the source domain is completely unaccessible. Therefore, the privacy information in the source246

domain is protected strictly.247

5 Experiments248

In this section, we compare TOHAN with possible benchmark solutions on five standard supervised249

DA datasets: MNIST(M), SYHN(S), USPS(U), CIFAR-10 (CF), STL-10 (SL). We follow the stan-250

dard domain-adaptation protocols [28] and compare average accuracy of 5 independent repeated251

experiments. For digital datasets (i.e., M, S, and U), we choose the number of target data from 1 to 7252

following [23]. For objective datasets (i.e., CF and SL), we choose the number of target data as 10.253

Details regarding these datasets can be found in Appendix C.254
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Figure 3: TOHAN vs DAPN.

Benchmark solutions for FHA.255

Although the FHA is a new problem256

setting, we still design 5 benchmark257

solutions to this new problem. (1)258

Without adaptation (WA): to classify259

target domain with the source classi-260

fier (encoder gs and classifier hs). (2)261

Fine tuning (FT): to train the classi-262

fier gs with few owned target data. (3)263

SHOT: a novel HTL method, where264

we modify it to use labeled target data265

instead of only using unlabeled target266

data. [19]. (4) S+FADA (S+F): to generate fake source data with the source classifier then apply them267

into DANN [7]. (5) T+FADA (T+F): to generate fake target data with few real target data then apply268

them into DANN. We demonstrate details of 5 benchmark solutions in Appendix D. Experimental269

details can be found in Appendix E. Moreover, we conduct additional experiments about existing270

HTL methods in Appendix F.271
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Table 1: Classification accuracy±standard deviation (%) on 6 digits FHA tasks. Bold value represents
the highest accuracy on each column.

Tasks WA FHA Number of Target Data per Class
Methods 1 2 3 4 5 6 7

M→S 24.1

FT 26.7±1.0 26.8±2.1 26.8±1.6 27.0±0.7 27.3±1.2 27.5±0.8 28.3±1.5
SHOT 25.7±2.2 26.9±1.2 27.9±2.6 29.1±0.4 29.1±1.4 29.6±1.7 29.8±1.5
S+F 25.6±1.3 27.7±0.5 27.8±0.7 28.2±1.3 28.4±1.4 29.0±1.0 29.6±1.9
T+F 25.3±1.0 26.3±0.8 28.9±1.0 29.1±1.3 29.2±1.3 31.9±0.4 32.4±1.8

TOHAN 26.7±0.1 28.6±1.1 29.5±1.4 29.6±0.4 30.5±1.2 32.1±0.2 33.2±0.8

S→M 70.2

FT 70.2±0.0 70.6±0.3 70.7±0.1 70.8±0.3 70.9±0.2 71.1±0.3 71.1±0.4
SHOT 72.6±1.9 73.6±2.0 74.1±0.6 74.6±1.2 74.9±0.7 75.4±0.3 76.1±1.5
S+F 74.4±1.5 83.1±0.7 83.3±1.1 85.9±0.5 86.0±1.2 87.6±2.6 89.1±1.0
T+F 74.2±1.8 81.6±4.0 83.4±0.8 82.0±2.3 86.2±0.7 87.2±0.8 88.2±0.6

TOHAN 76.0±1.9 83.3±0.3 84.2±0.4 86.5±1.1 87.1±1.3 88.0±0.5 89.7±0.5

M→U 69.7

FT 74.4±0.7 76.7±1.9 76.9±2.2 77.3±1.1 77.6±1.4 78.3±2.1 78.3±1.6
SHOT 87.2±0.2 87.9±0.3 87.8±0.4 88.0±0.4 87.9±0.5 88.0±0.3 88.4±0.3
S+F 83.7±0.9 86.0±0.4 86.1±1.1 86.5±0.8 86.8±1.4 87.0±0.6 87.2±0.8
T+F 84.2±0.1 84.2±0.3 85.2±0.9 85.2±0.6 86.0±1.5 86.8±1.5 87.2±0.5

