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ABSTRACT

Deep reinforcement learning methods are very successful while being overly data
hungry compared to human learners. To build a sample-efficient world model,
we apply a Transformer to real-world episodes in an autoregressive manner: not
only the compact latent states and the taken actions, but also the experienced or
predicted rewards are fed into the Transformer, so that it can attend flexibly to
all three modalities at various time steps. Hereby, we create a powerful world
model on which a policy can be trained that compares favourably with previous
sample-efficient reinforcement learning algorithms on the Atari 100k benchmark.

1 INTRODUCTION

Deep reinforcement learning methods have shown great success on many difficult challenging deci-
sion making problems. Notable successes include DQN (Mnih et al., 2015), PPO (Schulman et al.,
2017), and MuZero (Schrittwieser et al., 2019). However, most algorithms require hundreds of mil-
lions of interactions with the environment, while humans can achieve similar results with less than
1% of these interactions. The large amount of data that is necessary renders a lot of potential real
world applications of reinforcement learning impossible.

Recent works have made a lot of progress in advancing the sample efficiency. Model-free methods
have been improved with auxiliary objectives (Laskin et al., 2020b), data augmentation (Yarats
et al., 2021, Laskin et al., 2020a), or both (Schwarzer et al., 2021). Model-based methods have been
successfully applied to complex image-based environments and have either been used for planning,
such as EfficientZero (Ye et al., 2021), or for learning behaviors in imagination, such as SimPLe
(Kaiser et al., 2020).
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Figure 1: World model architecture. Observations ot−ℓ:t are encoded using a CNN. Linear em-
beddings of stochastic discrete latent states zt−ℓ:t, actions at−ℓ:t, and rewards rt−ℓ:t are fed into a
Transformer, that computes a deterministic state ht at each time step. Predictions of the reward rt,
discount factor γt, and next latent state zt+1 are computed based on ht using MLPs. The policy is
conditioned on the compact latent states, enabling efficient imagination without decoding the states.
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The concept of learning in imagination (Ha & Schmidhuber, 2018; Kaiser et al., 2020; Hafner et al.,
2020; Hafner et al., 2021) is promising: instead of learning behaviors from the collected experience
directly, a generative model of the environment dynamics is learned in a (self-)supervised manner.
Such a world model can create new trajectories by iteratively predicting the next state and reward.
This allows for potentially indefinite training data for the reinforcement learning algorithm, without
further interaction with the real environment. Due to the nature of deep neural networks, a world
model can generalize to new, unseen situations, which has the potential to drastically increase the
sample efficiency. This can be illustrated by a simple example: In the game of Pong the paddles
and the ball move independently. A successfully trained world model is able to imagine trajectories
with paddle and ball configurations that have never been observed before, which enables learning of
improved behaviors.

Transformers (Vaswani et al., 2017) have significantly advanced the field of NLP and have been
successfully applied to computer vision tasks (Dosovitskiy et al., 2021). A Transformer is a sequence
model consisting of multiple self-attention layers with residual connections. In each self-attention
layer, the inputs are mapped to keys, queries, and values. The outputs are computed by weighting
the values by the similarity of keys and queries. Combined with causal masking, which prevents
the self-attention layers from seeing future time steps, Transformers can be used as autoregressive
generative models. The Transformer-XL architecture (Dai et al., 2019) is much more efficient than
vanilla Transformers at inference time and introduces relative positional encodings, which remove
the dependence on absolute time steps.

Our contributions: In this paper, we propose a new model-based reinforcement learning method
that builds a world model based on Transformers, and trains a model-free agent in imagination. Our
world model is autoregressive and even the predicted rewards are fed back into the Transformer. This
allows for more accurate reward predictions, since the world model knows exactly when and how
much reward it has already emitted. By utilizing the Transformer-XL architecture (Dai et al., 2019),
our world model combines the benefits of Transformers and RNNs, most notably, accessing previous
states directly instead of viewing them through a compressed recurrent state and learning long-
term dependencies, while staying computationally efficient. Since our policy is conditioned on the
compact latent states, decoding is not necessary and imagination can be performed efficiently with
large batch sizes. Further, evaluation in the real environment remains lightweight, as the Transformer
is not needed at inference time. We also propose a simple yet effective sampling procedure for the
growing dataset of experience, which balances the training distribution. We report interval estimates
of the aggregate metrics suggested by Agarwal et al. (2021).

