
Linear Convergence in Federated Learning:
Tackling Client Heterogeneity and Sparse Gradients

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider a standard federated learning (FL) setup where a group of clients1

periodically coordinate with a central server to train a statistical model. We develop2

a general algorithmic framework called FedLin to tackle some of the key challenges3

intrinsic to FL, namely objective heterogeneity, systems heterogeneity, and infre-4

quent and imprecise communication. To motivate our framework, we first show that5

various existing FL algorithms suffer from a fundamental speed-accuracy conflict:6

they either guarantee linear convergence but to an incorrect point, or convergence7

to the global minimum but at a sub-linear rate, i.e., fast convergence comes at the8

expense of accuracy. In contrast, when the clients’ local loss functions are smooth9

and strongly convex, we show that FedLin guarantees linear convergence to the10

global minimum, despite arbitrary objective and systems heterogeneity. We then11

establish matching upper and lower bounds on the convergence rate of FedLin12

that highlight the effects of infrequent, periodic communication. Finally, we show13

that FedLin preserves linear convergence rates under aggressive gradient sparsifi-14

cation, and quantify the effect of the compression level on the convergence rate.15

Notably, our work is the first to provide tight linear convergence rate guarantees,16

and constitutes the first comprehensive analysis of gradient sparsification in FL.17

1 Introduction18

In a canonical federated learning (FL) architecture, a set S of clients periodically communicate with19

a central server to find a global statistical model that solves the following problem [1–5]:20

min
x∈Rd

f(x), where f(x) =
1

m

m∑
i=1

fi(x). (1)

Here, m is the number of clients, fi : Rd → R is the local objective (loss) function of client i, and21

f(x) is the global objective function. Some of the core distinguishing tenets of the FL paradigm are22

as follows [1–5]. First, due to privacy considerations, clients cannot directly share their local training23

data with the server. Second, differences in the clients’ data-sets may cause the clients to have non-24

identical loss functions with different minima - this is known as statistical or objective heterogeneity.25

Third, due to variability in hardware (CPU, memory) and power (battery level), i.e., due to systems or26

device heterogeneity, the client devices may have different computation speeds; in particular, this27

may lead to slow and straggling devices that affect convergence guarantees. Finally, communication-28

efficiency is a major concern, dictating the need to reduce the number of communication rounds, and29

also the size of the messages transmitted. The above considerations pose unique technical challenges30

that we aim to address in this paper.31

In a typical FL setting, to reduce the number of communication rounds, clients perform multiple32

local training steps in isolation before communicating with the server. Due to such local steps, the33

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

popular FedAvg algorithm suffers from a “client-drift phenomenon" under objective heterogeneity34

[6, 7]: the local iterates of each client drift-off towards the minimum of their own local loss function,35

leading to slow convergence rates. For analysis on FedAvg, we refer the reader to [6–17]. Recently,36

several new algorithms such as FedProx [18], SCAFFOLD [19], FedSplit [20], and FedNova [21]37

have been proposed as improvements to FedAvg. Despite these advances, there remain gaps in our38

understanding of the extent to which these algorithms match the guarantees of a centralized baseline.139

For instance, even for simple, deterministic settings, we show that FedProx [18] and FedNova40

[21] exhibit a fundamental speed-accuracy conflict under objective heterogeneity. Specifically,41

with constant step-sizes, these algorithms converge linearly, but potentially to an incorrect point.42

Thus, convergence to the minimum of the global loss function necessitates diminishing step-sizes,43

which, in turn, leads to sub-linear convergence. Thus, fast convergence comes at the expense of44

accuracy. Although SCAFFOLD [19] and FedSplit [20] employ variance-reduction and operator-45

splitting techniques, respectively, to tackle objective heterogeneity, it is not known whether the rates46

in these papers are tight. More importantly, neither SCAFFOLD nor FedSplit account for the effects47

of systems heterogeneity or compression, both of which are key challenges in FL. Indeed, due to48

systems heterogeneity, the number of local steps may vary across clients, causing some clients to49

make much less progress than others in each round [21]. Moreover, while empirical studies [22, 23]50

have revealed significant benefits of biased sparsification, theoretical guarantees for such methods in51

a federated setting have remained elusive. In this context, our contributions are as follows.52

• A New Algorithm: Motivated by the above concerns, we develop a general algorithmic framework53

called FedLin that simultaneously accounts for objective heterogeneity, systems heterogeneity, and54

gradient sparsification. The key components of FedLin include a gradient correction term in the55

local update rule that exploits memory; the use of client-specific learning rates; and error-feedback56

mechanisms at the clients and the server.57

• Matching Centralized Rates: For smooth and strongly convex losses, we show that FedLin58

converges to the global minimum linearly in the deterministic setting, and with a O(1/T) rate for59

a general stochastic oracle model, thereby matching centralized rates (up to constants). We then60

present matching rates for smooth, convex and non-convex settings as well. Importantly, our results61

hold under arbitrary objective and systems heterogeneity. In contrast, the only other work in FL (as62

far as we are aware) that investigates both objective and systems heterogeneity [21] provides results63

only for the non-convex setting, under a bounded dissimilarity assumption. Moreover, the FedNova64

algorithm in [21] suffers from the speed-accuracy conflict, while FedLin does not.65

