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ABSTRACT

The great success in graph neural networks (GNNs) provokes the question about
explainability: “Which fraction of the input graph is the most determinant to the
prediction?” However, current approaches usually resort to a black-box to deci-
pher another black-box (i.e., GNN), making it difficult to understand how the ex-
planation is made. Based on the observation that graphs typically share some joint
motif patterns, we propose a novel subgraph matching framework named Match-
Explainer to explore explanatory subgraphs. It couples the target graph with other
counterpart instances and identifies the most crucial joint substructure by mini-
mizing the node corresponding-based distance. Thus, MatchExplainer is entirely
non-parametric and can generate different explanations for the same instance by
matching with different counterparts. Moreover, present graph sampling or node
dropping methods usually suffer from the false positive sampling problem. To
ameliorate that issue, we take advantage of MatchExplainer to fix the most infor-
mative portion of the graph and merely operate graph augmentations on the rest
less informative part, which is dubbed as MatchDrop. We conduct extensive ex-
periments on both synthetic and real-world datasets, showing the effectiveness of
our MatchExplainer by outperforming all parametric baselines with large margins.
Additional results also demonstrate that our MatchDrop is a general paradigm to
be equipped with GNNs for enhanced performance.

1 INTRODUCTION

Graph neural networks (GNNs) have drawn broad interest due to their success for learning rep-
resentations of graph-structured data, such as social networks (Fan et al., 2019), knowledge
graphs (Schlichtkrull et al., 2018), traffic networks (Geng et al., 2019), and microbiological
graphs (Gilmer et al., 2017). Despite their remarkable efficacy, GNNs lack transparency as the
rationales of their predictions are not easy for humans to comprehend. This prohibits practitioners
from not only gaining an understanding of the network characteristics, but correcting systematic
patterns of mistakes made by models before deploying them in the real-world applications.

Recently, extensive efforts have been devoted to studying explainability of GNNs (Yuan et al., 2020).
Researchers strive to answer the questions like "What knowledge of the input graph is the most dom-
inantly important in the model’s decision?" Towards this end, feature attribution and selection (Sel-
varaju et al., 2017; Sundararajan et al., 2017; Ancona et al., 2017) is a prevalent paradigm. They
distribute the model’s outcome prediction to the input graph via gradient-like signals (Baldassarre &
Azizpour, 2019; Pope et al., 2019; Schnake et al., 2020), mask or attention scores (Ying et al., 2019;
Luo et al., 2020), or prediction changes on perturbed features (Schwab & Karlen, 2019; Yuan et al.,
2021), and then choose a salient substructure as the explanation.

Nonetheless, the latest approaches are all deep learning-based and rely on a network to parameter-
ize the generation process of explanations (Vu & Thai, 2020; Wang et al., 2021b). We argue that
depending on another black-box to comprehend the prediction of the target black-box (i.e., GNNs)
is sub-optimal, since the behavior of those explainers is hard to interpret. These black-boxes, in-
deed, always fail to give a clue of how they find proper explanatory subgraphs. In contrast, a decent
explainer ought to provide clear insights of how it captures and values this substructure. Other-
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wise, lack of interpretability in explainers can undermine our trust in them. Moreover, some prior
works (Chen et al., 2018; Ying et al., 2019; Yuan et al., 2021) independently excavate explanations
for each instance without referring to other training data in the inference phase. They ignore the
fact that different essential subgraph patterns are shared by different groups of graphs, which can
be the key to decipher the decision of GNNs. These frequently occurred motifs usually contain rich
semantic meanings and indicate the characteristics of the whole graph instance (Henderson et al.,
2012; Zhang et al., 2020; Banjade et al., 2021). For example, the hydroxide group (-OH) in small
molecules typically results in higher water solubility, and the pivotal role of functional groups has
also been proven in protein structure prediction (Senior et al., 2020).

To overcome these drawbacks, we propose to mine the explanatory motif in a subgraph matching
manner. In contrast to a learnable network, we design a non-parametric algorithm dubbed MatchEx-
plainer with no need for training. It marries the target graph iteratively with other counterpart graphs
and endeavors to explore the most crucial joint substructure by minimizing the node corresponding-
based distance in the high-dimensional feature space. Therefore, unlike conventional explainers,
the explanation of MatchExplainer can be non-unique for the same instance. To further analyze its
working principle, we define the explanation that contains all shared information between paired
graphs as sufficient explanation, while the explanation that contains the shared and eliminates the
non-shared information as minimal sufficient explanation. We theoretically prove that the minimal
sufficient explanation is the lower bound of and can be used to approximate the desired ground truth
explanation. According to this relationship, we propose to maximize the difference of the prediction
after the explanatory subgraph is removed from the original graph to optimize the selection of the
counterpart graph and find the best-case substructure.

