
Generalized Data Weighting via Class-Level Gradient
Manipulation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Label noise and class imbalance are two major issues coexisting in real-world1

datasets. To alleviate the two issues, state-of-the-art methods reweight each in-2

stance by leveraging a small amount of clean and unbiased data. Yet, these methods3

overlook class-level information within each instance, which can be further utilized4

to improve performance. To this end, in this paper, we propose Generalized Data5

Weighting (GDW) to simultaneously mitigate label noise and class imbalance by6

manipulating gradients at the class level. To be specific, GDW unrolls the loss7

gradient to class-level gradients by the chain rule and reweights the flow of each8

gradient separately. In this way, GDW achieves remarkable performance improve-9

ment on both issues. Aside from the performance gain, GDW efficiently obtains10

class-level weights without introducing any extra computational cost compared11

with instance weighting methods. Specifically, GDW performs a gradient descent12

step on class-level weights, which only needs intermediate gradients. Extensive13

experiments in various settings verify the effectiveness of GDW. For example,14

GDW outperforms state-of-the-art methods by 2.56% under the 60% uniform noise15

setting in CIFAR10. Our code will be available upon acceptance.16

1 Introduction17

Real-world classification datasets often suffer from two issues, i.e., label noise [1] and class im-18

balance [2]. On the one hand, label noise often results from the limitation of data generation, e.g.,19

sensor errors [3] and mislabeling from crowdsourcing workers [4]. Label noise misleads the training20

process of DNNs and degrades the model performance in various aspects [5, 6, 7]. On the other hand,21

imbalanced datasets are either naturally long-tailed [8, 9] or biased from the real-world distribution22

due to imperfect data collection [10, 11]. Training with imbalanced datasets usually results in poor23

classification performance on weakly represented classes [12, 13, 14]. Even worse, these two issues24

often coexist in the real-world datasets [15].25

To prevent the model from memorizing noisy information, many important work have been proposed,26

including label smoothing [16], noise adaptation [17], importance weighting [18], GLC [19], and27

Co-teach [20]. Meanwhile, [12, 13, 14, 21] propose effective methods to tackle class imbalance.28

However, these methods inevitably introduce hyper-parameters (e.g., the weighting factor in [13] and29

the focusing parameter in [21]), raising the difficulty in the real-world deployment.30

Inspired by recent advances in meta-learning, some work [22, 23, 24, 25] propose to solve both31

issues by leveraging a clean and unbiased meta set. These methods treat instance weights as32

hyper-parameters and dynamically update these weights to circumvent hyper-parameter tuning.33

Specifically, MWNet [23] adopts a MLP with the instance loss as input and the instance weight as34

output. Due to the MLP, MWNet has better scalability on large datasets compared with INSW [24].35

Although these methods can handle label noise and class imbalance to some extent, they can-36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

not fully utilize class-level information within each instance, resulting in the potential loss of37

useful information. For example, in a three-class classification task, every instance has three38

logits. As shown in Figure 1, every logit corresponds to a class-level gradient flow due to the39

existence of the loss function. These gradient flows represent three kinds of information: "not40

cat", "dog", and "not bird". Instance weighting methods [23, 22] alleviate label noise by down-41

weighting all the gradient flows of the instance, which discards three kinds of information simul-42

taneously. Yet, downweighting the "not bird" gradient flow is a waste of information. Similarly,43

in class imbalance scenarios, different gradient flows represent different class-level information.44

Figure 1: Motivation for class-level weighting. For
a noisy instance (e.g. cat mislabeled as "dog"),
all gradient flows are downweighted by instance
weighting. Although the gradient flows for "dog"
and "not cat" contain harmful information, the gra-
dient flow for "not bird" is still valuable for train-
ing, which should not be downweighted.

Therefore, it is necessary to reweight instances45

at the class level for better information use.46

To this end, we propose Generalized Data47

Weighting (GDW) to tackle label noise and48

class imbalance by class-level gradient manipu-49

lation. Firstly, we introduce class-level weights50

to represent the importance of different gradient51

flows and then propose class-level weighting by52

gradient manipulation. Secondly, we impose53

a zero-mean constraint on class-level weights54

for stable training. Thirdly, to efficiently ob-55

tain class-level weights, we develop a two-stage56

weight generation scheme embedded in the bi-57

level optimization. Instance weighting meth-58

ods [22, 23, 24, 25] are special cases of GDW59

when class-level weights within any instance are60

the same. In this way, GDW achieves impressive61

performance improvement in various settings.62

To sum up, our contribution is two-fold:63

1. For better information utilization, we propose GDW, a generalized data weighting method,64

which better handles label noise and class imbalance. To the best of our knowledge, we are65

the first to propose class-level weighting on gradient flows.66

2. To obtain class-level weights efficiently, we design a two-stage scheme embedded in the67

bi-level optimization framework, which does not introduce any extra computational cost. To68

be specific, during the back-propagation we store intermediate gradients, with which we69

update class-level weights via a gradient descent step.70

2 Related work71

2.1 Traditional Methods for Label Noise72

Label noise is a common problem in classification tasks [5, 6, 7]. To avoid overfitting to label noise,73

[16] propose label smoothing to regularize the model. [17, 26] form different models to indicate the74

relation between noisy instances and clean instances. [18] estimate an importance weight for each75

instance to represent its value to the model. [20] train two models simultaneously and let them teach76

each other in every mini-batch. However, without a clean dataset, these methods cannot handle severe77

noise [22]. [19] correct the prediction of the model by estimating the label corruption matrix via a78

clean validation set, but this matrix is the same across all instances. Instead, our method generates79

dynamic class-level weights for every instance to improve training.80

2.2 Traditional Methods for Class Imbalance81

Many important work have been proposed to handle class imbalance [27, 28, 29, 21, 13, 12, 14, 30].82

[27, 30] propose to over-sample the minority class and under-sample the majority class. [28, 29] learn83

a class-dependent cost matrix to obtain robust representations for both majority and minority classes.84

[21, 13, 12, 14] design a reweighting scheme to rebalance the loss for each class. These methods are85

quite effective, whereas they need to manually choose loss functions or hyper-parameters. In contrast,86

meta-learning methods view instance weights as hyper-parameters and dynamically update them via87

a meta set to avoid hyper-parameter tuning.88

2

Table 1: Related work comparison. "Noise" and "Imbalance" denote whether the method can
solve label noise and class imbalance. "Class-level" denotes whether the method utilizes class-level
information in each instance, and "Scalability" denotes whether the method can scale to large datasets.

