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Abstract
The aim of this paper is to generate a more comprehensive
framework for evaluating synthetic speech. To this end, a line
of tests resulting in an exploratory factor analysis (EFA) have
been carried out. The proposed dimensions that encapsulate the
construct of “synthetic speech quality” are: “human-likeness”,
“audio quality”, “negative emotion”, “dominance”, “positive
emotion”, “calmness”, “seniority” and “gender”, with item-to-
total correlations pointing towards “gender” being an orthogo-
nal construct. A subsequent analysis on common acoustic fea-
tures, found in forensic and phonetic literature, reveals very
weak correlations with the proposed scales. Inter-rater and
inter-item agreement measures additionally reveal low consis-
tency within the scales. We also make the case that there is a
need for a more fine grained approach when investigating the
quality of synthetic speech systems, and propose a method that
attempts to capture individual quality dimensions in the time
domain.
Index Terms: speech synthesis evaluation, factor analysis,
speech quality

1. Introduction
The evaluation of quality for any given speech synthesis sys-
tem is commonly carried out on three dimensions. Its perceived
naturalness, its quality and its intelligibility. With the advance-
ments in text-to-speech (TTS) systems over the past decades,
the problem of intelligibility has become almost redundant, with
a main focus of research now lying on generating more natural
sounding voices [1]. These advancements however are gener-
ally reported on old scales based on the ITU P.85 [2] for mea-
suring signal degradation. These original scales and variations
of it have become the standard for many challenges which offer
a framework to compare state-of-the-art (SOTA) TTS systems
[3, 4]. This is despite early criticism regarding the completeness
and nature of these quality scales such as [5, 6, 7, 8]. Further
efforts to rework the set of quality evaluation instruments have
been carried out, but they are few and between [9, 10, 11] or
date back to a time of diphone synthesis systems, which dis-
played their own specific set of degradations and might as such
not been applicable to modern day systems [12, 13]. We take
these critiques to warrant a re-examination of commonly used
mean opinion scores (MOS) on modern day speech synthesis
systems. It has also been noted, that the scope of a critical
speech unit (CSU) very much co-determines the outcome of
a quality evaluation [14]. This need for a more context-aware
and time-sensitive method of evaluation has also been discussed
in [15] and the importance of the specific wording in a syn-
thetic speech evaluation has been pointed out in [16]. We make
the case for a change in evaluation procedure when construct-

ing new systems, to gain a more fine grained understanding of
what the actual shortcomings of the systems under evaluation
are. This runs counter to the current practice which seems to
have adapted a methodology of trying to maximise the MOS
of a given system over previous iterations, without analysing
why the changes occur. To address these shortcomings we pro-
pose a different evaluation technique which takes into account
the temporal aspect of speech data, by having participants mark
faulty segments for the previously determined quality dimen-
sions, similar to [17]. This type of rating scheme would promise
to offer further insight into the relationship between the per-
ceptual quality dimensions of participants on the one side and
acoustic or other signal related properties on the other.

2. Data
The employed corpus was comprised of 14 different TTS sys-
tems with variying accents, vocoders and training datasets. An
overview can be surveyed in Table 1. We tried to ensure that a
variety of modern day architectures are represented in the data
set. Since the voice of a TTS system strongly depends on the
underlying data, we also tried to cover a variety of commonly
used data sets for TTS construction, omitting the older bliz-
zard data sets for sparsity reasons. We also tried to incorpo-
rate multiple varieties of English. This was done to ensure that
the resulting work of our experiments will not be purely based
on US American voices, continuing a tradition of ’white wash-
ing’ datasets that has plagued Machine Learning research for
decades [18, 19]. The chosen content consisted of three Har-
vard sentences chosen from a set of 60 in total [20]. Each triple
was separated by 500ms of silence in between each sentence.
All systems generated 14 samples of these triple sets and the
resulting signals were downsampled to 22050Hz and amplitude
normalized to -18dB. We are unable to release a copy of the
data set due to licence restrictions but have included all relevant
details to enable comparison to similar data sets and tasks.

3. Methods
The analyses presented in this paper are twofold. First we con-
ducted a series of experiments to obtain terms of quality for
synthetic speech experiments in a bottom up fashion. These are
subsequently examined to determine overarching perceptual di-
mensions of quality using exploratory factor analysis. Secondly
we present a framework for capturing subjects impressions of
these terms of quality in the time domain.

3.1. Scale derivation

For deriving the original scale items we roughly followed the
recommended procedure for inductive item generation outlined



Table 1: TTS system architectures.