• Quantifying the Price of Multiple Local Steps: We establish a lower bound for FedLin that66

matches the upper-bound we obtain for smooth, strongly convex losses. In doing so, we provide67

the first (as far as we are aware) tight linear convergence rate analysis. Our lower bound highlights68

the price paid for performing multiple local steps, i.e., the effect of infrequent communication69

on the convergence rate. In particular, our analysis reveals, perhaps surprisingly, that there exist70

simple instances (involving quadratic losses) for which performing multiple local steps does not71

improve the rate of convergence. In this way, we provide valuable insights into the limitations of72

gradient-tracking/variance-reduction techniques.73

• Analyzing the Impacts of Gradient Sparsification at Server and at Clients: While several74

works explore the effect of unbiased random quantization in distributed settings [24–29], there are75

only a handful of papers [11, 30] that also consider the effect of local steps in FL. Different from all76

these works, we explore the impacts of sparsifying gradients using a biased TOP-k operator, both77

at the server side and at the clients. Our results in this context (i) constitute the first formal study78

of gradient sparsification in a federated setting; (ii) reveal key differences between up-link and79

down-link compression; and (iii) quantify the effect of the compression level on the convergence rate.80

Notably, FedLin preserves linear convergence rates despite aggressive gradient sparsification.81

Basic Notation and Terminology: Referring to (1), let x∗ ∈ argminx∈Rd f(x), and x∗i ∈82

argminx∈Rd fi(x). Every FL algorithm mentioned in this paper operates in rounds t ∈ {1, . . . , T}.83

In each round t, every client performs a certain number of local steps in isolation, starting from a84

common global model x̄t. We will denote by x(t)
i,` client i’s estimate of the model at the `-th local85

step of round t. In particular, x(t)
i,0 = x̄t,∀i ∈ S.86

1By a centralized baseline, we refer to a setup where each client can communicate with every other client at
all time steps via the server.

2

2 Motivation: Speed-Accuracy Trade-Off87

0 100 200 300 400 500
10

-20

10
-10

10
0

0 100 200 300 400 500
10

-20

10
-10

10
0

Figure 1: Simulations comparing FedProx, FedNova, and
FedLin for two clients with f1(x) = (1/2)(x − 3)2 and
f2(x) = (x − 50)2. Left: Clients perform the same num-
ber of local steps, H = 50. For FedProx, we set β = 5. Right:
Clients 1 and 2 perform 50 and 30 local steps, respectively.

To motivate our work, we first88

show how some recently proposed89

FL algorithms, namely FedProx90

[18] and FedNova [21], exhibit a91

fundamental speed-accuracy trade-92

off even in simple, deterministic93

settings. Specifically, we show94

that these schemes do not, in gen-95

eral, guarantee convergence to the96

minimum of the global objective97

function with constant step-sizes.98

This, in turn, necessitates diminish-99

ing step-sizes, leading to sub-linear100

convergence rates. Our analysis101

here is inspired by that in [7] for102

FedAvg. We consider a determinis-103

tic quadratic model where the local104

loss function of client i is given by fi(x) = 1/2‖A1/2
i (x− ci)‖2, where Ai is a symmetric positive-105

definite matrix. We begin by assuming that all clients perform the same number of local steps H .106

The following is the FedProx update rule where a proximal term is added to mitigate client-drift.107

x
(t)
i,`+1 = x

(t)
i,` − η

(
∇fi(x(t)

i,`) + β(x
(t)
i,` − x̄t)

)
; x̄t+1 =

1

m

∑
i∈S

x
(t)
i,H , ` = 0, . . . ,H − 1. (2)

Proposition 1. For any step-size η > 0, T rounds of FedProx amount to performing T rounds of108

parallel GD on the surrogate optimization problem given by109

min
x

1

m

∑
i∈S

1

2

∥∥∥∥(H−1∑
`=0

[I − η(Ai + βI)]`Ai

)1/2

(x− ci)
∥∥∥∥2

. (3)

Proposition 1 shows that even when clients perform the same number of local updates, FedProx110

minimizes a surrogate objective function (3) whose minimum may not, in general, coincide with the111

minimum of the original problem. When β = 0, FedProx reduces to FedAvg, and our observations112

continue to hold. To capture systems heterogeneity as in [21], suppose now that client i performs113

τi local steps. Define τeff , 1/m
∑
i∈S τi and αi , τeff/τi, ∀i ∈ S. The update rule of FedNova114

relies on normalized aggregation of cumulative local gradients, and is given by115

x
(t)
i,`+1 = x

(t)
i,` − η∇fi(x

(t)
i,`); x̄t+1 = x̄t −

η

m

∑
i∈S

αi

τi−1∑
`=0

∇fi(x(t)
i,`). (4)

where ` = 0, · · · , τi − 1, i ∈ S. Although FedNova can accommodate any local solver whose116

accumulated gradients are expressible as a linear combination of local gradients, we choose gradient117

descent, a simple solver, to isolate the impact of normalized aggregation - the essence of FedNova.118

Proposition 2. For any step-size η > 0, T rounds of FedNova amount to performing T rounds of119

parallel GD on the surrogate optimization problem given by120

min
x

1

m

∑
i∈S

1

2

∥∥∥∥(τi−1∑
`=0

[I − ηAi]`αiAi
)1/2

(x− ci)
∥∥∥∥2

. (5)

For the proofs of Propositions 1 and 2, see Appendix B. Proposition 2 shows that in the presence121

of both objective and systems heterogeneity, FedNova minimizes a surrogate loss function whose122

minimum may not coincide with x∗. Observe from (3) and (5) that using a larger learning rate η123

introduces more distortion to the original problem. In Figure 1, we see how FedProx and FedNova124

both converge to incorrect minimizers, even for simple instances with two clients and deterministic,125

quadratic losses. In contrast, FedLin, our proposed approach that we develop in the next section,126

guarantees linear convergence to the global minimum.127

3

Algorithm 1 FedLin
1: Input: Client step-sizes ηi, i ∈ S, compression levels δc and δs, initial iterate x̄1 ∈ Rd,
g1 = ∇f(x̄1), initial compression errors ρi,1 = 0,∀i ∈ S and e1 = 0