Focal [21] Balanced [13] Co-teach [20] GLC [19] L2RW [22] INSW [24] MWNet [23] Soft-label [39] Gen-label [37] GDW

Noise # # ! ! ! ! ! ! ! !

Imbalance ! ! # # ! ! ! # # !

Class-level # # # # # # # ! ! !

Scalability ! ! ! ! ! # ! # # !

2.3 Meta-Learning Methods89

With recent development in meta-learning [31, 32, 33], many important methods have been proposed90

to handle label noise and class imbalance via a meta set [34, 35, 36, 23, 22, 25, 24, 37]. [36] propose91

MentorNet to provide a data-driven curriculum for the base network to focus on correct instances. To92

distill effective supervision, [38] estimate pseudo labels for noisy instances with a meta set. To provide93

dynamic regularization, [39, 37] treat labels as learnable parameters and adapt them to the model’s94

state. Although these methods can tackle label noise, they introduce huge amounts of learnable95

parameters and thus cannot scale to large datasets. To alleviate class imbalance, [34] describe a96

method to learn from long-tailed datasets. Specifically, [34] propose to encode meta-knowledge into97

a meta-network and model the tail classes by transfer learning.98

Furthermore, many meta-learning methods propose to mitigate the two issues by reweighting every99

instance [23, 22, 25, 40, 24]. [40] equip each instance and each class with a learnable parameter to100

govern their importance. By leveraging a meta set, [23, 22, 25, 24] learn instance weights and model101

parameters via bi-level optimization to tackle label noise and class imbalance. [22] assign weights102

to training instances only based on their gradient directions. Furthermore, [24] combine reinforce103

learning and meta-learning, and treats instance weights as rewards for optimization. Meanwhile,104

[23, 25] adopt a weighting network to output weights for instances and use bi-level optimization to105

jointly update the weighting network parameters and model parameters. Although these methods106

handle label noise and class imbalance by reweighting instances, a scalar weight for every instance107

cannot capture class-level information, as shown in Figure 1. Therefore, we introduce class-level108

weights for different gradient flows and adjust them to better utilize class-level information.109

We show the differences between GDW and other related methods in Table 1.110

3 Method111

3.1 Notations112

In most classification tasks, there is a training set Dtrain = {(xi, yi)}Ni=1 and a meta set Dmeta =113

{(xvi , yvi)}Mi=1. We aim to alleviate label noise and class imbalance in the Dtrain with the clean114

unbiased Dmeta. The model parameters are denoted as θ, and the number of classes is denoted as C.115

3.2 Class-level Weighting by Gradient Manipulation116

To utilize class-level information, we learn a class-level weight for every gradient flow instead of a117

scalar weight for all C gradient flows in [23]. Denote L as the loss of any instance. Applying the118

chain rule, we unroll the gradient of L w.r.t. θ as119

∇θL =
∂L
∂θ

=
∂L
∂l

∂l

∂θ

.
= D1D2, (1)

where l ∈ RC represents the predicted logit vector of the instance. We introduce class-level weights120

ω ∈ RC and denote the jth component of ω as the normal-font ωj . To indicate the importance of121

every gradient flow, we perform an element-wise product fω(·) on D1 withω. After this manipulation,122

the gradient becomes123

fω (∇θL)
.
=

(
ω ⊗ ∂L

∂l

)
∂l

∂θ
= (ω ⊗D1)D2

.
= D′1D2, (2)

where ⊗ denotes the element-wise product of two vectors. Note that ωj represents the importance of124

the jth gradient flow. Obviously, instance weighting is a special case of GDW when elements of ω125

3

are the same. Most classification tasks [41, 42, 43] adopt the Softmax-CrossEntropy loss. In this case,126

we have D1 = p− y, where p ∈ RC denotes the probability vector output by softmax and y ∈ RC127

denotes the one-hot label of the instance.128

As shown in Figure 1, for a noisy instance (e.g., cat mislabeled as "dog"), instance weighting methods129

assign a low scalar weight to all gradient flows of the instance. Instead, GDW assigns class-level130

weights to different gradient flows by leveraging the meta set. Specifically, GDW tries to downweight131

the gradient flows for "dog" and "not cat", and upweight the gradient flow for "not bird". Similarly, in132

imbalance settings, different gradient flows have different class-level information. Thus GDW can133

also better handle class imbalance by adjusting the importance of different gradient flows.134

3.3 Zero-mean Constraint on Class-level Weights135

To retain the Softmax-CrossEntropy loss structure after the manipulation, we impose a zero-mean136

constraint on D′1. To be specific, we analyze the jth element of D′1 (see Appendix A for details):137

ωj(pj − yj) =ωt
(
p′j − yj

)
+

(∑
k

ωkpk − ωt

)
p′j . (3)

where p′j
.
=

ωjpj∑
k ωkpk

is the weighted probability, and ωt denotes the class-level weight at the target138