2 METHOD

We consider a partially observable Markov decision process (POMDP) with discrete time steps
t ∈ N, scalar rewards rt ∈ R, high-dimensional image observations ot ∈ Rh×w×c and discrete ac-
tions at ∈ {1, . . . ,m} that are generated by some policy at ∼ π(at | o≤t, a<t), where o<t and o≤t
denote the sequences of actions and observations up to timestep t− 1. Episode ends are indicated
by a boolean variable dt ∈ {0, 1}. Observations, rewards and episode ends are jointly generated by
the unknown environment dynamics ot, rt, dt ∼ p(ot, rt, dt | o<t, a<t). The goal is to find a policy
π that maximizes the expected sum of discounted rewards Eπ

[∑∞
t=1 γ

trt
]
, where γ ∈ [0, 1) is the

discount factor.

Learning in imagination consists of three steps that are repeated iteratively: learning the dynamics,
learning a policy, and interacting in the real environment. In this section, we describe our world
model and policy, concluding with the training procedure.

2.1 WORLD MODEL

Our world model consists of two models with separate parameters: The observation model and the
dynamics model. Figure 1 illustrates our combined world model architecture.

Observation Model: The observation model is a variational autoencoder (Kingma & Welling,
2014) that encodes observations ot into compact stochastic latent states zt and reconstructs the
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observations with a decoder, which in our case is only required to obtain a learning signal:

Observation Encoder: zt ∼ pϕ(zt | ot)
Observation Decoder: ôt ∼ pϕ(ôt | zt)

(1)

We adopt a slightly modified version of the neural network architecture of DreamerV2 (Hafner et al.,
2021) for our observation model. Thus, the latent states zt are discrete and consist of a vector of 32
categorical variables with 32 categories. The observation decoder reconstructs the observation and
predicts the means of independent standard normal distributions for all pixels. In contrast to Hafner
et al. (2021), the role of the observation model is to only capture non-temporal information about
the current time step (but we use frame stacking, see Section 2.2). This stabilizes training since the
learning signal is independent of other time steps.

Autoregressive Dynamics Model: The dynamics model predicts the next time step conditioned
on the history of its past predictions. The backbone is a deterministic aggregation model fψ which
computes a deterministic hidden state ht based on the history of the ℓ previously generated latent
states, actions, and rewards. Stochastic predictors for the reward, discount, and next latent state are
conditioned on the hidden state. This leads to the following components:

Aggregation Model: ht = fψ(zt−ℓ:t, at−ℓ:t, rt−ℓ:t−1)

Reward Predictor: r̂t ∼ pψ(r̂t | ht)
Discount Predictor: γ̂t ∼ pψ(γ̂t | ht)
Latent State Predictor: ẑt+1 ∼ pψ(ẑt+1 | ht)

(2)

The aggregation model is implemented as a causally masked Transformer-XL (Dai et al., 2019),
which enhances vanilla Transformers (Vaswani et al., 2017) with a recurrence mechanism and rela-
tive positional encodings. With these encodings our world model learns the dynamics independent
of absolute time steps. Following Chen et al. (2021), the latent states and rewards are fed into
modality-specific linear embeddings before being passed to the Transformer. The discrete actions
are replaced with learned embedding vectors. Due to the three modalities (states, actions, rewards),
the number of input tokens is 3ℓ − 1, as the last reward rt is not part of the input. We consider
the outputs of the action modality as the hidden states and disregard the outputs of the other two
modalities (see top row in Figure 1).

The state, reward, and discount predictors are implemented as multilayer perceptrons (MLPs) and
compute the parameters of a vector of independent categorical distributions, a normal distribution,
and a Bernoulli distribution, respectively, conditioned on the deterministic hidden state. The next
state is determined by sampling from pψ(ẑt+1 | ht). The reward and discount are determined by the
mean of pψ(r̂t | ht) and pψ(γ̂t | ht), respectively.

Due to these design choices, our world model combines the benefits of Transformers and recurrent
neural networks, i.e.:

1. The dynamics model is autoregressive and has direct access to its previous outputs.
2. Training is more efficient compared with RNNs, since sequences are processed in parallel.
3. Inference is efficient due to the caching of previous outputs.
4. Long-term dependencies can be captured by the recurrence mechanism.