TOHAN 87.7±0.7 88.3±0.5 88.5±1.2 89.3±0.9 89.4±0.8 90.0±1.0 90.4±1.2

U→M 82.9

FT 83.5±0.4 84.3±2.4 84.5±0.7 85.5±1.3 86.6±1.0 87.2±0.7 88.1±2.7
SHOT 83.1±0.5 85.5±0.3 85.8±0.6 86.0±0.2 86.6±0.2 86.7±0.2 87.0±0.1
S+F 83.2±0.2 84.0±0.3 85.0±1.2 85.6±0.5 85.7±0.6 86.2±0.6 87.2±1.1
T+F 82.9±0.7 83.9±0.2 84.7±0.8 85.4±0.6 85.6±0.7 86.3±0.9 86.6±0.7

TOHAN 84.0±0.5 85.2±0.3 85.6±0.7 86.5±0.5 87.3±0.6 88.2±0.7 89.2±0.5

S→U 64.3

FT 64.9±1.1 66.5±1.5 66.7±1.7 67.3±1.1 68.1±2.3 68.3±0.5 69.7±1.4
SHOT 74.7±0.3 75.5±1.4 75.6±1.0 75.8±0.7 77.1±2.1 77.8±1.6 79.6±0.6
S+F 72.2±1.4 73.6±1.4 74.7±1.4 76.2±1.3 77.2±1.7 77.8±3.0 79.7±1.9
T+F 71.7±0.6 74.3±1.9 74.5±0.8 75.9±2.1 77.7±1.5 76.8±1.8 79.7±1.9

TOHAN 75.8±0.9 76.8±1.2 79.4±0.9 80.2±0.6 80.5±1.4 81.1±1.1 82.6±1.9

U→S 17.3

FT 23.4±1.8 23.6±2.7 23.8±1.6 24.6±1.4 24.6±1.2 24.8±0.7 25.5±1.8
SHOT 30.3±1.2 31.6±0.4 29.8±0.5 29.4±0.3 29.7±0.5 29.8±0.8 30.1±0.9
S+F 28.1±1.2 28.7±1.3 29.0±1.2 30.1±1.1 30.3±1.3 30.7±1.0 30.9±1.5
T+F 27.5±1.4 27.9±0.9 28.4±1.3 29.4±1.8 29.5±0.7 30.2±1.0 30.4±1.7

TOHAN 29.9±1.2 30.5±1.2 31.4±1.1 32.8±0.9 33.1±1.0 34.0±1.0 35.1±1.8

Results on digits FHA tasks. We conduct experiments on 6 digits FHA tasks: M→S, S→M,272

M→U, U→M, S→U and U→S. Table 1 reports target-domain classification accuracy of 6 methods273

on 6 digits FHA tasks. It is clear that TOHAN performs the best on almost every tasks. On M→S,274

S→M, M→U and S→U, TOHAN outperforms all benchmark solutions obviously. However, on the275

tasks of U→M and U→S, the accuracy of TOHAN is slightly lower than SHOT when the amount of276

target data is too small (n = 1, 2). This abnormal phenomenon shows that TOHAN cannot generate277

intermediate domain data effectively with very little target data, especially when the resolution of278

source data is much smaller than that of target data. In this case, the data we generate is close to279

source domain, so TOHAN degrades to S+FADA.280

In Appendix G, we use t-SNE to visualize the feature extracted by TOHAN and 5 benchmark solutions281

on M→U task (see Figure 7 in Appendix G). When we use WA and FT methods, nearly all classes282

mix together. Although the classification accuracy of SHOT, S+F and T+F are relatively high, there283

are still a little mixtures among classes. For TOHAN, it can be seen that all classes are separated284

well, which demonstrates that TOHAN works well for solving FHA problem.285

Results on objects FHA tasks. Following [28], we also evaluate TOHAN and benchmark solutions286