(label) position. We observe that the first term in Eq. 3 satisfies the structure of the gradient of the139

Softmax-CrossEntropy loss, and thus propose to eliminate the second term which messes the structure.140

Specifically, we let141 ∑
k

ωkpk − ωt = 0⇒ ωt =

∑
j 6=l ωjpj

1− pt
, (4)

where pt is the probability of the target class. Note that
∑
j ωjyj = ωt, and thus we have142 ∑

j

ωj(pj − yj) = 0. (5)

This restricts the mean of D′1 to be zero. Therefore, we name this constraint as zero-mean constraint.143

With this, we have144

D′1 = ωt (p
′ − y) . (6)

Eq. 6 indicates that ω adjust the gradients in two levels, i.e., instance level and class level. To be145

specific, ωt acts as the instance-level weight in previous instance weighting methods [23, 22, 24, 25].146

Class-level weights manipulate gradient flows by adjusting the probability from p to p′.147

3.4 Efficient Two-stage Weight Generation Embedded in Bi-level Optimization148

In this subsection, we first illustrate the three-step bi-level optimization framework in [23]. Further-149

more, we embed a two-stage scheme in the bi-level optimization framework to efficiently obtain150

class-level weights, with which we manipulate gradient flows and optimize model parameters.151

Three-step Bi-level Optimization. Generally, the goal of classification tasks is to obtain the optimal152

model parameters θ∗ by minimizing the average loss on Dtrain, denoted as 1
N

∑N
i=1 ltrain(xi, yi;θ).153

As an instance weighting method, [23] adopt a three-layer MLP parameterized by φ as the weighting154

network and take the loss of the ith instance as input and output a scalar weight ωi. Then θ∗ is155

optimized by minimizing the instance-level weighted training loss:156

θ∗(φ) = argmin
θ

1

N

N∑
i=1

ωi(φ)ltrain(xi, yi;θ) (7)

To obtain the optimal ωi, they propose to use a meta set as meta-knowledge and minimize the157

meta-loss to obtain φ∗:158

φ∗ = argmin
φ

1

M

M∑
i=1

lval(x
v
i , y

v
i ;θ
∗(φ)) (8)

Since the optimization for θ∗(φ) and φ∗ is nested, they adopt an online strategy to update θ and φ159

with a three-step optimization loop for efficiency. Denote the two sets of parameters at the τ th loop160

as θτ and φτ respectively, and then the three-step loop is formulated as:161

4

Figure 2: Two-stage Weight Generation. "BP" denotes the back-propagation in Step 2 of the bi-level
optimization framework. g denotes the intermediate gradients w.r.t. ω. 	 denotes the minus operator.
Note that ω is the first-stage (instance-level) weight and ω′ is the second-stage (class-level) weight.

Step 1 Update θτ−1 to θ̂τ (φ) via an SGD step on a mini-batch training set by Eq. 7.162

Step 2 With θ̂τ (φ), update φτ−1 to φτ via an SGD step on a mini-batch meta set by Eq. 8.163

Step 3 With φτ , update θτ−1 to θτ via an SGD step on the same mini-batch training set by Eq. 7.164

Instance weights in Step 3 are better than those in Step 1, and thus are used to update θτ−1.165

Two-stage Weight Generation. To guarantee scalability, we apply the same weighting network in166

[23] to obtain weights. To efficiently train φ and θ, we also adopt the three-step bi-level optimization167

framework. Moreover, we propose an efficient two-stage scheme embedded in Step 1-3 to generate168

class-level weights. This process does not introduce any extra computational cost compared to169

MWNet. We keep the notations of θτ and φτ unchanged.170

The first stage is embedded in Step 1. Specifically, we obtain the first-stage class-level weights171

ωi = ωi1, by cloning the output of the weighting network for C times. Then we leverage the cloned172

weights ωi to manipulate gradients and update θ with a mini-batch of training instances:173

θ̂τ (φτ−1)← θτ−1 − ηθ
1

n

n∑
i=1

fωi(φτ−1) (∇θltrain(xi, yi;θτ−1)) (9)

where n is the mini-batch size, ηθ is the learning rate of θ, and fωi(φτ−1)(·) is the gradient manipula-174

tion operation defined in Eq. 2.175

The second stage is embedded in Step 2 and Step 3. Specifically in Step 2, GDW optimizes φ with176

a mini-batch meta set:177

φτ ← φτ−1 − ηφ
1

m

m∑
i=1

∇φτ−1
lmeta(x

v
i , y

v
i ; θ̂τ (φτ−1)) (10)

where m is the mini-batch size and ηφ is the learning rate of φ. During the back-propagation in178

updating φτ , GDW generates the second-stage weights using the intermediate gradients gi on ωi. To179

be specific,180

ω′i = ωi − ηωgi (11)
Then we impose the zero-mean constraint proposed in Section 3.3 on ω′i, which is later used in181

Step 3 to update θτ−1. Note that the two-stage weight generation scheme does not introduce any182

extra computational cost compared to MWNet because this generation process only utilizes the183

intermediate gradients during the back-propagation. In Step 3, we use ω′i to manipulate gradients184

and update the model parameters θτ−1:185

θτ ← θτ−1 − ηθ
1

n

n∑
i=1

fω′i (∇θltrain(xi, yi;θτ−1)) (12)

The only difference between Step 1 and Step 3 is that we use ω′i instead of the cloned output of186

the weighting network ωi to optimize θ. Since we only introduce φ as extra learnable parameters,187

GDW can scale to large datasets. We summarize GDW in Algorithm 1. Moreover, we visualize the188

two-stage weight generation process in Figure 2 for better demonstration.189

4 Experiments190

We conduct extensive experiments on classification tasks to examine the performance of GDW.191