We want to provide an intuition on why a fully autoregressive dynamics model is beneficial. First,
the direct access to previous representations enables to model more complex dependencies between
them, compared with RNNs, which only see them indirectly through a compressed state. This also
has the potential to make inference more robust, since bad predictions can be ignored more easily
and be “skipped”. Second, because the model sees which rewards it has produced previously, it can
react to its own predictions. For example, consider a specific event in an environment which causes
a reward. Since the dynamics model is not a perfect replication of the environment, it might base its
reward prediction on other features than the true underlying cause. In this case, a non-autoregressive
dynamics model might erroneously generate too much reward over multiple time steps for the same
event. An autoregressive dynamics model can learn to only emit a single reward for this event
and stop after that. This is even more significant when the rewards are sampled from a probability
distribution, since the introduced noise cannot be observed without autoregression.
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Loss Functions: Since the observation model is non-temporal, it is implemented as a variational
autoencoder (VAE) with a stationary prior. The prior p(z) follows a discrete uniform distribution.
The observation decoder is optimized via negative log-likelihood. We stop the gradients of the
dynamics model, so they do not influence the observation model. This leads to the self-supervised
loss function for the observation model (negative ELBO)

LRepr.
ϕ := E

[
T∑
t=1

βDKL(pϕ(zt | ot) ∥ p(z))︸ ︷︷ ︸
encoder regularizer

− ln pϕ(ot | zt)︸ ︷︷ ︸
decoder

]
, (3)

where β > 0 is a hyperparameter.

The reward predictor and discount predictor are optimized via negative log-likelihood. The transition
predictor is optimized by minimizing the KL divergence to the outputs of the observation encoder,
while the parameters of the encoder are held fixed, which reduces to the cross-entropy. This leads to
the self-supervised loss function for the dynamics model

LDyn.
ψ := E

[
T∑
t=1

DKL(pϕ(zt+1 | ot+1) ∥ pψ(ẑt+1 | ht))︸ ︷︷ ︸
state predictor

−α1 ln pψ(rt | ht)︸ ︷︷ ︸
reward predictor

−α2 ln pψ(γt | ht)︸ ︷︷ ︸
discount predictor

]
,

(4)
where γt = 0 for episode ends (dt = 1), and otherwise γt = γ.

2.2 POLICY

Our policy πθ(at | ẑt) is trained using a standard actor-critic style approach. We train two separate
networks: an actor at ∼ πθ(at | ẑt) with parameters θ and a critic vξ(ẑt) with parameters ξ. We
penalize the objective of the actor with a slightly modified version of the usual entropy regularization
term (Mnih et al., 2016). The penalty normalizes the entropy and only takes effect when the entropy
falls below a certain threshold

LEnt.(θ) := max

(
0,Γ− H(πθ)

ln(m)

)
, (5)

where Γ is a scalar threshold parameter, H(πθ) is the entropy of the policy, m is the number of
discrete actions, and ln(m) is the maximum possible entropy. By doing this, we explicitly control
the percentage of entropy that is preserved independent of the number of actions. This allows us to
sample actions from the stochastic policy πθ without changing the temperature and without ϵ-greedy
action selection in all scenarios: (i) collection of real data, (ii) imagination with the world model,
and (iii) evaluating the policy.

We compute the advantages via Generalized Advantage Estimation (Schulman et al., 2016), while
incorporating the discount factors predicted by the world model γ̂t instead of a fixed discount factor
for all time steps. As in DreamerV2 (Hafner et al., 2021), we weight the losses of the actor and the
critic by the cumulative product of the discount factors, in order to softly account for episode ends.

Algorithm 1 Training the world model and the actor-critic agent.

function train world model( )
// sample sequences of observations,
// rewards, actions and discounts
o,a,r,d = sample from dataset()
z = encode(o)
o hat = decode(z)
h = transformer(z,a,r)
r hat,d hat,z hat = predict(h)

// optimize world model via
// self-supervised learning
optim observation(o,z,o hat,z hat)
optim dynamics(r,d,z,r hat,d hat,z hat)

// z will be used for imagination
return z

function train actor critic(z)
// imagine trajectories of states,
// rewards, actions and discounts,
// use z as starting point
imag = [z]
for t = 0 until H do

a = actor(z)
imag.append(a)
h = transformer(imag)
r,d,z = predict(h)
imag.extend([r,d,z])

// optimize actor-critic via
// reinforcement learning
optim actor critic(imag)
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Figure 2: Comparison of different sampling procedures based on Equation (6). The x-axes corre-
spond to the entries in dataset D. The left plot shows the number of times the entries have been
sampled after training. The right plot shows the relative amount of training that is spent up to that
entry. With uniform sampling, 50% of the training time is used for the first 19K entries, whereas
τ = 20 spends approximately the same training time on both halves of the dataset.