on 2 objects FHA tasks: SL→ CF and CF → SL. Considering the complexity of datasets and the287

difficulty of our problem setting, we do not have amazing results like digits tasks. In SL→ CF , we288

achieve of 4.8% improvement over WA and a performance accuracy of 56.9%. Note that because the289

number of pixels per image of CF and SL are quite different, the images from SL will lose a lot of290

information when inputted to the pre-trained model of CF , thus making the effects of TOHAN and291

benchmark solutions are not obvious for CF → SL.292

8



Table 2: Classification accuracy±standard deviation (%) on 2 objects FHA tasks: CIFAR-10 →
STL-10 (CF→SL) and STL-10→ CIFAR-10 (SL→CF). Bold value represents the highest accuracy
(%) among TOHAN and benchmark solutions.

Methods WA FT ATL SHOT S+F T+F TOHAN

CF→SL 70.6 71.5±1.0 9.6±0.6 71.9±0.4 72.1±0.4 71.3±0.5 72.8±0.1

SL→CF 51.8 54.3±0.5 10.7±1.2 53.9±0.2 56.9±0.5 55.8±0.8 56.6±0.3

Table 3: Ablation study. We show the average accuracy of 6 tasks on digits datasets in this table.
Bold value represents the highest accuracy (%) on each column. See full results in Appendix G.

FHA Number of Target Data per Class
Methods 1 2 3 4 5 6 7

S+F 61.2 63.0 64.3 65.4 65.7 66.4 67.2
T+F 61.0 63.0 64.2 64.5 65.7 66.5 67.4
ST+F 61.8 64.5 64.9 65.8 66.5 67.3 68.4
TOHAN 63.3 65.4 66.4 67.5 68.0 68.9 70.0

Comparing TOHAN with FSL methods. As mentioned above, FHA is a difficult case of FSL293

where the prior knowledge is a pre-trained model of another domain. To test the effectiveness of FSL294

methods in FHA, we compare TOHAN with a novel FSL method called domain-adaptive few-shot295

learning (DAPN) [42]. Note that we use the same pre-trained model in both TOHAN and DAPN.296

Taking CF ↔ SL with five target data (per class) as an example, we solve FHA with TOHAN and297

DAPN and show the results in Figure 3. It is clear that TOHAN outperforms DAPN when the training298

epoch (t) is relatively large.299

(a) S+FADA

(b) TOHAN

Figure 4: Visualization of
S+FADA and TOHAN.

Ablation Study. Finally, we study the advantages of one-step300

method over other two-step methods. We consider the following301

baselines: S+F, T+F and ST+FADA (ST+F). We have explained S+F302

and T+F previously. ST+F denotes the two-step version of TOHAN,303

i.e., to conduct intermediate domain generation and intermediate-to-304

target distributional adaptation separately. We make ablation study305

on three digital datasets mentioned before as an example.306

As shown in Table 3, it is clear that TOHAN works better than other307

baselines. The generator of S+F uses the loss LsGn
, which merely308

contains knowledge from source domain. The generator of T+F uses309

the loss LtGn
and ignores the knowledge contained in the source-310

domain classifier. Compared to them, TOHAN uses both LsGn
and311

LtGn
. As a result, TOHAN achieves higher accuracy than S+F and T+F. Besides, generators and312

classifiers in TOHAN will promote each other in the training process, which results in that TOHAN313

performs better than the ST+F. In Figure 4, we visualize the data generated by S+FADA and TOHAN.314

It is clear that data generated by S+FADA are chaotic that contain little useful information. However,315

data generated by TOHAN contain many target domain high-level and visual features, and they can316

be classified by source classifier accurately, resulting in a better performance in FHA. The detailed317

analysis of ablation study can be found in Appendix G.318

6 Conclusion319

This paper presents a very challenging problem setting called few-shot hypothesis adaptation (FHA),320

which trains a target-domain classifier with only few labeled target data and a well-trained source-321

domain classifier. Since we can only access a well-trained source-domain classifier in FHA, the322

private information in the source domain will be protected well. To this end, we propose a novel one-323

step FHA method, called target orientated hypothesis adaptation network (TOHAN). Experiments324

conducted on 8 FHA tasks confirm that TOHAN effectively adapts the source-domain classifier to325

the target domain and outperforms competitive benchmark solutions to the FHA problem.326