We compare GDW with other methods in the label noise setting and class imbalance setting in192

5

Algorithm 1 Generalized Data Weighting via Class-Level Gradients Manipulation
Input: Training set: Dtrain, Meta set: Dmeta, batch size n,m, # of iterations T
Initial model parameters: θ0, initial weighting network parameters: φ0

Output: Trained model: θT
1 for τ ← 1 to T do
2 {xi, yi}ni=1 ← SampleFrom(Dtrain)
3 {xvi , yvi }mi=1 ← SampleFrom(Dmeta)
4 Generate ωi from Li via the weighting network parameterized by φτ−1
5 Manipulate gradients by Eq. 2 and update θ̂τ by Eq. 9
6 Update φτ by Eq. 10;
7 Update ωi to ω′i by Eq. 11 and constrain ω′i by Eq. 4
8 Manipulate gradients with ω′i by Eq. 2 and update θτ by Eq. 12

Table 2: Test accuracy on CIFAR10 and CIFAR100 with different uniform noise ratios.
Dataset CIFAR10 CIFAR100

0% 40% 60% 0% 40% 60%
BaseModel 92.73± 0.37 84.38± 0.32 77.92± 0.29 70.42± 0.54 57.28± 0.80 46.86± 1.54
Fine-tuning 92.77± 0.37 84.73± 0.47 78.41± 0.31 70.52± 0.57 57.38± 0.87 47.06± 1.47

Co-teach 91.54± 0.39 85.26± 0.56 78.90± 6.64 68.33± 0.13 59.58± 0.83 37.74± 2.60
GLC 90.85± 0.22 86.12± 0.54 81.55± 0.60 65.05± 0.59 56.99± 0.82 41.74± 1.98

L2RW 89.70± 0.50 84.66± 1.21 79.98± 1.18 63.40± 1.31 47.06± 4.84 36.02± 2.17
INSW 92.70± 0.57 84.88± 0.64 78.77± 0.82 70.52± 0.39 57.11± 0.66 48.00± 1.16

MWNet 92.95 ± 0.33 86.46± 0.31 81.14± 0.94 70.64± 0.31 58.37± 0.33 50.21± 2.98
Soft-label 92.63± 0.27 86.52± 0.10 80.94± 0.25 70.50± 0.44 57.48± 0.43 48.18± 0.89
Gen-label 92.56± 0.56 84.68± 0.57 78.32± 0.94 70.46± 0.37 57.86± 0.50 48.08± 0.98

GDW 92.94 ± 0.15 88.14 ± 0.35 84.11 ± 0.21 70.65 ± 0.52 59.82 ± 1.62 53.33 ± 3.70

Section 4.1 and Section 4.2, respectively. Furthermore, we conduct experiments on the real-world193

dataset Clothing1M [4] in Section 4.3.194

4.1 Label Noise Setting195

Setup. Following [23], we study two settings of label noise: a) Uniform noise: every instance’s196

label uniformly flips to other class labels with probability p; b) Flip noise: each class randomly197

flips to another class with probability p. Note that the probability p represents the noise ratio. We198

randomly select 100 clean images per class from CIFAR10 [44] as the meta set (1000 images in total).199

Similarly, we select a total of 1000 images from CIFAR100 as its meta set. We use ResNet-32 [45]200

as the classifier model.201

Comparison methods. We mainly compare GDW with meta-learning methods: 1) L2RW [22]:202

assign weights to instances based on gradient directions; 2) INSW [24]: derive instance weights203

adaptively from the meta set; 3) MWNet [23]; 4) Soft-label [39]: learn a label smoothing parameter204

for every instance; 5) Gen-label [37]: generate a meta-soft-label for every instance. We also compare205

some traditional methods: 6) BaseModel: train ResNet-32 on the noisy training set; 7) Fine-tuning:206

use the meta set to fine-tune the trained model in BaseModel; 8) Co-teach [20]; 9) GLC [19].207

Training. Most of our training settings follow [23] and we use the cosine learning rate decay208

schedule [46] for a total of 80 epochs for all methods. See Appendix B for details.209

Analysis. For all experiments, we report the mean and standard deviation over 5 runs in Table 2 and210

Table 3, where the best results are in bold and the second-best results are marked by underlines. First,211

we can observe that GDW outperforms nearly all the competing methods in all noise settings except212

for the 40% flip noise setting. Under this setting, GLC estimates the label corruption matrix well213

and thus performs the best, whereas the flip noise assumption scarcely holds in real-world scenarios.214

Note that GLC also performs much better than MWNet under the 40% flip noise setting as reported215

in [23]. Besides, under all noise settings, GDW has a consistent performance gain compared with216

MWNet, which aligns with our motivation in Figure 1. Furthermore, as the ratio increases from 40%217

to 60% in the uniform noise setting, the gap between GDW and MWNet increases from 1.68% to218

2.97% in CIFAR10 and 1.45% to 3.12% in CIFAR100. Even under 60% uniform noise, GDW still219

6

Table 3: Test accuracy on CIFAR10 and CIFAR100 with different flip noise ratios.
Dataset CIFAR10 CIFAR100

0% 20% 40% 0% 20% 40%
BaseModel 92.73± 0.37 90.14± 0.35 81.20± 0.93 70.42± 0.54 64.96± 0.16 49.83± 0.82
Fine-tuning 92.77± 0.37 90.15± 0.36 81.53± 0.96 70.52± 0.57 65.02± 0.22 50.23± 0.71

Co-teach 91.54± 0.39 89.27± 0.24 69.77± 3.97 68.33± 0.13 62.96± 0.73 42.54± 1.68
GLC 90.85± 0.22 90.22± 0.13 89.74 ± 0.19 65.05± 0.59 64.11± 0.40 63.11 ± 0.93