Our MatchExplainer not only shows great potential in fast discovering the explanations for GNNs,
but also can be employed to enhance the traditional graph augmentation methods. Though exhibiting
strong power in preventing over-fitting and over-smoothing, present graph sampling or node drop-
ping mechanisms suffer from the false positive sampling problem. That is, nodes or edges of the
most informative substructure are accidentally dropped or erased but the model is still required to
forecast the original property, which can be misleading. To alleviate this obstacle, we take advantage
of MatchExplainer and introduce a simple technique called MatchDrop. Specifically, it first digs out
the explanatory subgraph by means of MatchExplainer and keep this part unchanged. Then the
graph sampling or node dropping is implemented solely on the remaining less informative part. As
a consequence, the core fraction of the input graph that reveals the label information is not affected
and the false positive sampling issue is effectively mitigated.

To summarize, we are the foremost to investigate the explainability of GNNs from the perspective of
non-parametric subgraph matching to the best of our knowledge. Extensive experiments on synthetic
and real-world applications demonstrate that our MatchExplainer can find the explanatory subgraphs
fast and accurately with state-of-the-art performance. Apart from that, we empirically show that our
MatchDrop can serve as an efficient way to promote the graph augmentation methods.

2 PRELIMINARY AND TASK DESCRIPTION

In this section, we begin with the description of the task of GNN explanation and then briefly review
the relevant background of graph matching and graph similarity learning (GSL).

Formulating explanations for GNNs. Let hY : G → Ŷ denote the well-trained GNN to be ex-
plained, which gives the prediction Ŷ to approximate the ground truth Y . Without loss of generality,
we consider the problem of explaining a graph classification task. Our goal is to find an explainer
hS : G → GS that discovers the subgraph GS from input graph G as:

min
hS

R(Ŷ , hY ◦ hS(G)), s.t.|hS(G)| ≤ K, (1)

where R(.) is the risk function such as a cross-entropy loss or a mean squared error (MSE) loss, and
K is a constraint on the size of GS to attain a compact explanation. That is, GS has at most K nodes.

Graph matching. As a classic combinatorial problem, graph matching is known in general NP-
hard (Loiola et al., 2007). They requires expensive, complex, and impractical solvers, leading to
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inexact solutions (Wang et al., 2020). Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with N1

and N2 nodes respectively, the matching between them can be generally expressed by the quadratic
assignment programming (QAP) form as (Wang et al., 2019):

min
T∈{0,1}N1×N2

vec(T)TKvec(T), s.t.,T1 = 1, TT1 = 1, (2)

where T is a binary permutation matrix encoding the node correspondence, and 1 denotes a column
vector with all elements to be one. K is the so-called affinity matrix (Leordeanu & Hebert, 2005),
whose elements encode the node-to-node and edge-to-edge affinity between G1 and G2.

Graph similarity learning. GSL is a general framework for graph representation learning that
requires reasoning about the structures and semantics of graphs (Li et al., 2019). We need to produce
the similarity score s(G1,G2) between them. This similarity s(., .) is typically defined by either
exact matches for full-graph or sub-graph isomorphism (Berretti et al., 2001; Shasha et al., 2002), or
some measure of structural similarity such as the graph edit distance (Willett et al., 1998; Raymond
et al., 2002). In our setting, s(., .) depends entirely on whether these two graphs belong to the
same category or share very close properties. Then for G1 and G2 with the same type, GSL seeks to
maximize the mutual information between their representations with the joint distribution p(G1,G2):

max
f1,f2

I(f1(G1), f2(G2), T ), (3)

where f1 and f2 are encoding functions. They can share the same parameter (i.e., f1 = f2) or be
combined into one architecture. T is the random variable that stands for the information required
for a specific task, which is independent to the model selection.

3 THE MATCHEXPLAINER APPROACH

The majority of recent approaches lean on parametric networks to interpret GNNs, and some early
methods for GNN explanations are based on local explainability and from a single-graph view (Ying
et al., 2019; Baldassarre & Azizpour, 2019; Pope et al., 2019; Schwab & Karlen, 2019). Despite
that, we argue a non-parametric graph-graph fashion can also excavate important subgraphs and
may lead to better explainability. In this work, we introduce MatchExplainer to explain GNNs via
identifying the joint essential substructures by means of subgraph matching.

3.1 THEORETICAL ANALYSIS OF MATCHEXPLAINER

Accordingly, Equ. 1 is equivalent to maximize the mutual information between the input graph G
and the subgraph GS . Namely, the goal of an explainer is to derive a small subgraph GS such that:

max
GS⊂G,|GS |≤K

I(G,GS , Th), (4)

where unlike T that is model-agnostic, Th is the knowledge learned by the GNN predictor hY in a
concrete downstream task. Similar to the information bottleneck theory (Tishby & Zaslavsky, 2015;
Achille & Soatto, 2018) in the supervised learning, we can define the sufficient explanation and
minimal sufficient explanation of G with its counterpart G′ in the context of subgraph matching.