2: for t = 1, . . . , T do
3: for i = 1, . . . ,m do
4: for ` = 0, . . . , τi − 1 do
5: x

(t)
i,`+1 ← x

(t)
i,` − ηi(∇fi(x

(t)
i,`)−∇fi(x̄t) + gt); x

(t)
i,0 = x̄t

6: end for
7: Transmit x(t)

i,τi
to server

8: end for
9: Server transmits x̄t+1 = 1/m

∑
i∈S x

(t)
i,τi

10: for i = 1, . . . ,m do
11: Transmit hi,t+1 = Cδc(ρi,t +∇fi(x̄t+1)) to server
12: ρi,t+1 ← ρi,t +∇fi(x̄t+1)− hi,t+1

13: end for
14: Server transmits gt+1 = Cδs(et + 1/m

∑
i∈S hi,t+1)

15: et+1 ← et + 1/m
∑
i∈S hi,t+1 − gt+1

16: end for

Main Takeaway: The main message we want to convey here is that even for deterministic settings,128

there are non-trivial challenges posed by objective and systems heterogeneity that only get amplified129

when one additionally considers biased compression. For such scenarios, it is not at all apparent130

whether (and to what extent) one can match even the basic centralized benchmark of achieving linear131

convergence for smooth, strongly convex loss functions. To focus on the above unresolved issues, we132

will primarily consider a deterministic model in this paper. Nonetheless, the general approach we133

develop applies to the stochastic setting as well, as aptly demonstrated by Theorem 4 in Section 4.134

3 Proposed Algorithm: FedLin135

In this section, we develop our proposed algorithm FedLin, formally described in Algorithm 1.136

FedLin is initialized from a common global iterate x̄1 ∈ Rd. For simplicity, we assume that137

g1 = ∇f(x̄1), i.e., every client has access to the true gradient of f(·) initially; we can allow g1 to138

be arbitrary as well without affecting the convergence guarantees. FedLin proceeds in rounds: in139

each round t, starting from a common global model x̄t, each client i performs τi local training steps140

in parallel, as per line 5 of Algorithm 1. The key features of our local update rule are as follows:141

exploiting past gradients to account for objective heterogeneity, using client-specific step-sizes to142

tackle systems heterogeneity, and employing error-feedback to account for gradient sparsification.143

We now discuss each of these features in detail.144

To gain intuition regarding the local step in line 5, note that the ideal local update at client i is145

x
(t)
i,`+1 = x

(t)
i,` − ηi∇f(x

(t)
i,`). However, this requires client i to have access to the gradients of146

all other clients - which it does not, since clients do not communicate between rounds. To get147

around this, client i exploits memory, and uses the gradient of the global function ∇f(x̄t) from the148

beginning of round t (when the clients last communicated) as a guiding direction in its update rule.149

However, since ∇f(x̄t) is evaluated at a stale point x(t)
i,0 = x̄t, client i subtracts off ∇fi(x̄t) from150

∇f(x̄t), and adds in the most recently evaluated gradient∇fi(x(t)
i,`). This results in the update rule:151

x
(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,`)−∇fi(x̄t) +∇f(x̄t)). Our local update rule in line 5 is precisely of152

the above form, where gt is an inexact version of ∇f(x̄t) to account for gradient sparsification.153

When each client i performs τi local-steps, our analysis reveals that the bound on the drift-term154

‖xi,` − x̄t‖ scales linearly in τi (see Lemma 9 in Appendix F). Accordingly, to compensate for such155

drift at client i, the step-size ηi needs to be chosen to vary inversely with the number of local steps156

τi. In fact, the requirement that ηi ∝ 1/τi also turns out to be necessary (see Theorem 5), providing157

further motivation for the choice of client-specific learning rates in FedLin.158

To explain the gradient sparsification module, let us denote by Cδ : Rd → Rd the TOP-k operator,159

where δ = d/k, and k ∈ {1, . . . , d}. Given any x ∈ Rd, let Eδ(x) be a set containing the indices of160

4

the k largest-magnitude components of x. Then, the TOP-k operator we consider is as follows:161

(Cδ(x))j =

{
(x)j , if j ∈ Eδ(x)

0, otherwise.
(6)

Here, we use (x)j to denote the j-th component of a vector x. Clearly, a larger δ implies more162

aggressive compression. We employ a standard error-feedback mechanism [31–33] at both the server163

and the clients to account for gradient sparsification. At client i, ρi,t represents the accumulated error164

due to gradient sparsification. At the end of round t, instead of just compressing∇fi(x̄t+1), client i165

instead compresses ∇fi(x̄t+1) + ρi,t, to account for gradient coordinates not transmitted in the past.166

It then updates the aggregate error via line 12. An analogous description applies to the error-feedback167

scheme at the server, where et is the aggregate error at the beginning of round t. The parameters of168

FedLin are the client step-sizes {ηi}i∈S , and the compression levels δc and δs at the clients and at169

the server, respectively. We now comment on some related algorithmic ideas.170

Related Algorithmic Approaches: In the related but different setting of distributed optimization,171

we note that the idea of exploiting past gradients has been used to design gradient-tracking algorithms172

[34–38]. In the context of FL, this idea is also related to the variance-reduction technique employed173

in SCAFFOLD [19]. A major difference of FedLin with the above works is that none of them consider174

the effect of systems heterogeneity or biased compression. In particular, accounting for the inexact175

gradient term gt in our update rule introduces new technical challenges that we address in this paper.176

There are some additional basic differences between FedLin and SCAFFOLD. To see this, consider the177

update rule of FedLin without sparsification: x(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,`)−∇fi(x̄t) +∇f(x̄t)).178