Choice of Policy Input: The policy computes an action distribution πθ(at | xt) given some view
xt of the state. This view has to be chosen carefully, since it can have a significant impact on the
performance of the policy, and it affects the design choices for the world model. Some evident
choices for xt are: (i) the reconstructed observation ôt, (ii) the latent state ẑt, (iii) the hidden state
ht, or (iv) both ẑt and ht.

Using ôt is stable even with imperfect predictions, since the underlying distribution of observations
p(o) does not change during training, but is also much less computationally efficient, since it re-
quires decoding of the latent states and additional convolutional layers for the policy. Using ẑt is
slightly less stable, since the distribution p(z|o) changes during training. Nevertheless, the regu-
larizer term in Equation (3) prevents the distribution from diverging too heavily from the uniform
distribution. Using ht has a nice interpretation, as it summarizes the recent history of experience
and should provide meaningful information to the policy, but we found in our experiments that it
degrades performance. One reason might be that ht is very instable, since it has to adapt to the
newly encountered dynamics and latent states during training. It even degrades performance when
using both ẑt and ht, compared with only ẑt.

For these reasons, we chose xt = ẑt. To incorporate short-time temporal information into ẑt, we
build ot by stacking the four most recent frames (as usual for model-free reinforcement learning).
This also means that we do not need the dynamics model at inference time, but only the observation
encoder and the actor, which is as efficient as small model-free models.

2.3 TRAINING

As is usual for learning with world models, we repeatedly (i) collect experience in the real environ-
ment with the current policy, (ii) improve the world model using the past experience, (iii) improve
the policy using new experience generated by the world model.

During training we build a dataset D = [(o1, a1, r1, d1), . . . , (oT , aT , rT , dT )] of the collected ex-
perience. To train the world model, N sequences of length ℓ are sampled from D, and are used to
estimate the loss functions in Equation (3) and Equation (4). After each update of the world model,
we generate M new trajectories of length H with the dynamics model and update the policy using
standard model-free objectives. In Algorithm 1 we present pseudocode for training the world model
and the actor-critic agent.

Pretraining for Better Initialization: During training we need to correctly balance the amount
of world model training and policy training, since the policy has to “keep up” with the distributional
shift of the latent space. However, at the beginning of training we can spend some extra time on
training the world model with pre-collected data (included in the 100k interactions), in order to
obtain a reasonable initialization for the latent representations.
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Balanced Dataset Sampling: Since the dataset grows slowly during training, uniform sampling of
trajectories puts too much weight on early experience and could lead to overfitting, especially in the
low data regime. Therefore, we keep visitation counters v1, . . . , vT , which are incremented every
time an entry is sampled as start of a trajectory. Then, each entry i has the following probability of
being selected:

pi = softmax(−v1
τ , . . . ,−

vT
τ )i (6)

where τ > 0 is a scalar temperature parameter. With our sampling procedure, new entries in the
dataset are oversampled and are selected more often than old ones. Setting τ = ∞ restores uniform
sampling as a special case, while reducing τ increases the amount of oversampling. See Figure 2
for a comparison.

3 EXPERIMENTS

We evaluate our method on the Atari 100k benchmark, which was proposed by Kaiser et al. (2020)
and is used by many data-efficient reinforcement learning algorithms. It contains 26 of the Atari
games from the Arcade Learning Environment (Bellemare et al., 2013) and the agent is allowed to
interact with each game 100 thousand times. This corresponds to 400 thousand frames (due to frame
skipping) or roughly 2 hours of real-time gameplay, which is 500 times less than the commonly used
200 million frames.