Identifier Vocoder Dataset Accent Gender

2x
Google wavenet unknown unknown GB+AU M+M
Amazon Polly unknown unknown ZA+IN F+F

Microsoft Deepspeech unknown unknown NZ+IR F+M
Silero TTS unknown unknown US+US F+M

1x

vits end-to-end vctk GB M
fastspeech2 end-to-end LibriTTS US M

yourtts-multi end-to-end vctk US F
overflow HifiGAN LJ US F

speedy-speech HifiGAN LJ US F
espnet-xvector-transformer MultibandMelGAN LibriTTS US M

in [21], [22] and [23]. The original terms of quality yield from
a pre-experiment in which 40 participants were asked to freely
supply terms which they feel best encapsulate the quality of
a given synthetic sample. They were converted into unilateral
scales following the suggestions in [24], regarding the fact that
participants tend to have an easier time identifying the existence
or absence of a feature rather than giving an opinion. Polyse-
mous items were further appended with a qualifier to ensure that
participants would actually rate the same perceived trait, e.g.
funny/humorous to avoid funny being interpreted as strange.
These terms were then reduced with the employ of a 2h focus
group interview of relevant experts. The panel was constructed
of 1 speech technologist, 2 phoneticians and 2 clinical linguists.
The group first discussed multiple contenders for a valid defini-
tion of “synthetic speech quality” [24, 25, 26, 27], to generate a
shared base of discussion. The panel then surveyed an original
set of 68 scales, comprised of the experiments items as well ad-
ditional terms found in literature [24, 28], and examined them
for relevancy and expected clarity to naı̈ve participants reducing
them down to 63.

3.2. Factor Analysis

63 participants (32 M, 31F, L1=English) were employed to rate
4 samples each, totaling 252 samples, or 18 per system. The
scales were presented as continuous intervals using sliders, as
there were no labels available to mark individual anchors within
the scale, which would be necessary for a Likert scale and we
assume the underlying dimensions to be continuous. Also, pre-
vious research on voice quality perception has found that par-
ticipants tend to agree more on continuous scales [29]. The
factor analysis was computed with oblique rotation, as we do
not expect the factors to be orthogonal. To ensure the scales
were actually correlated, a Bartletts test of sphericity was car-
ried out which showed a high correlation with p < 0.01. Prior
scree plot examination determined 8 factors to be the thresh-
old from which the explained variance does not significantly
increase. This hypothesis was confirmed using parallel anal-
ysis. During the experiment one randomly selected scale was
duplicated for each sample to serve as a control according to
the suggestions in [30]. Each participant’s inconsistency score
was computed by way of:

c =

n∑
i=1

(
|xi − xdup|

σ2
i

)
(1)

where xi and xdup describe the values for the original and du-
plicated scale, σ2

i the variance for that scale across participants
and n the total number of audios rated by that participant. As

all participants rated the same amount of samples n is constant
across subjects. All participants whose inconsistency amounted
to more than one fourth of the maximum possible divergence
for the duplicated scales were excluded from the final analysis,
removing four participants. When constructing these scales it
is very important to realize that the given context co-defines the
interpreted meaning of a particular scale. To counteract this
phenomenon, we shuffled the scale order between items and
participants. Each participant was also presented with a training
phase containing the same two anchor samples which were not
part of the analysis, to establish a consistent frame of reference
for their responses similar to the suggestions in [29].

3.2.1. Consistency

To assess the consistency of the proposed scales across systems,
we report the Intra Class Correlation (ICC) coefficient for the
whole original set. This should give a measure of how invari-
ant the dimensions are to the spoken content, as there were 15
distinct samples for each system in the original data set. To
compute inter-rater consistency for the scales a separate within
subject design was employed. The systems were reduced to
4, due to the time constraints on a single participant. To re-
tain as much variability as possible the content was randomly
selected between systems but kept same between participants.
20 (10m/10f, L1=Eng) naı̈ve listeners were presented with the
samples in a latin square design. Again duplicated scales were
introduced as control, removing 3 participants from the final
analysis. The agreement results were evaluated by computing
ICC(3,C) for the whole set, as well Krippendorff’s α [31] for
the individual scale items. The overall ICC denotes the over-
all agreement of the 20 participants across all scales, while the
α coefficients are computed per scale across systems, depicting
inter-rater agreement on interval scales, to obtain an estimate of
which quality items would give consistent ratings in real exper-
iment conditions.