Now suppose the global model x̄t at the beginning of round t has already converged to x∗. Since179

x
(t)
i,0 = x̄t,∀i ∈ S , and ∇f(x∗) = 0, it is easy to see that the iterates of the clients do not evolve any180

further, as one would ideally want. Thus, the global optimum x∗ can be viewed as a fixed-point of the181

FedLin update rule. Adapting to our notation, and considering the case when there is no noise in the182

gradients, the update rule of SCAFFOLD takes the form x
(t)
i,`+1 = x

(t)
i,` − η(∇fi(x(t)

i,`)− ci + c), where183

ci is a ‘control-variate’ maintained by client i, and c is the average of the ci’s. Importantly, the control184

variates {ci}i∈S used in round t of SCAFFOLD contain stale terms from round t− 1. As a result, even185

if x̄t = x∗, it may very well be that (∇fi(x̄t) − ci + c) 6= 0, causing the iterates of the clients to186

move away from x∗, and requiring further rounds of communication to average out the imbalance.187

Thus, the fixed-point property we discussed for FedLin does not hold in general for SCAFFOLD.188

In the following sections, we will show that FedLin guarantees linear convergence rates despite189

objective heterogeneity, systems heterogeneity, and gradient sparsification.190

4 Matching Centralized Rates under Objective and Systems Heterogeneity191

In this section, we will analyze the performance of FedLin in the face of both objective and systems192

heterogeneity. To focus solely on the effects of client heterogeneity, we will assume throughout193

this section that there is no gradient sparsification, i.e., δc = δs = 1. Accordingly, observe that194

ρi,t = 0, et = 0,∀i ∈ S,∀t ∈ {1, . . . , T}. Thus, the local update rule for FedLin simplifies to195

x
(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,`)−∇fi(x̄t) +∇f(x̄t)). (7)

Let us denote by κ = L/µ the condition number of an L-smooth and µ-strongly convex function.196

Also, let ηi = η̄/τi,∀i ∈ S, where η̄ ∈ (0, 1) is a flexible parameter that we will specify based on197

context. We are now ready to state the main results of this section.198

Theorem 1. (Strongly convex case) Suppose each fi(x) is L-smooth and µ-strongly convex. More-199

over, suppose τi ≥ 1,∀i ∈ S, and δc = δs = 1. Then, with ηi = 1
6Lτi

,∀i ∈ S, FedLin guarantees:200

201

f(x̄T+1)− f(x∗) ≤
(

1− 1

6κ

)T
(f(x̄1)− f(x∗)).

Theorem 2. (Convex case) Suppose each fi(x) is L-smooth and convex. Moreover, suppose τi ≥202

1,∀i ∈ S, and δc = δs = 1. Then, with ηi = 1
10Lτi

,∀i ∈ S, FedLin guarantees:203

f

(
1

T

T∑
t=1

x̄t

)
− f(x∗) ≤ 10L

T

(
‖x̄1 − x∗‖2 − ‖x̄T+1 − x∗‖2

)

5

Theorem 3. (Non-convex case) Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1,∀i ∈ S ,204

and δc = δs = 1. Then, with ηi = 1
26Lτi

,∀i ∈ S, FedLin guarantees:205

min
t∈[T]

‖∇f(x̄t)‖2 ≤
52L

T
(f(x̄1)− f(x̄T+1)). (8)

Noisy Case Analysis: We now analyze the performance of FedLin under a general stochastic oracle206

model. For each i ∈ S and x ∈ Rd, let qi(x) be an unbiased estimate of the gradient ∇fi(x) with207

variance bounded above by σ2. We consider the update rule: x(t)
i,`+1 = x

(t)
i,` − ηi(qi(x

(t)
i,`)− qi(x̄t) +208

q(x̄t)), where q(x) , 1/m
∑
i∈S qi(x),∀x ∈ Rd. We then have the following result.209

Theorem 4. (Strongly convex case with noise) Consider the above stochastic oracle model. Suppose210

each fi(x) is L-smooth and µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S , and δc = δs = 1.211

For each i ∈ S , let ηi = η̄
τi

, where η̄ ∈ (0, 1) satisfies η̄ < 1
6L . Then, ∀t ∈ [T], FedLin guarantees:212

E[‖x̄t+1 − x∗‖2] ≤ (1− 4η̄µ)E[‖x̄t − x∗‖2] + 25η̄2σ2. (9)

The proofs of Theorems 1, 2, 3, and 4 are provided in Appendix F.213

Main Takeaways: From Theorems 1, 2, and 3, we note that FedLin matches the convergence214

guarantees of centralized gradient descent (up to constants) for smooth, strongly convex, convex,215

and non-convex settings, respectively. As far as we are aware, this is the first work to provide such216

guarantees under arbitrary objective and systems heterogeneity. In fact, all our results continue to217

hold even when the operating speeds of the client machines vary across rounds, i.e., τi is allowed to218

be a function of t. Each client i can simply adjust its learning rate ηi ∝ 1/τi(t) locally to account for219

such variations. The bound for the noisy case in Theorem 4 resembles that of centralized SGD [39]:220

with a time-varying parameter η̄t = O(1/t), we get the standard O(1/T) rate after T rounds.221

Comparison with Related Work: In the recent paper [20], the authors propose FedSplit, and222

analyze it in a deterministic setting. For strongly-convex and smooth loss functions, FedSplit223

guarantees linear convergence, but only to a non-vanishing neighborhood of x∗. Thus, like FedAvg224

[2], FedProx [18], and FedNova [21], FedSplit fails to guarantee exact linear convergence to x∗.225