We compare our method with five strong baselines on the Atari 100k benchmark: (i) SimPLe (Kaiser
et al., 2020) implements a world model as an action-conditional video prediction model and trains a
policy with PPO (Schulman et al., 2017), (ii) DER (van Hasselt et al., 2019) is a variant of Rainbow
(Hessel et al., 2018) fine-tuned for sample efficiency, (iii) CURL (Laskin et al., 2020b) improves
representations using contrastive learning as an auxiliary task and is combined with DER, (iv) DrQ
(Yarats et al., 2021) improves DQN by averaging Q-value estimates over multiple data augmenta-
tions of observations, and (v) SPR (Schwarzer et al., 2021) forces representations to be consistent
across multiple time steps and data augmentations by extending Rainbow with a self-supervised
consistency loss. Additionally, we report human performance and the performance of a random
agent.

TODO evaluate with stochastic policy (not deterministic and no epsilon-greedy, (mention normal-
ized entropy?))

TODO hardware (single-gpu), model size, training time

3.1 RESULTS

Table 1 shows the results of our method on the Atari 100k benchmark. Agarwal et al. (2021) found
significant discrepancies between point estimates such as mean and median scores, which ignore
statistical uncertainty, and thorough statistical analysis. We follow their advice and report the ag-
gregate metrics Interquartile Mean (IQM) and Optimality Gap in Table 1, as well as interval es-
timates of the mean, median, IQM, and Optimality Gap in Figure 3 and performance profiles in
Figure 4. The aggregate metrics are computed on human-normalized scores, which are calculated as
(scoreagent − scorerandom)/(scorehuman − scorerandom). Agarwal et al. (2021) also provide scores for
DER, CURL, DrQ, and SPR on 100 new runs, which we use for our comparison. To evaluate DrQ,
Agarwal et al. (2021) used standard ε-greedy parameters, which they call DrQ(ε).

TODO we achieve ...
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Figure 3: TODO
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Table 1: Scores on the Atari 100k benchmark for each game as well as human-normalized aggregate
metrics (Agarwal et al., 2021). We perform 5 runs per game and compute the average over 100
episodes at the end of training for each run. For mean, median, and IQM higher values are better,
for the Optimality Gap lower values are better. TODO bold values indicate... TODO short summary

Game Random Human SimPLe DER CURL DrQ(ε) SPR Ours

Alien 227.8 7127.7 616.9 802.3 711.0 865.2 841.9 674.6
Amidar 5.8 1719.5 74.3 125.9 113.7 137.8 179.7 121.8
Assault 222.4 742.0 527.2 561.5 500.9 579.6 565.6 682.6
Asterix 210.0 8503.3 1128.3 535.4 567.2 763.6 962.5 1116.6
BankHeist 14.2 753.1 34.2 185.5 65.3 232.9 345.4 466.7
BattleZone 2360.0 37187.5 4031.2 8977.0 8997.8 10165.3 14834.1 5068.0
Boxing 0.1 12.1 7.8 -0.3 0.9 9.0 35.7 77.5
Breakout 1.7 30.5 16.4 9.2 2.6 19.8 19.6 20.0
ChopperCommand 811.0 7387.8 979.4 925.9 783.5 844.6 946.3 1697.4
CrazyClimber 10780.5 35829.4 62583.6 34508.6 9154.4 21539.0 36700.5 71820.4
DemonAttack 152.1 1971.0 208.1 627.6 646.5 1321.5 517.6 350.2
Freeway 0.0 29.6 16.7 20.9 28.3 20.3 19.3 24.3
Frostbite 65.2 4334.7 236.9 871.0 1226.5 1014.2 1170.7 1475.58
Gopher 257.6 2412.5 596.8 467.0 400.9 621.6 660.6 1674.8
Hero 1027.0 30826.4 2656.6 6226.0 4987.7 4167.9 5858.6 7253.99
Jamesbond 29.0 302.8 100.5 275.7 331.0 349.1 366.5 362.4
Kangaroo 52.0 3035.0 51.2 581.7 740.2 1088.4 3617.4 1240.0
Krull 1598.0 2665.5 2204.8 3256.9 3049.2 4402.1 3681.6 6349.2
KungFuMaster 258.5 22736.3 14862.5 6580.1 8155.6 11467.4 14783.2 24554.6
MsPacman 307.3 6951.6 1480.0 1187.4 1064.0 1218.1 1318.4 1588.4
Pong -20.7 14.6 12.8 -9.7 -18.5 -9.1 -5.4 18.8
PrivateEye 24.9 69571.3 35.0 72.8 81.9 3.5 86.0 86.6
Qbert 163.9 13455.0 1288.8 1773.5 727.0 1810.7 866.3 3330.9
RoadRunner 11.5 7845.0 5640.6 11843.4 5006.1 11211.4 12213.1 9109.0
Seaquest 68.4 42054.7 683.3 304.6 315.2 352.3 558.1 774.4
UpNDown 533.4 11693.2 3350.3 3075.0 2646.4 4324.5 10859.2 15981.7