L2RW 89.70± 0.50 88.21± 0.49 82.90± 1.27 63.40± 1.31 55.27± 2.27 45.41± 2.53
INSW 92.70± 0.57 89.90± 0.45 80.09± 2.00 70.52± 0.39 65.32± 0.27 50.13± 0.39

MWNet 92.95 ± 0.33 89.93± 0.17 85.55± 0.82 70.64± 0.31 64.72± 0.68 50.62± 0.46
Soft-label 92.63± 0.27 90.17± 0.47 85.52± 0.78 70.50± 0.44 65.20± 0.45 50.97± 0.41
Gen-label 92.56± 0.56 90.18± 0.13 80.93± 1.29 70.46± 0.37 64.94± 0.53 49.93± 0.55

GDW 92.94 ± 0.15 91.05 ± 0.26 87.70± 0.37 70.65 ± 0.52 65.41 ± 0.75 52.44± 0.79

Figure 3: Class-level target weight (ωt) distri-
bution on CIFAR10 under 40% uniform noise.
ωt of most clean instances are larger than that
of most noisy instances, which means ωt can
differentiate between clean and noisy instances.

Figure 4: The change of class-level weights in
an iteration for a noisy instance (cat mislabeled
as "dog"). MWNet downweights all gradient
flows. In contrast, GDW upweights the "not
bird" gradient flow for better information use.

has low test errors in both datasets and achieves more than 3% gain in CIFAR10 and 6% gain in220

CIFAR100 compared with the second-best method. Last but not least, GDW outperforms Soft-label221

and Gen-label in all settings. One possible reason is that manipulating gradient flows is a more direct222

way to capture class-level information than learning labels.223

In Figure 3, we show the distribution of class-level target weight (ωt) on clean and noisy instances in224

one epoch. We observe that ωt of most clean instances are larger than that of most noisy instances,225

which indicates that ωt can distinguish between clean instances and noisy instances. This is consistent226

with Eq. 3 that ωt serves as the instance weight.227

To better understand the changing trend of non-target class-level weights, we visualize the ratio of228

increased weights in one epoch in Figure 5. Specifically, there are three categories: non-target weights229

on clean instances (wcnt), true target weights on noisy instances (wntt) and non-target (excluding true230

targets) weights on noisy instances (wnnt). Note that in Figure 1, ωntt represents the importance of231

the "not cat" gradient flow and ωnnt represents the importance of the "not bird" gradient flow. If the232

cat image in Figure 1 is correctly labeled as "cat", then the two non-target weights ωcnt are used to233

represent the importance of the "not dog" and the "not bird" gradient flows, respectively. In one234

epoch, we calculate the ratios of the number of increased wcnt, w
n
tt and wnnt to the number of all235

corresponding weights. wcnt and wnnt are expected to increase since their gradient flows contain236

valuable information, whereas wntt is expected to decrease because the "not cat" gradient flow contains237

harmful information. Figure 5 aligns perfectly with our expectation. Note that the lines of wcnt and238

wnnt nearly coincide with each other and fluctuate around 65%. This means non-target weights on239

clean instances and noisy instances share the same changing pattern, i.e., around 65% of wcnt and240

wnnt increase. Besides, less than 20% of wntt increase and thus more than 80% decrease, which means241

the gradient flows of wntt contain much harmful information.242

In Figure 4, we show the change of class-level weights in an iteration for a noisy instance, i.e., a cat243

image mislabeled as "dog". The gradient flows of "not cat" and "dog" contain harmful information244

and thus are downweighted by GDW. In addition, GDW upweights the valuable "not bird" gradient245

7

Figure 5: Ratio trend of the number of increased
wcnt, w

n
tt, and wnnt. Around 65% of wcnt and

wnnt increase since they contain useful informa-
tion. Besides, less than 20% of wntt increase and
thus more than 80% of wntt decrease since they
contain harmful information.

Figure 6: Ratio trend of the number of increased
ω8 on C9 instances. Less than 10% of ω8 in-
crease and thus more than 90% decrease. A
small ω8 strikes a balance between two kinds of
information: "C8" and "not C8", which better
handles class imbalance.

Table 4: Test accuracy on the long-tailed CIFAR10 and CIFAR100 with different imbalance ratios.
Dataset CIFAR10 CIFAR100

µ = 1 µ = 0.1 µ = 0.01 µ = 1 µ = 0.1 µ = 0.01
BaseModel 92.73± 0.37 85.93± 0.57 69.77± 1.13 70.42± 0.54 56.25± 0.49 37.79± 0.82
Fine-tuning 92.77± 0.37 82.60± 0.49 59.76± 1.00 70.52± 0.57 55.95± 0.50 37.10± 0.87

Focal 91.68± 0.49 84.57± 0.83 65.78± 4.02 68.48± 0.38 55.02± 0.51 37.43± 1.00
Balanced 92.80± 0.47 86.05± 0.46 63.63± 3.60 70.56± 0.56 55.02± 0.80 27.60± 1.39

L2RW 89.70± 0.50 79.11± 3.40 51.15± 7.13 63.40± 1.31 46.28± 4.51 25.86± 5.78
INSW 92.70± 0.57 86.31± 0.28 70.27± 0.24 70.52± 0.39 55.94± 0.51 37.67± 0.59

MWNet 92.95 ± 0.33 86.17± 0.75 62.70± 1.76 70.64± 0.31 56.49± 1.52 37.83± 0.86
GDW 92.94 ± 0.15 86.77 ± 0.55 71.31 ± 1.03 70.65 ± 0.52 56.78 ± 0.52 37.94 ± 1.58

flow from 0.45 to 0.63. By contrast, unable to capture class-level information, MWNet downweights246

all gradient flows from 0.45 to 0.43, which leads to information loss on the "not bird" gradient flow.247