Empirically, we observe that FedSplit diverges on certain instances; see Appendix J. Compared to226

these algorithms, we see from Theorem 1 that FedLin guarantees linear convergence to x∗. Notably,227

the linear convergence rate we obtain in Theorem 1 under both objective and systems heterogeneity is228

the best rate we know of in FL, and matches that of SCAFFOLD [19] where only objective heterogeneity229

is considered.2 The model of systems heterogeneity we study is taken from [21], where the authors230

provide guarantees only for the non-convex case under a bounded dissimilarity assumption. In231

contrast, our results cover all the three standard settings - strongly-convex, convex, and non-convex -232

without requiring any bounded dissimilarity assumption. For further related work on straggler-robust233

distributed learning algorithms (without objective heterogeneity or local steps), see [41–46].234

4.1 The Price of Infrequent Communication235

In this section, we take a closer look at the effect of performing multiple local steps on the convergence236

rate. To do so, we assume that all clients perform the same number of local steps H , i.e., there is no237

communication for H consecutive time-steps between two communication rounds. Now consider a238

centralized baseline where each client can communicate with every other client at all times (i.e., even239

between rounds). In this case, since each client can always access∇f(x), gradient descent yields240

f(x̄T+1)− f(x∗) ≤ exp(− 1

κ
TH)(f(x̄1)− f(x∗)) (10)

after T rounds, with H synchronized local iterations within each round. Based on Theorem 1,241

observe that we lose out by a factor of H in the exponent relative to the centralized baseline. Notably,242

both in the centralized case, and in FedLin, each client queries the gradient of its local objective243

H times in each round, thereby making TH gradient queries over T rounds. Thus, relative to a244

centralized baseline, FedLin incurs the same computational cost in terms of gradient queries, and245

2In concurrent work [40], the authors develop linearly converging algorithms for the finite-sum setting, but
neither consider systems heterogeneity nor compression.

6

reduces communication by a factor of H , at the expense of a convergence rate that is slower by a246

factor of H . We emphasize here that just as with FedLin, H does not show up in the convergence247

rate (exponent) of algorithms like FedSplit [20] and SCAFFOLD [19] either.248

The primary reason for the slower convergence rate (relative to a centralized baseline) stems from the249

need to set η ∝ 1/H to mitigate client-drift under objective heterogeneity. At this stage, one may250

conjecture that the above requirement is simply an artifact of a conservative analysis of Algorithm251

1, and that a more refined analysis will reveal the utility of performing more local steps even in the252

heterogeneous setting. Our next result suggests otherwise; for a proof, see Appendix E.253

Theorem 5. (Lower bound for FedLin) Suppose δc = δs = 1, and τi = H, ηi = η,∀i ∈ S. Then,254

given anyL ≥ 14 andH ≥ 2, there exists an instance involving 2 clients where each fi(x), i ∈ {1, 2},255

is 1-strongly convex and L-smooth, and an initial condition x̄1, such that FedLin initialized from x̄1256

generates a sequence of iterates {x̄t} satisfying the following for any T ≥ 1:257

‖x̄T+1 − x∗‖2 ≥ exp (−4T)‖x̄1 − x∗‖2; f(x̄T+1)− f(x∗) ≥ exp(−4T)(f(x̄1)− f(x∗)). (11)

Main Takeaways: There are several key implications of Theorem 5. First, it complements Theorem258

1 by providing a matching lower bound. We believe ours is the first work to provide a tight linear259

convergence rate analysis: [19] and [20] only provide upper-bounds for SCAFFOLD and FedSplit,260

respectively. Second, our analysis of Theorem 5 in Appendix E indicates that there are problem261

instances where setting η ∝ 1/H is in fact necessary to guarantee convergence to x∗. As a result,262

for such problem instances, no matter how many local steps H each client performs, the error at the263

end of T rounds remains bounded below by an H-independent quantity, as is apparent from (11).264

Perhaps surprisingly, we show in Appendix E that the lower bound in Theorem 5 even applies to265

simple instances with non-identical quadratic losses (across clients) where every fi(x) has the same266

minimum! This is particularly insightful since it highlights the limitations of exploiting stale gradient267

terms in the local update rule (as is done in both FedLin and SCAFFOLD), and suggests the need for268

more informed updating schemes that explicitly take into account the level of statistical heterogeneity.269

5 Gradient Sparsification at Server270

In this section, our focus will be on addressing the following question: For strongly convex and271

smooth deterministic functions, and in the presence of both objective and systems heterogeneity, can272

we still hope for linear convergence to x∗ when gradients are sparsified at the server? Interestingly,273

we will show that not only is it possible to converge linearly to x∗, it is possible to do so without274

any error-feedback. Moreover, this claim holds regardless of how aggressive the server is in its275

sparsification scheme: it may even transmit just a single component of the aggregated gradient vector.276

To isolate the impact of server-level sparsification, we will assume throughout this section that277

gradients are not sparsified at the clients, i.e., δc = 1. Consequently, hi,t+1 = ∇fi(x̄t+1),∀i ∈278

S,∀t ∈ {1, . . . , T}. We begin by considering a simpler variant of FedLin with no error-feedback at279

the server side, i.e., line 15 is skipped, and gt+1 in line 14 of Algo. 1 is instead updated as follows280

gt+1 = Cδs

(
1

m

∑
i∈S
∇fi(x̄t+1)

)
= Cδs (∇f(x̄t+1)) . (12)

Theorem 6. (Sparsification at server with no error-feedback) Suppose each fi(x) is L-smooth and281

µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S, and δc = 1. Consider a variant of FedLin,282

where line 14 is replaced by equation (12), and line 15 is skipped, i.e., there is no error-feedback.283

Then, with ηi = 1

2(2+
√
δs)Lτi

,∀i ∈ S, this variant of FedLin guarantees284

f(x̄T+1)− f(x∗) ≤

(
1− 1

2δs
(
2 +
√
δs
)
κ

)T
(f(x̄1)− f(x∗)).