Mean 0.000 1.000 0.332 0.350 0.261 0.465 0.616 0.956
Median 0.000 1.000 0.134 0.189 0.092 0.313 0.396 0.505
IQM 0.000 1.000 0.130 0.183 0.113 0.280 0.337 0.459
Optimality Gap 1.000 0.000 0.729 0.698 0.768 0.631 0.577 0.513
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Figure 4: TODO

3.2 ANALYSIS

• TODO Attention weights (see Trajectory Transformer), how many timesteps are useful?
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Game Uniform No Rewards Full

Breakout 9.7 20.8 20.0
CrazyClimber 70781.7 77716.6 71820.4
KungFuMaster 16453.3 23680.6 24554.6
MsPacman 1178.1 986.3 1588.4
Pong 2.7 4.3 18.8

3.3 ABLATION STUDY

1. No Rewards TODO

2. Uniform Sampling TODO

TODO

• No temporal prior?

• Choice of policy input?

• No pretraining?

4 RELATED WORK

The Dyna architecture (Sutton, 1991) introduced the idea of training a model of the environment
and using it to further improve the value function or the policy. Ha & Schmidhuber (2018) in-
troduced the notion of a world model, which tries to completely imitate the environment and is
used to generate experience to train a model-free agent. They implement a world model as a VAE
(Kingma & Welling, 2014) and an RNN and learn a policy in latent space with an evolution strategy.
SimPLe (Kaiser et al., 2020) introduces an iterative training procedure that alternates between train-
ing the world model and the policy. Their policy operates on pixel-level and is trained using PPO
(Schulman et al., 2017). Dreamer (Hafner et al., 2020) implements the world model as a stochastic
recurrent neural network that splits the latent state in a stochastic state and a deterministic state (first
introduced by Hafner et al., 2019). This allows their world model to capture the stochasticity of
the environment and simultaneously facilitates to remember information over multiple time steps.
DreamerV2 (Hafner et al., 2021) is achieves great performance on the Atari benchmark, after mak-
ing some changes to Dreamer, the most important ones being Categorical latent variables and an
improved objective. Robine et al. (2020) use a VQ-VAE to construct a world model with drastically
lower number of parameters.

Another direction of model-based reinforcement learning is planning, where the model is used at
inference time to improve the action selection by looking ahead in the future for multiple time
steps. The most prominent work is MuZero (Schrittwieser et al., 2019), where a learned sequence
model of rewards and values is combined with Monte-Carlo Tree Search (Coulom, 2006), without
learning explicit representations of the observations. MuZero achieves impressive performance on
the Atari benchmark, but is also computationally expensive and requires significant engineering
effort. EfficientZero (Ye et al., 2021) improves MuZero and achieves great performance on the Atari
100k benchmark.

Transformers (Vaswani et al., 2017) advanced the effectiveness of sequence model in multiple do-
mains, such as NLP and computer vision (Dosovitskiy et al., 2021). Recently, they have also been
applied to reinforcement learning tasks. The Decision Transformer (Chen et al., 2021) and the
Trajectory Transformer (Janner et al., 2021) are trained on an offline dataset of trajectories. The
Decision Transformer is conditioned on states, actions, and returns, and outputs optimal actions.
The Trajectory Transformer trains a sequence model of states, actions, and rewards, and is used for
planning. Chen et al. (2022)....
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5 DISCUSSION

We propose a new model-based reinforcement learning agent that builds an autoregressive world
model based on Transformers, and trains a model-free agent by efficient imagination in a compact
state space. TODO summary of results

TODO Limitations and future work
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A APPENDIX

Table 2: Hyperparameters.

Description Symbol Value

Environment steps — 100K
Dataset sampling temperature τ 20
Discount factor γ 0.99
GAE parameter λ 0.95
World model batch size N 100
History length ℓ 16
Imagination batch size M 800
Imagination horizon H 15
Gradient clipping — 100
Encoder coefficient β ?
Reward coefficient α1 10.0
Discount coefficient α2 50.0
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