Training without the zero-mean constraint. We have also tried training without the zero-mean248

constraint in Section 3.3 and got poor results. Denote the true target as tt and one of the non-target249

labels as nt (nt 6= tt). Note that the gradient can be unrolled as (see Appendix C for details):250

∂L
∂θ

= ωt
∑
j

(
p′j − yj

) ∂lj
∂θ

+

(∑
k

ωkpk − ωt

)∑
j

p′j
∂lj
∂θ

. (13)

If
∑
k ωkpk − ωt is positive and the learning rate is small enough, (

∑
k ωkpk − ωt) p′tt

∂ltt
∂θ con-251

tributes to the decrease of the true target logit ltt after a gradient descent step. If negative,252

(
∑
k ωkpk − ωt) p′nt

∂lnt
∂θ contributes to the increase of the non-target logit lnt. Therefore, with-253

out the zero-mean constraint, the second term in Eq. 13 may hurt the performance of the model254

regardless of the sign of
∑
k ωkpk − ωt. Similarly, training without the constraint results in poor255

performance in other settings. Hence we omit those results in the following subsections.256

4.2 Class Imbalance Setting257

Setup and comparison methods. The imbalance factor µ ∈ (0, 1) of a dataset is defined as the258

number of instances in the largest class divided by that of the smallest [23]. Long-Tailed CIFAR259

[44] are created by reducing the number of training instances per class according to an exponential260

function n = niµ
i/(C−1), where i is the class index (0-indexed) and ni is the original number of261

training instances. Comparison methods include: 1) L2RW [22]; 2) INSW [24]; 3) MWNet [23];262

4) BaseModel; 5) Fine-tuning; 6) Balanced [13]; 7) Focal [21].263

8

Table 5: Test accuracy on Clothing1M
Method BaseModel Fine-tuning Co-teach GLC L2RW INSW MWNet Soft-label Gen-label GDW

Accuracy(%) 65.02 67.68 68.13 68.60 68.80 68.25 68.46 68.69 67.64 69.39

Analysis. As shown in Table 4, GDW performs best in nearly all settings and exceeds MWNet264

by 8.6% when the imbalance ratio µ is 0.01 in CIFAR10. Besides, INSW achieves competitive265

performance at the cost of introducing a huge amount of learnable parameters (equal to the training266

dataset size N). Furthermore, we find that BaseModel achieves competitive performance, but fine-267

tuning on the meta set hurts the model’s performance. We have tried different learning rates from268

10−7 to 10−1 for fine-tuning, but the results are similar. One explanation is that the balanced meta set269

worsens the model learned from the imbalanced training set. These results align with the experimental270

results in [24] which also deals with class imbalance.271

Denote the smallest class as C9 and the second smallest class as C8 in Long-Tailed CIFAR10 with272

µ = 0.1. Recall ωj denotes the jth class-level weight. For all C9 instances in an epoch, we calculate273

the ratio of the number of increased ω8 to the number of all ω8, and then visualize the ratio trend in274

Figure 6. Since C9 is the smallest class, instance weighting methods upweight both ω8 and ω9 on a275

C9 instance. Yet in Figure 6, less than 10% of ω8 increase and thus more than 90% decrease. This276

can be explained as follows. There are two kinds of information in the long-tailed dataset regarded to277

C8: "C8" and "not C8". Since C8 belongs to the minority class, the dataset is biased towards the278

"not C8" information. Because ω8 represents the importance of "not C8", a smaller ω8 weakens the279

"not C8" information. As a result, decreased ω8 achieves a balance between two kinds of information:280

"C8" and "not C8", thus better handling class imbalance at the class level.281

4.3 Real-world Setting282

Setup and training. The Clothing1M dataset contains one million images from fourteen classes283

collected from the web [4]. Labels are constructed from surrounding texts of images and thus284

contain some errors. We use the ResNet-18 model pre-trained on ImageNet [47] as the classifier.285

The comparison methods are the same as those in the label noise setting since the main issue of286

Clothing1M is label noise [4]. All methods are trained for 5 epochs via SGD with a 0.9 momentum,287

a 10−3 initial learning rate, a 10−3 weight decay, and a 128 batchsize. See Appendix D for details.288

Analysis. As shown in Table 5, GDW achieves the best performance among all the comparison289

methods and outperforms MWNet by 0.93%. In contrast to unsatisfying results in previous settings,290

L2RW performs quite well in this setting. One possible explanation is that, compared with INSW291

and MWNet which update weights iteratively, L2RW obtains instance weights only based on current292

gradients. As a result, L2RW can more quickly adapt to the model’s state, but meanwhile suffers293

from unstable weights [23]. In previous settings, we train models from scratch, which need stable294

weights to stablize training. Therefore, INSW and MWNet generally achieve better performance295

than L2RW. Whereas in this setting, we use the pre-trained ResNet-18 model which is already stable296

enough. Thus L2RW performs better than INSW and MWNet.297

5 Conclusion298

Many instance weighting methods have recently been proposed to tackle label noise and class299

imbalance, but they cannot capture class-level information. For better information use when handling300

the two issues, we propose GDW to generalize data weighting from instance level to class level by301

reweighting gradient flows. Besides, to efficiently obtain class-level weights, we design a two-stage302

weight generation scheme embedded in the three-step bi-level optimization framework. To be specific,303

this scheme leverages intermediate gradients to update class-level weights via a gradient descent step.304

In this way, GDW achieves remarkable performance improvement in various settings.305

References306

[1] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from307

noisy labels with deep neural networks: A survey. arXiv preprint arXiv:2007.08199, 2020.308