Main Takeaways: From Theorem 6, we see that even without error-feedback, it is possible to linearly285

converge to x∗; the rate of convergence, however, is inversely proportional to δ
3
2
s . Thus, Theorem 6286

quantifies the trade-off between the level of sparsification at the server, and the rate of convergence.287

When there is no gradient compression, i.e., when δs = 1, we exactly recover Theorem 1.288

7

One may ask: Is there any potential benefit to employing error-feedback when gradients are sparsified289

at the server? Our next result answers this question in the affirmative.290

Theorem 7. (Sparsification at server with error-feedback) Suppose each fi(x) is L-smooth and291

µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S, and δc = 1. Let the step-size for client i be292

chosen as ηi = 1
72Lδsτi

. Then, FedLin guarantees:293

f(x̄T+1)− f(x∗) ≤ 2κ

(
1− 1

96δsκ

)T
(f(x̄1)− f(x∗)) .

For proofs of Theorems 6 and 7, see Appendix G and I.294

Main Takeaways: Comparing the guarantee of Theorem 6 with that of Theorem 7, we note that the295

convergence rate is inversely proportional to δ
3
2
s in the former, and inversely proportional to δs in the296

latter. Thus, the main message here is that employing error-feedback leads to a faster convergence297

rate by improving the dependence of the rate on δs.298

6 Gradient Sparsification at Clients299

In this section, we will turn our attention to the case when gradients are sparsified at the clients300

prior to being transmitted to the server. Throughout this section, we will assume that gradients are301

not compressed any further at the server side, i.e., δs = 1. To proceed, we will need to make the302

following bounded gradient dissimilarity assumption.303

Assumption 1. There exist constants C ≥ 1 and D ≥ 0 such that the following holds ∀x ∈ Rd:304

1

m

m∑
i=1

‖∇fi(x)‖2 ≤ C‖∇f(x)‖2 +D. (13)

The following is the main result of this section; for a proof, see Appendix H.305

Theorem 8. (Sparsification at clients with error-feedback) Suppose each fi(x) is L-smooth and306

µ-strongly convex, and suppose Assumption 1 holds. Moreover, suppose τi ≥ 1,∀i ∈ S , and δs = 1.307

Let the step-size for client i be chosen as ηi = η̄
τi

, where η̄ ∈ (0, 1) satisfies η̄ ≤ 1
72LδcC

. Then,308

FedLin guarantees:309

‖x̄T+1 − x∗‖2 ≤ 2

(
1− 3

4
η̄µ

)T
‖x̄1 − x∗‖2 +

16

3
η̄

(
6

δcC
+ δc

)
D

µ
. (14)

Main Takeaways: Intuitively, one would expect that sparsifying gradients at each client prior to310

aggregation at the server would inject more errors than when gradients are first accurately aggregated311

at the server, and then the aggregated gradient vector is sparsified: Theorems 6 and 8 support this312

intuition. For the former, we neither required error-feedback nor Assumption 1 to guarantee linear313

convergence to the global minimum x∗; for the latter, even with error-feedback and the bounded314

gradient dissimilarity assumption, we can establish linear convergence to only a neighborhood of x∗,315

in general. From (14), we note that the size of this neighborhood scales linearly with D - a measure316

of objective heterogeneity. In particular, when D = 0, the iterates x̄t converge exactly to x∗.317

Remark 1. To the best of our knowledge, our results in Sections 5 and 6 constitute the first formal318

analysis of biased gradient sparsification in FL. In particular, we significantly generalize the recent319

results in [47] for a single worker to a multi-client FL setting with both objective and systems320

heterogeneity. To arrive at these results, we develop a new potential-function based proof technique321

in Appendix H. For more related work on compression in distributed learning, see Appendix A.322

7 Experimental Results323

In this section, we provide numerical results for FedLin on a least squares problem to validate our324

theory. In Appendix K, we also provide additional numerical results on a logistic regression problem.325

For now, we consider the following least squares regression problem:326

min
x∈Rd

f(x) = min
x∈Rd

1

m

m∑
i=1

1

2
‖Aix− bi‖2, (15)

8

where Ai ∈ R500×100 is a design matrix and bi ∈ R500 is a response vector. The client objective327

functions, fi(x) are strongly convex. Assuming that all design matrices are full column rank, problem328

(15) admits a unique minimizer. To generate synthetic data, for each client i ∈ S = {1, . . . , 20}, we329

generate Ai and bi according to the model bi = Aixi + εi, where xi is a weight vector and εi ∈ R500330

is a disturbance. In particular, we generate [Ai]jk
i.i.d.∼ N (0, 1), and εi ∼ N (0, 0.5I500), ∀i ∈ S.331

To capture statistical heterogeneity, the entries of the local true parameter of client i are modeled as332

[xi]k ∼ N (ui, 1), k ∈ {1, . . . , 100}, where ui ∼ N (0, α) and α ≥ 0. Hence, α controls the level333

of statistical heterogeneity. To model the effect of systems heterogeneity, for each client i ∈ S, the334

number of local steps is drawn uniformly and independently from [2, 100].335

0 10 20 30 40

10
-20

10
-10

10
0

0 10 20 30 40

10
-20

10
-10

10
0

Figure 2: Simulation results for FedLin where gradient spar-
sification is implemented at the server side. The constant η̄
is fixed at 10−2. Left: α = 10. Right: α = 50.