9



References327

[1] Sk Miraj Ahmed, Aske R. Lejbølle, Rameswar Panda, and Amit K. Roy-Chowdhury. Camera328

on-boarding for person re-identification using hypothesis transfer learning. In CVPR, pages329

12141–12150, 2020.330

[2] Sercan Ömer Arik, Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou. Neural voice cloning331

with a few samples. In NeurIPS, 2018.332

[3] Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single Layer Networks in333

Unsupervised Feature Learning. In AISTATS, 2011.334

[4] Luc Devroye, László Györfi, and Gábor Lugosi. A Probablistic Theory of Pattern Recognition.335

Springer, 1996.336

[5] Harrison Edwards and Amos J. Storkey. Towards a neural statistician. In ICLR, 2017.337

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-338

tion of deep networks. In ICML, 2017.339

[7] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and340

V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning341

Research, 17(59):1–35, 2016.342

[8] Ian Goodfellow. Neurips 2016 tutorial: Generative adversarial networks. arXiv preprint343

arXiv:1701.00160, 2016.344

[9] Yunzhong Hou and Liang Zheng. Source free domain adaptation with image translation. arXiv345

preprint arXiv:2008.07514, 2020.346

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected347

convolutional networks. In CVPR, 2017.348

[11] Jonathan J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern349

Anal. Mach. Intell., 16(5):550–554, 1994.350

[12] Bargav Jayaraman and David Evans. Evaluating differentially private machine learning in351

practice. In USENIX, 2019.352

[13] Pin Jiang, Aming Wu, Yahong Han, Yunfeng Shao, Meiyu Qi, and Bingshuai Li. Bidirectional353

adversarial training for semi-supervised domain adaptation. In IJCAI, 2020.354

[14] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang, Errui Ding, Mingli Song, and Shilei355

Wen. Dynamic instance normalization for arbitrary style transfer. In AAAI, 2020.356

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.357

Technical Report, 2009.358

[16] Jogendra Nath Kundu, Naveen Venkat, R Venkatesh Babu, et al. Universal source-free domain359

adaptation. In CVPR, 2020.360

[17] Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In ICML,361

2013.362

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning363

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.364

[19] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source365

hypothesis transfer for unsupervised domain adaptation. In ICML, 2020.366

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense367

object detection. In ICCV, 2017.368

[21] M. Long, Z. Cao, J. Wang, and M.I Jordan. Conditional adversarial domain adaptation. In369

NeurIPS, 2018.370

10



[22] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive371

meta-learner. In ICLR, 2018.372

[23] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto. Few-shot adversarial373

domain adaptation. In NeurIPS, 2017.374

[24] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.375

Reading digits in natural images with unsupervised feature learning. In NeurIPS, 2011.376

[25] Feiping Nie, Heng Huang, Xiao Cai, and Chris H. Q. Ding. Efficient and robust feature selection377

via joint l2, 1-norms minimization. In NeurIPS, 2010.378

[26] Seonwook Park, Shalini De Mello, Pavlo Molchanov, Umar Iqbal, Otmar Hilliges, and Jan379

Kautz. Few-shot adaptive gaze estimation. In ICCV, 2019.380

[27] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with381

deep convolutional generative adversarial networks. In ICLR, 2015.382

[28] Rui Shu, Hung H. Bui, Hirokazu Narui, and Stefano Ermon. A DIRT-T approach to unsupervised383

domain adaptation. In ICLR, 2018.384

[29] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning.385

In NeurIPS, 2017.386

[30] Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen, and Mingli Song. Deep model387

transferability from attribution maps. In NeurIPS, pages 6179–6189, 2019.388

[31] Jie Song, Yixin Chen, Jingwen Ye, Xinchao Wang, Chengchao Shen, Feng Mao, and Mingli389