9

[2] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on309

knowledge and data engineering, 21(9):1263–1284, 2009.310

[3] Nancy E. ElHady and Julien Provost. A Systematic Survey on Sensor Failure Detection and311

Fault-Tolerance in Ambient Assisted Living. Sensors, 18(7), July 2018. Number: 7 Publisher:312

Multidisciplinary Digital Publishing Institute.313

[4] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive314

noisy labeled data for image classification. In Proceedings of the IEEE conference on computer315

vision and pattern recognition, pages 2691–2699, 2015.316

[5] Görkem Algan and İlkay Ulusoy. Label Noise Types and Their Effects on Deep Learning.317

arXiv:2003.10471 [cs], March 2020. arXiv: 2003.10471.318

[6] Xingquan Zhu and Xindong Wu. Class Noise vs. Attribute Noise: A Quantitative Study. Artif.319

Intell. Rev., 22:177–210, November 2004.320

[7] Benoit Frenay and Michel Verleysen. Classification in the Presence of Label Noise: A Survey.321

IEEE Transactions on Neural Networks and Learning Systems, 25(5):845–869, May 2014.322

Conference Name: IEEE Transactions on Neural Networks and Learning Systems.323

[8] Qiuye Zhao and Mitch Marcus. Long-Tail Distributions and Unsupervised Learning of Mor-324

phology. In Proceedings of COLING 2012, pages 3121–3136, Mumbai, India, December 2012.325

The COLING 2012 Organizing Committee.326

[9] Grant Van Horn and Pietro Perona. The Devil is in the Tails: Fine-grained Classification in the327

Wild. arXiv:1709.01450 [cs], September 2017. arXiv: 1709.01450.328

[10] Harshita Patel, Dharmendra Singh Rajput, G Thippa Reddy, Celestine Iwendi, Ali Kashif Bashir,329

and Ohyun Jo. A review on classification of imbalanced data for wireless sensor networks.330

International Journal of Distributed Sensor Networks, 16(4):1550147720916404, April 2020.331

Publisher: SAGE Publications.332

[11] Reyes Pavón, Rosalía Laza, Miguel Reboiro-Jato, and Florentino Fdez-Riverola. Assessing the333

Impact of Class-Imbalanced Data for Classifying Relevant/Irrelevant Medline Documents. In334

Miguel P. Rocha, Juan M. Corchado Rodríguez, Florentino Fdez-Riverola, and Alfonso Valencia,335

editors, 5th International Conference on Practical Applications of Computational Biology &336

Bioinformatics (PACBB 2011), Advances in Intelligent and Soft Computing, pages 345–353,337

Berlin, Heidelberg, 2011. Springer.338

[12] Qi Dong, Shaogang Gong, and Xiatian Zhu. Class Rectification Hard Mining for Imbalanced339

Deep Learning. arXiv:1712.03162 [cs], December 2017. arXiv: 1712.03162.340

[13] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based341

on effective number of samples, 2019.342

[14] Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Nakamura. Class-Wise Difficulty-Balanced343

Loss for Solving Class-Imbalance. In Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, and344

Jianbo Shi, editors, Computer Vision – ACCV 2020, volume 12627, pages 549–565. Springer345

International Publishing, Cham, 2021. Series Title: Lecture Notes in Computer Science.346

[15] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance.347

Journal of Big Data, 6(1):1–54, 2019.348

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-349

ing the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer350

Vision and Pattern Recognition (CVPR), pages 2818–2826, Las Vegas, NV, USA, June 2016.351

IEEE.352

[17] J. Goldberger and E. Ben-Reuven. Training deep neural-networks using a noise adaptation layer.353

In ICLR, 2017.354

[18] Tongliang Liu and Dacheng Tao. Classification with Noisy Labels by Importance Reweighting.355

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3):447–461, March 2016.356

arXiv: 1411.7718.357

10

[19] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using Trusted Data to358

Train Deep Networks on Labels Corrupted by Severe Noise. arXiv:1802.05300 [cs], January359

2019. arXiv: 1802.05300.360

[20] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi361

Sugiyama. Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy362

Labels. arXiv:1804.06872 [cs, stat], October 2018. arXiv: 1804.06872.363

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense364

Object Detection. arXiv:1708.02002 [cs], February 2018. arXiv: 1708.02002.365

[22] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to Reweight Examples366

for Robust Deep Learning. arXiv:1803.09050 [cs, stat], May 2019. arXiv: 1803.09050.367

[23] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-368

Weight-Net: Learning an Explicit Mapping For Sample Weighting. arXiv:1902.07379 [cs, stat],369

September 2019. arXiv: 1902.07379.370

[24] Zhiting Hu, Bowen Tan, Ruslan Salakhutdinov, Tom Mitchell, and Eric P. Xing. Learning Data371

Manipulation for Augmentation and Weighting. arXiv:1910.12795 [cs, stat], October 2019.372

arXiv: 1910.12795.373

[25] Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, and Graham374

Neubig. Optimizing Data Usage via Differentiable Rewards. arXiv:1911.10088 [cs, stat], June375

2020. arXiv: 1911.10088.376

[26] Arash Vahdat. Toward Robustness against Label Noise in Training Deep Discriminative Neural377

Networks. arXiv:1706.00038 [cs, stat], November 2017. arXiv: 1706.00038.378

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic Minority379

Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321–357, June 2002.380

arXiv: 1106.1813.381

[28] Salman H. Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous Sohel, and Roberto382

Togneri. Cost Sensitive Learning of Deep Feature Representations from Imbalanced Data.383

arXiv:1508.03422 [cs], March 2017. arXiv: 1508.03422.384

[29] Charles Elkan. The foundations of cost-sensitive learning. In In Proceedings of the Seventeenth385