0 50 100
10

-2

10
-1

10
0

10
1

0 50 100
10

-1

10
0

10
1

Figure 3: Simulation results for FedLin where gradient spar-
sification is implemented at the clients’ side. The constant η̄
is fixed at 5× 10−4. Left: α = 1. Right: α = 10.

Gradient Sparsification at Server.336

We first consider a variant of FedLin337

where gradient sparsification is imple-338

mented only at the server side and339

without any error-feedback. In par-340

ticular, we consider the cases where341

δs ∈ {2, 4}, which correspond to the342

implementation of a TOP-50 and a343

TOP-25 operator, respectively. For344

comparison, we also plot the result-345

ing performance when no gradient346

sparsification is implemented at the347

server. To examine the effect of sta-348

tistical heterogeneity on the perfor-349

mance of FedLin, we generate two350

synthetic datasets corresponding to351

two different levels of heterogeneity352

in the clients’ local objectives, namely353

α = 10 and α = 50. As illustrated in354

Fig. 2, irrespective of the level of gra-355

dient sparsification on the server side,356

FedLin achieves linear convergence357

to the true minimum in the presence358

of both objective and systems hetero-359

geneity, confirming Theorem 6. Also,360

both the convergence speed and ac-361

curacy of FedLin remain unaffected362

as the level of heterogeneity in the363

clients’ objective functions increases.364

Gradient Sparsification at Clients.365

Next, we implement gradient sparsifi-366

cation only at the clients’ side, i.e. δs = 1. In particular, we consider the cases where δc ∈ {4/3, 2},367

which correspond to the implementation of a TOP-75 and a TOP-50 operator, respectively. Once368

again, we generate two synthetic datasets with different levels of objective heterogeneity, namely369

α = 1 and α = 10. As illustrated in Fig. 3, unlike the server case, FedLin with sparsification at370

the clients’ side converges linearly, but with a non-vanishing error that increases as the value of371

δc increases. This aligns with the conclusions of Theorem 8. Furthermore, the level of objective372

heterogeneity has a direct impact on the convergence error. In particular, for the same level of gradient373

sparsification, higher levels of objective heterogeneity result in larger values of the convergence error.374

8 Conclusion375

We developed a novel algorithmic framework called FedLin, and showed that it (i) guarantees linear376

convergence to the global minimum under arbitrary objective and systems heterogeneity, and (ii)377

preserves linear convergence rates despite aggressive gradient sparsification. We also established a378

tight lower-bound for FedLin. Based on the discussions in Section 4.1, as future work, it would be379

very interesting to both formulate practical notions of statistical heterogeneity, and then develop local380

update rules that explicitly take into account the level of such heterogeneity.381

9

References382

[1] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,383

and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv384

preprint arXiv:1610.05492, 2016.385

[2] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.386

Communication-efficient learning of deep networks from decentralized data. In Artificial387

Intelligence and Statistics, pages 1273–1282. PMLR, 2017.388

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir389

Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al.390

Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.391

[4] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-392

jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,393

et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,394

2019.395

[5] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-396

lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.397

[6] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence398

of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.399

[7] Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local400

update methods. arXiv preprint arXiv:2007.00878, 2020.401

[8] Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint402

arXiv:1805.09767, 2018.403

[9] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis404

of communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.405

[10] Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch Paschalidis. Local sgd with a communication406

overhead depending only on the number of workers. arXiv preprint arXiv:2006.02582, 2020.407

[11] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.408

Fedpaq: A communication-efficient federated learning method with periodic averaging and409

quantization. In International Conference on Artificial Intelligence and Statistics, pages 2021–410

2031. PMLR, 2020.411

[12] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe.412

Local sgd with periodic averaging: Tighter analysis and adaptive synchronization. In Advances413

in Neural Information Processing Systems, pages 11082–11094, 2019.414

[13] Blake Woodworth, Kumar Kshitij Patel, Sebastian U Stich, Zhen Dai, Brian Bullins, H Brendan415

McMahan, Ohad Shamir, and Nathan Srebro. Is local sgd better than minibatch sgd? arXiv416

preprint arXiv:2002.07839, 2020.417

[14] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. First analysis of local gd on418

heterogeneous data. arXiv preprint arXiv:1909.04715, 2019.419

[15] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on420

identical and heterogeneous data. In International Conference on Artificial Intelligence and421

Statistics, pages 4519–4529. PMLR, 2020.422

[16] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in423

federated learning. arXiv preprint arXiv:1910.14425, 2019.424

[17] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich. A425

unified theory of decentralized sgd with changing topology and local updates. arXiv preprint426

arXiv:2003.10422, 2020.427

10

[18] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet Talwalkar, and Virginia428

Smith. On the convergence of federated optimization in heterogeneous networks. arXiv preprint429

arXiv:1812.06127, 3, 2018.430

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and431

Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In432

International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.433

[20] Reese Pathak and Martin J Wainwright. Fedsplit: An algorithmic framework for fast federated434

optimization. arXiv preprint arXiv:2005.05238, 2020.435

[21] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective436

inconsistency problem in heterogeneous federated optimization. Advances in Neural Information437

Processing Systems, 33, 2020.438

[22] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.439

arXiv preprint arXiv:1704.05021, 2017.440

[23] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient com-441

pression: Reducing the communication bandwidth for distributed training. arXiv preprint442

arXiv:1712.01887, 2017.443

[24] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:444

Communication-efficient sgd via gradient quantization and encoding. Advances in Neural445

Information Processing Systems, 30:1709–1720, 2017.446

[25] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:447

Ternary gradients to reduce communication in distributed deep learning. In Advances in neural448

information processing systems, pages 1509–1519, 2017.449

[26] Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with450

compressed gradients. arXiv preprint arXiv:1806.06573, 2018.451

[27] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed452

learning with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.453

[28] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient454

descent in distributed and federated optimization. arXiv preprint arXiv:2002.11364, 2020.455