Song. DEPARA: deep attribution graph for deep knowledge transferability. In CVPR, 2020.390

[32] S. Sukhija, N.C. Krishnan, and G. Singh. Supervised heterogeneous domain adaptation via391

random forests. In IJCAI, 2016.392

[33] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot393

learning. In CVPR, 2019.394

[34] Takeshi Teshima, Issei Sato, and Masashi Sugiyama. Few-shot domain adaptation by causal395

mechanism transfer. In ICML, 2020.396

[35] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.397

[36] Dong Wang, Yuan Zhang, Kexin Zhang, and Liwei Wang. Focalmix: Semi-supervised learning398

for 3d medical image detection. In CVPR, 2020.399

[37] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.400

Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach.401

Intell., 41(11):2740–2755, 2019.402

[38] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing from a few403

examples: A survey on few-shot learning. ACM Comput. Surv., 53(3):63:1–63:34, 2020.404

[39] Ying Wei, Yu Zhang, Junzhou Huang, and Qiang Yang. Transfer learning via learning to transfer.405

In ICML, 2018.406

[40] Chao Yang and Ser-Nam Lim. One-shot domain adaptation for face generation. In CVPR, 2020.407

[41] Junyi Zhang, Ziliang Chen, Junying Huang, Liang Lin, and Dongyu Zhang. Few-shot structured408

domain adaptation for virtual-to-real scene parsing. In ICCV, 2019.409

[42] An Zhao, Mingyu Ding, Zhiwu Lu, Tao Xiang, Yulei Niu, Jiechao Guan, Ji-Rong Wen, and410

Ping Luo. Domain-adaptive few-shot learning. arXiv preprint arXiv:2003.08626, 2020.411

[43] Xiaojin Zhu. Semi-supervised learning. Encyclopedia of Machine Learning, pages 892–897,412

2010.413

11



Checklist414

1. For all authors...415

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s416

contributions and scope? [Yes]417

(b) Did you describe the limitations of your work? [Yes] Detailed limitations are in418

Appendix H.419

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Detailed420

potential negative societal impacts are in Appendix I.421

(d) Have you read the ethics review guidelines and ensured that your paper conforms to422

them? [Yes]423

2. If you are including theoretical results...424

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see425

Section 3.426

(b) Did you include complete proofs of all theoretical results? [Yes] Please see Appendix B.427

3. If you ran experiments...428

(a) Did you include the code, data, and instructions needed to reproduce the main experi-429

mental results (either in the supplemental material or as a URL)? [Yes]430

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they431

were chosen)? [Yes] Please see Appendix E.432

(c) Did you report error bars (e.g., with respect to the random seed after running ex-433

periments multiple times)? [Yes] We have reported the standard deviations for each434

results.435

(d) Did you include the total amount of compute and the type of resources used (e.g., type436

of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix E.437

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...438

(a) If your work uses existing assets, did you cite the creators? [Yes]439

(b) Did you mention the license of the assets? [N/A]440

(c) Did you include any new assets either in the supplemental material or as a URL? [No]441

(d) Did you discuss whether and how consent was obtained from people whose data you’re442

using/curating? [No] We use only standard datasets.443

(e) Did you discuss whether the data you are using/curating contains personally identifiable444

information or offensive content? [No] We use only standard datasets.445

5. If you used crowdsourcing or conducted research with human subjects...446

(a) Did you include the full text of instructions given to participants and screenshots, if447

applicable? [N/A]448

(b) Did you describe any potential participant risks, with links to Institutional Review449

Board (IRB) approvals, if applicable? [N/A]450

(c) Did you include the estimated hourly wage paid to participants and the total amount451

spent on participant compensation? [N/A]452

12