International Joint Conference on Artificial Intelligence, pages 973–978, 2001.386

[30] Ashish Anand, Ganesan Pugalenthi, Gary B. Fogel, and P. N. Suganthan. An approach for387

classification of highly imbalanced data using weighting and undersampling. Amino Acids,388

39(5):1385–1391, November 2010.389

[31] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano Pontil.390

Bilevel Programming for Hyperparameter Optimization and Meta-Learning. arXiv:1806.04910391

[cs, stat], July 2018. arXiv: 1806.04910.392

[32] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept393

learning through probabilistic program induction. Science, 350(6266):1332–1338, December394

2015. Publisher: American Association for the Advancement of Science Section: Research395

Article.396

[33] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.397

arXiv:1806.09055 [cs, stat], April 2019. arXiv: 1806.09055.398

[34] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In I. Guyon,399

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,400

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.401

[35] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S. Kankanhalli. Learning to Learn From Noisy402

Labeled Data. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition403

(CVPR), pages 5046–5054, Long Beach, CA, USA, June 2019. IEEE.404

11

[36] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet: Learning Data-405

Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. arXiv:1712.05055406

[cs], August 2018. arXiv: 1712.05055.407

[37] Görkem Algan and Ilkay Ulusoy. Meta Soft Label Generation for Noisy Labels.408

arXiv:2007.05836 [cs, stat], January 2021. arXiv: 2007.05836.409

[38] Zizhao Zhang, Han Zhang, Sercan O. Arik, Honglak Lee, and Tomas Pfister. Distilling410

Effective Supervision from Severe Label Noise. arXiv:1910.00701 [cs, stat], June 2020. arXiv:411

1910.00701.412

[39] Nidhi Vyas, Shreyas Saxena, and Thomas Voice. Learning Soft Labels via Meta Learning.413

arXiv:2009.09496 [cs, stat], September 2020. arXiv: 2009.09496.414

[40] Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data Parameters: A New Family of415

Parameters for Learning a Differentiable Curriculum. In H. Wallach, H. Larochelle, A. Beygelz-416

imer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural417

Information Processing Systems 32, pages 11095–11105. Curran Associates, Inc., 2019.418

[41] Zhenyue Qin, Dongwoo Kim, and Tom Gedeon. Rethinking Softmax with Cross-Entropy:419

Neural Network Classifier as Mutual Information Estimator. arXiv:1911.10688 [cs, stat],420

September 2020. arXiv: 1911.10688.421

[42] Shuai Zhao, Liguang Zhou, Wenxiao Wang, Deng Cai, Tin Lun Lam, and Yangsheng Xu.422

Towards Better Accuracy-efficiency Trade-offs: Divide and Co-training. arXiv:2011.14660423

[cs], March 2021. arXiv: 2011.14660 version: 3.424

[43] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias425

Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neu-426

ral Networks for Mobile Vision Applications. arXiv:1704.04861 [cs], April 2017. arXiv:427

1704.04861 version: 1.428

[44] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.429

University of Toronto, 2009.430

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image431

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,432

pages 770–778, 2016.433

[46] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv434

preprint arXiv:1608.03983, 2016.435

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-436

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern437

recognition, pages 248–255. Ieee, 2009.438

Checklist439

1. For all authors...440

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s441

contributions and scope? [Yes]442

(b) Did you describe the limitations of your work? [Yes] The proposed method can only443

be applied on classification tasks.444

(c) Did you discuss any potential negative societal impacts of your work? [N/A]445

(d) Have you read the ethics review guidelines and ensured that your paper conforms to446

them? [Yes]447

2. If you are including theoretical results...448

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.449

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3.450

12

3. If you ran experiments...451

(a) Did you include the code, data, and instructions needed to reproduce the main experi-452

mental results (either in the supplemental material or as a URL)? [Yes] We only use453

public datasets and the code is in the supplementary materials.454

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they455

were chosen)? [Yes] Most of our settings follow [23] and other details are in the456

appendix.457

(c) Did you report error bars (e.g., with respect to the random seed after running experi-458

ments multiple times)? [Yes] We repeat all experiments on CIFAR10 and CIFAR100459

with five different seeds and the mean and standard deviation are reported. For the460

Clothing1M dataset, we only run one experiment due to limited resources.461

(d) Did you include the total amount of compute and the type of resources used (e.g., type462

of GPUs, internal cluster, or cloud provider)? [Yes] We use one V100 GPU. See the463

appendix for details.464

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...465

(a) If your work uses existing assets, did you cite the creators? [Yes] For dataset, we cite466

the papers of CIFAR datasets and the Clothing1M dataset. For code, we cite [45].467

(b) Did you mention the license of the assets? [N/A]468

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]469

470

(d) Did you discuss whether and how consent was obtained from people whose data you’re471

using/curating? [N/A]472

(e) Did you discuss whether the data you are using/curating contains personally identifiable473

information or offensive content? [N/A]474

5. If you used crowdsourcing or conducted research with human subjects...475

(a) Did you include the full text of instructions given to participants and screenshots, if476

applicable? [N/A]477

(b) Did you describe any potential participant risks, with links to Institutional Review478

Board (IRB) approvals, if applicable? [N/A]479

(c) Did you include the estimated hourly wage paid to participants and the total amount480

spent on participant compensation? [N/A]481

13

	Introduction
	Related work
	Traditional Methods for Label Noise
	Traditional Methods for Class Imbalance
	Meta-Learning Methods

	Method
	Notations
	Class-level Weighting by Gradient Manipulation
	Zero-mean Constraint on Class-level Weights
	Efficient Two-stage Weight Generation Embedded in Bi-level Optimization

	Experiments
	Label Noise Setting
	Class Imbalance Setting
	Real-world Setting

	Conclusion