[29] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik.456

Stochastic distributed learning with gradient quantization and variance reduction. arXiv preprint457

arXiv:1904.05115, 2019.458

[30] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi.459

Federated learning with compression: Unified analysis and sharp guarantees. arXiv preprint460

arXiv:2007.01154, 2020.461

[31] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent462

and its application to data-parallel distributed training of speech dnns. In Fifteenth Annual463

Conference of the International Speech Communication Association, 2014.464

[32] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In465

Advances in Neural Information Processing Systems, pages 4447–4458, 2018.466

[33] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and467

Cédric Renggli. The convergence of sparsified gradient methods. In Advances in Neural468

Information Processing Systems, pages 5973–5983, 2018.469

[34] Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE470

Transactions on Control of Network Systems, 5(3):1245–1260, 2017.471

[35] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed472

optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.473

11

[36] Chenguang Xi, Ran Xin, and Usman A Khan. Add-opt: Accelerated distributed directed474

optimization. IEEE Transactions on Automatic Control, 63(5):1329–1339, 2017.475

[37] Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical476

Programming, pages 1–49, 2020.477

[38] Ran Xin, Anit Kumar Sahu, Usman A Khan, and Soummya Kar. Distributed stochastic478

optimization with gradient tracking over strongly-connected networks. In Proc. of the 58th479

IEEE Conference on Decision and Control (CDC), pages 8353–8358, 2019.480

[39] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic481

approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–482

1609, 2009.483

[40] Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new484

efficient methods. In International Conference on Artificial Intelligence and Statistics, pages485

3556–3564. PMLR, 2021.486

[41] Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, and Ramtin487

Pedarsani. Straggler-resilient federated learning: Leveraging the interplay between statistical488

accuracy and system heterogeneity. arXiv preprint arXiv:2012.14453, 2020.489

[42] Sanghamitra Dutta, Jianyu Wang, and Gauri Joshi. Slow and stale gradients can win the race.490

arXiv preprint arXiv:2003.10579, 2020.491

[43] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-492

runtime trade-off in local-update sgd. arXiv preprint arXiv:1810.08313, 2018.493

[44] Rawad Bitar, Mary Wootters, and Salim El Rouayheb. Stochastic gradient coding for straggler494

mitigation in distributed learning. IEEE Journal on Selected Areas in Information Theory, 2020.495

[45] Nuwan Ferdinand and Stark C Draper. Anytime stochastic gradient descent: A time to hear496

from all the workers. In 2018 56th Annual Allerton Conference on Communication, Control,497

and Computing (Allerton), pages 552–559. IEEE, 2018.498

[46] Amirhossein Reisizadeh, Hossein Taheri, Aryan Mokhtari, Hamed Hassani, and Ramtin499

Pedarsani. Robust and communication-efficient collaborative learning. In Advances in Neural500

Information Processing Systems, pages 8388–8399, 2019.501

[47] Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased502

compression for distributed learning. arXiv preprint arXiv:2002.12410, 2020.503

[48] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In504

Sixteenth Annual Conference of the International Speech Communication Association, 2015.505

[49] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feed-506

back fixes signsgd and other gradient compression schemes. arXiv preprint arXiv:1901.09847,507

2019.508

[50] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for509

sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,510

2019.511

[51] Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtárik. Linearly con-512

verging error compensated sgd. Advances in Neural Information Processing Systems, 33,513

2020.514

[52] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.515

Springer Science & Business Media, 2013.516

[53] Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv preprint517

arXiv:1405.4980, 2014.518

[54] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchandran,519

and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic optimization.520

SIAM Journal on Optimization, 27(4):2202–2229, 2017.521

12

Checklist522

1. For all authors...523

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s524

contributions and scope? [Yes]525

(b) Did you describe the limitations of your work? [Yes] We provide a lower bound for526

our algorithm in Theorem 5 of Section 4.1 that suggests the need for more informed527

local updating schemes.528

(c) Did you discuss any potential negative societal impacts of your work? [No] We could529

not think of any potential negative societal impacts.530

(d) Have you read the ethics review guidelines and ensured that your paper conforms to531

them? [Yes]532

2. If you are including theoretical results...533

(a) Did you state the full set of assumptions of all theoretical results? [Yes]534

(b) Did you include complete proofs of all theoretical results? [Yes] We provide complete535

proofs of all our results in the supplemental material.536

3. If you ran experiments...537

(a) Did you include the code, data, and instructions needed to reproduce the main experi-538

mental results (either in the supplemental material or as a URL)? [No]539

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they540

were chosen)? [Yes]541

(c) Did you report error bars (e.g., with respect to the random seed after running experi-542

ments multiple times)? [No]543

(d) Did you include the total amount of compute and the type of resources used (e.g., type544

of GPUs, internal cluster, or cloud provider)? [No]545

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...546

(a) If your work uses existing assets, did you cite the creators? [N/A]547

(b) Did you mention the license of the assets? [N/A]548

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]549

550

(d) Did you discuss whether and how consent was obtained from people whose data you’re551

using/curating? [N/A]552

(e) Did you discuss whether the data you are using/curating contains personally identifiable553

information or offensive content? [N/A]554

5. If you used crowdsourcing or conducted research with human subjects...555

(a) Did you include the full text of instructions given to participants and screenshots, if556

applicable? [N/A]557

(b) Did you describe any potential participant risks, with links to Institutional Review558

Board (IRB) approvals, if applicable? [N/A]559

(c) Did you include the estimated hourly wage paid to participants and the total amount560

spent on participant compensation? [N/A]561

13