3.2.2. Acoustic analysis

To gain some preliminary insight into how the perceptual di-
mensions interact with known acoustic measures, a correlation
analysis on the derived quality scales was conducted. Five dif-
ferent acoustic measures were chosen, which are known to have
strong explanatory power for small segments in the fields of
speaker forensics and voice quality research [32, 33, 34] . The
chosen measures consisted of periodicity markers: jitter, shim-
mer and spectral flux, spectral slope measurements in different
frequency bands, cepstral peak prominence (CPP), as well as
the fundamental frequency. Since the perceptual quality rat-



ings always pertain to a whole file, the acoustic correlates were
averaged over the whole duration, with spectral slope only be-
ing computed on voiced segments and spectral flux on voiced
and unvoiced parts separately. Most features were computed
using the openSMILE [35] python API. CPP was derived using
the definitions in [36]. For the acoustic analysis, the Spearman
rank coefficient was chosen as measure of correlation, because
the relationships between scale measures and acoustics is not
necessarily assumed to be linear.

3.3. Time domain evaluation

Traditional MOS ratings are usually computed over a whole
segment. Since context is required for assessing specific qual-
ities of a sample in question, these segments can not be made
arbitrarily small. In this experiment we investigate whether par-
ticipants are able to consistently mark parts of a given sample
on a quality dimension. To this end, the subjects were pre-
sented with the same samples from 6 different systems and a
digital representation of an oscillogram of the signal. The inter-
face allowed them to mark regions by clicking and dragging the
mouse. They were first tasked to provide an overall rating on the
given dimension, with the scale items being integrated into one
question. Then they were asked to mark the parts of the signal
which they felt to be especially detrimental to the investigated
dimension (e.g. very non-human or very emotionally negative).
As in the previous experiments they were first presented with
the same two anchors in a training phase to calibrate their inter-
nal expectations and thus reducing variability. To avoid forced
choice artifacts they were also given the option to state that the
system was equal in quality throughout the spoken parts on the
dimension in question. We analysed the two major factors of
“human-likeness” and “negative emotion” separately, with 10
participants each. The “audio quality” dimension was deemed
to be unfit for this kind of examination, due to the fact that all its
components describe variations of background artifacts which
should be present throughout the signal.

4. Results
The factor analysis revealed 8 relevant underlying factors to the
scales of quality in question. The cumulative explained variance
amounts to 0.51 and Kaiser-Mayer-Olkin [37] MSA = 0.87,
with the lowest per-item values falling on the highly de-
correlated measures of gender. The internal consistency of the
scales was computed using Cronbach’s Alpha [38] α = 0.90
suggesting high correlation between the scales overall. Inves-
tigating item-to-total correlations to see which scales might ac-
tually be describing a separate construct yields very low scores
for the male scale of r = 0.06. Additionally we find low bear-
ings for the scales of loud: r = −0.004 and native: r = −0.02.
Table 2 lists all items and their significant loadings (> 0.4) on
the strongest correlating factor, with no single item having high
complexity to significantly influence multiple factors. The fac-
tors are ordered by their explained variance of the overall data,
with the most contributing factors appearing at the top.

4.1. Factors

The first factor describes the samples “human-likeness” with
the highest loadings being on artificiality and naturalness. Note
that this factor conflates prosodic information such as “speech
melody” with voice quality information like “metallic/tinny”.
This could point to the possibility that untrained participants are
not able to differentiate between these constructs. The second

factor labeled “audio quality” encompasses all items describing
different variants of background artifacts. The third factor was
named “negative emotion” as it seems to pertain to a combina-
tion of perceived voice qualities and subsequent elicited nega-
tive emotions in the listener. The fourth factor seems to describe
terms which place the perceived speaker in an authoritative po-
sition, with the most influential loadings being confidence and
authority. In factor five we find most of the scales associated
with positive impressions and it is subsequently named “posi-
tive emotion”. The sixth factor only contains the items of calm-
ness and agitatedness. While this dimension has appeared in
similar studies [13], two correlated items do not make for a
salient and overdetermined factor and this dimension should as
such be re-examined in confirmatory factor analysis. The sev-
enth factor, labeled “seniority”, seems to contain scales relat-
ing to the perceived speaker’s age and voice quality. The least
contributing factor is the orthogonal construct of gender which
will be omitted in future investigations. Looking at the between
factor interactions we find that the first two factors of “human-
likeness” and “audio quality” show medium correlation with
ρ = 0.42. We could not attest a strong correlation between the
seemingly diametrically opposed factors of “positive emotion”
and “negative emotion”.

4.2. Consistency

The overall inter-rater consistency is fair with ICCs of 0.42,
0.40, 0.65 and 0.35 by sample, averaging to 0.45 across all
audios and scales. Investigating the single scales, however,
it quickly becomes apparent that this high overall consistency
is mostly due to the items of not male-male and not female-
female. These scales each obtained a Krippendorffs α = 0.98
and α = 0.99 respectively across samples. All other items
under investigation were much more variant between partici-
pants’ opinions, the closest being non artificial-artificial with
α = 0.35 and non human-human with α = 0.28.

4.3. Acoustics

The acoustic analysis revealed that all of the investigated acous-
tic measures strongly correlate with the perceived gender. The
highest correlation could be attested for the fundamental fre-
quency, with ρ(F0, female)=0.74, ρ(shimmer, female)=−0.72,
ρ(spectral flux voiced, male)=0.66. The strongest relation-
ship that did not include gender could be found between F0
and the high-low continuum as well as the not foreign-foreign
scale with ρ(F0, foreign)=0.33 and ρ(F0, low)=−0.37. Also
note that CPP seems to be largely independent of all per-
ceptual quality dimensions under investigation, with the high-
est correlation also being gender at ρ(CPP, female)=0.23 and
ρ(CPP, male)=−0.22.

4.4. Time domain analysis

Fig. 1 shows the participants’ markings of all 6 samples on
the human-likeness domain. As is evident, the whole marked
amount of unnaturalness varies between systems. We also note
that the participants vary in their individual granularity, with
some participants marking whole chunks of the signal and oth-
ers marking specific intervals. This leads us to believe that our
instructions might not have been clear enough in asking par-
ticipants to be highly specific in their selections. We report
the inter-annotator agreement of participants within each do-
main [39] where annotator agreement calculation is modified to
consider pairs where one participant did not annotate any mark-



Figure 1: Visualization of participants’ markings of unnatural segments on 6 audio samples by different systems under the human-
likeness condition. Each color denotes one participant, with overlapping segments showing multiple participants’ agreement.

ings in the sample, i.e., w(j, ℓ,m) = 0:

Aa =
1(
K
2

) K−1∑
ℓ=1

K∑
m=ℓ+1

∑n
j=1 mass(j) · ov(j, ℓ,m)∑n
j=1 w(j, ℓ,m) ·mass(j)

, (2)

where mass(j) denotes the total length of marked segments in
sample j by any participant and ov(j, ℓ,m) is the relative over-
lap between marked segments of participants ℓ and m on sample
j. Tab. 3 shows the agreement depicted by system and condi-
tion. The human-likeness condition yields an overall moder-
ate Fleiss kappa of 0.60. The value for the negative emotion
domain is slightly lower with 0.55, suggesting that the signal
properties of negative emotionality are not as clear. Analysing
the agreement values by sample, we find that they also vary
strongly between systems. Participants were also tasked to pro-
vide traditional ACR ratings on a five point scale for the do-
mains in question, to serve as a comparative baseline for an
inter-domain agreement measure. We computed a linear mixed
effects regression with the audio samples as within factor and
could not confirm an effect of the question being asked on par-
ticipants ratings with p > 0.5, β = −0.08. To ensure that
participants did not mark the same segments in both conditions
we also compute a General Additive Mixed model (GAMM) on
the summed participant markings over time. We model the den-
sity of participants markings at a given time step, dependent on
question domain with the audio samples as within effect. The
model finds a strong effect of the question domain on partici-
pants marked region density p < 0.001, β = −0.67. Fig. 2
shows the smoothed predictions of the computed model in both
conditions. As is evident, the significant difference between the
two sets of interval markings is in magnitude as was found by
the intercept in our model, but barely in placement. This leads
us to believe that despite the significant model participants did
indeed mark similar regions within the audios independent of
the dimension under investigation.
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Figure 2: Difference in density of participants markings of
unnatural or emotionally negative regions, as predicted by a
GAMM. Each curve represents the predicted amount of summed
participant markings over the given time steps, with 95% con-
fidence intervals. The time axis has been normalized across
samples to allow for direct comparison.

5. Discussion
The lack of inter-rater agreement across scales on the same au-
dio samples casts a big shadow on the reliability of the com-
mon MOS procedures in speech synthesis evaluation. This is
also supported by the lack of effect we found on querying dif-
ferent domains between participants in the third experiment.
While the validity of linear regression models on ordinal Lik-
ert type data is still an ongoing debate, other possible expla-
nations could be the practice of merging subscales of a factor



scale label loading
human human-likeness -0.69
good speech melody human-likeness -0.43
fluttering/pulsating human-likeness 0.43
strange human-likeness 0.43
irritating human-likeness 0.46
metallic/tinny human-likeness 0.48
interrupted/chopped human-likeness 0.61
glitchy human-likeness 0.66
artificial human-likeness 0.78
unnatural/distorted human-likeness 0.82
grainy audio quality 0.41
hissing audio quality 0.60
chirping/clicking audio quality 0.64
rumbling audio quality 0.67
crackling/static audio quality 0.79
humming/buzzing audio quality 0.87
frightening negative emotion 0.40
quiet negative emotion 0.43
dark negative emotion 0.58
slow negative emotion 0.61
sad negative emotion 0.66
low negative emotion 0.68
posh dominance 0.43
loud dominance 0.47
native dominance 0.50
educated dominance 0.58
stern dominance 0.58
fluent dominance 0.59
authoritative dominance 0.61
confident dominance 0.78
boring positive emotion -0.50
emotive positive emotion 0.47
captivating positive emotion 0.49
pleasant positive emotion 0.52
warm positive emotion 0.58
calm calmness -0.66
agitated calmness 0.51
high seniority 0.47
fast seniority 0.50
thin seniority 0.58
young seniority 0.62
male gender -0.90
female gender 0.94

Table 2: Synthetic quality scales and their strongest corre-
sponding factor with the respective factor loading. Note that
factor loadings denote inverse correlation and items with load-
ings < 0.4 have been omitted.

into one question as proxy items, or the fact that the domains
were not presented at the same time to allow participants to rate
them in the context of the whole construct. This second ex-
planation could also be a reason for participants’ time markings
correlating across domains and could be remedied by having the
subjects mark both domains simultaneously, which was decided
against to reduce cognitive load. Regarding the poor correlation
of acoustic measures to the perceived quality scales it should be
noted that these findings do not suggest the acoustic measures
are bad representations of their respective constructs. Rather,
this points to the fact that these voice quality terms, which are
ubiquitous in use for forensic and phonetic research, are not
as well defined for a layperson and as such make for unstable
quality measures in listening experiments. This interpretation
has been corroborated in similar endeavours on finding acoustic

correlates to the perceptual dimensions of voice [40], with [33]
suggesting that there might not be one to one but compound re-
lationships. Concerning the time domain evaluation procedure
it should be noted that the subjects used in this pretest were re-
cruited by word of mouth and 40% claimed to have semi-regular
contact with synthetic voices. This might pose a confound re-
garding the findings of [41] that listeners do adapt to synthetic
voices with exposure, albeit on intelligibility. On the other hand
common challenge evaluation procedures recruit their partici-
pating scientists for listening evaluations and as such our sub-
ject base might be rather representative of standard evaluation
conditions. Independent of the inter-rater agreement we also
note that the time variant markings let us find patterns across
participants data. Inspecting system3 in Fig. 1 for example, we
clearly observe that the participants consistently marked the end
of utterances, even though they did not agree on the same areas.

6. Conclusions

The construct of “synthetic speech quality” as a whole appears
to be relatively stable on the dimensions of “naturalness” and
“audio quality” as is evident when comparing the results to pre-
vious studies [13, 42] of similar nature. Our analysis did, how-
ever, uncover more dimensions in the “positive emotion”, “neg-
ative emotion” and “dominance” categories. These additional
factors could be attributed to the larger set of initially adminis-
tered scales, as well as the strict transformation to unilateral
descriptive terms rather than qualitative questions.Regarding
the examination of acoustic correlates it seems evident, even
from our preliminary testings, that traditional acoustic mea-
sures do not serve as good representations for capturing par-
ticipants’ quality ratings on the investigated dimensions, as we
could not confirm any monotonic relationship between the cho-
sen measures and quality responses. First analyses of the newly
proposed method to elicit participants’ ratings on a more fine
grained scale yield promising results regarding the subjects con-
sistency in marking the same regions. We do however also
find strong overlap between the marked intervals of participants
when being prompted to denote different aspects of quality,
which warrants further investigation with a modified approach
in which multiple factors are being queried at the same time.
Following analysis of the marked regions with highest density
across participants might also better serve to find acoustic cor-
relates of the perceptual quality dimensions as well as yield in-
sight into the individual shortcomings of the systems under in-
vestigation.

Table 3: Kappa value, percentage of overlapping to total
marked area and percentage of marked area to total signal
length for time markings in the human-likeness and negative
emotion domains.

human-likeness negative emotion
system: % overlap % of total % overlap % of total
system1 33.07 43.0 / 0.0
system2 31.1 42.44 88.24 88.98
system3 48.12 15.96 0.0 10.08
system4 70.04 51.34 54.81 46.56
system5 38.35 32.28 52.53 79.72
system6 55.14 40.08 86.56 73.8

κ 0.60 0.55
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