Definition 1 (Sufficient Explanation) The explanation GsufS of G is sufficient if and only if
I(GsufS ,G′, Th) = I(G,G′, Th).

The sufficient explanation GsufS of G keeps all joint information with G′ related to the learned infor-
mation Th. In other words, GsufS contains all the shared information between G and G′. Symmetri-
cally, the sufficient explanation of for G′ satisfies I(G′suf

S ,G′, Th) = I(G,G′, Th).

Definition 2 (Minimal Sufficient Explanation) The sufficient explanation GminS of G is minimal if
and only if I(GminS ,G′, Th) ≤ I(GsufS ,G′, Th),∀GsufS .

Among all sufficient explanations, the minimal sufficient explanation GminS contains the least joint
information between G and G′ with regards to the learned knowledge Th. Normally, it is usually
assumed that GminS only maintains the shared information between G and G′, and eliminates other
non-shared one, i.e., I(GminS ,G|G′, Th) = 0.
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Theorem 1 (Task Relevant Information in Explanations) (Wang et al., 2022a) In explaining
GNNs for a task, the minimal sufficient explanation GminS contains less task-relevant information
learned by hY from input G than any other sufficient explanation GsufS . Formally, we have:

I(G, Th) = I(GminS , Th) + I(G|G′, Th)

≥ I(GsufS ) = I(GminS , Th) + I(GsufS ,G|G′, Th)

≥ I(GminS , Th).

(5)

Theorem 1 indicates that the mutual information between G and Th can be divided into two fractions.
One is GminS , which is the interaction between G and G′ associated with the learned knowledge Th.
The other is determined by the disjoint structure of G and G′ with respect to the learned information
Th. Our subgraph matching is committed to maximizing I(GminS , Th), which is the lower bound of
I(G, Th). Notably, I(G|G′, Th) is not completely independent to I(GminS , Th). Instead, I(G|G′, Th)
is the offset of I(GminS , Th) to I(G, Th). Hence, if we increase I(GminS , Th), I(G|G′, Th) is mini-
mized simultaneously. Consequently, I(GminS , Th) can be used to not only improve the lower bound
of I(G, Th) but approximate I(G, Th). This provides a firm theoretical foundation of our MatchEx-
plainer to mine the most explanatory substructure via the subgraph matching approach. See Figure 2
for the demonstration using information diagrams.

3.2 NON-PARAMETRIC SUBGRAPH EXPLORATION

Preamble. It is worth noting that our excavation of explanations through subgraph matching has
some significant differences from either graph matching or GSL. On the one hand, graph matching
algorithms (Zanfir & Sminchisescu, 2018; Sarlin et al., 2020; Wang et al., 2020; 2021a) typically
establish node correspondence from a whole graph G1 to another whole graph G2. However, we seek
to construct partial node correspondence between the subgraph of G1 and the subgraph of G2. On
the other hand, GSL concentrates on the graph representations encoded by f1 and f2, as well as the
ground truth information T rather than the information Th learned by the GNN predictor hY .

Besides, most current graph matching or GSL architectures (Zanfir & Sminchisescu, 2018; Li et al.,
2019; Wang et al., 2020; Papakis et al., 2020; Liu et al., 2021a) are deep learning-based. They
utilize a network to forecast the relationship between nodes or graphs, which has several flaws. For
instance, the network needs tremendous computational resources to be trained. More importantly,
its effectiveness is unreliable and may fail in certain circumstances if the network is not delicately
designed. To overcome these limitations, we employ a non-parametric subgraph matching paradigm,
which is totally training-free and fast to explore the most informatively joint substructure shared by
any two input instances.

Subgraph matching framework. We break the target GNN hY into two consecutive parts: hY =
ϕG ◦ ϕX , where ϕG is the aggregator to compute the graph-level representation and predict the
properties, and ϕX is the feature function to update both the node and edge features. For a given
graph G with node features hi ∈ Rψv ,∀i ∈ V and edge features eij ∈ Rψe ,∀(i, j) ∈ E , the renewed
output is calculated as {h′

i}i∈V , {e′ij}(i,j)∈E = ϕX
(
{hi}i∈V , {eij}(i,j)∈E

)
, which is forwarded

into ϕG afterwards.

Our target is to find subgraphs GS ⊂ G and G′
S ⊂ G′ both with K nodes to maximize I(GS ,G′

S , Th).
There we utilize the node correspondence-based distance dG as a substitution of measuring the
shared learned information between GS and G′

S , which is minimized as follows:

min
GS⊂G,G′

S⊂G′
dG(GS ,G′

S) = min
GS⊂G,G′

S⊂G′

(
min

T∈Π(GS ,G′
S)

〈
T,DϕX

〉)
, (6)

where DϕX is the matrix of all pairwise distances between node features of GS and G′
S . Its element

is calculated as DϕX

ij = dX(h′
i,h

′
j) ∀i ∈ V, j ∈ V ′, where dX is the standard vector space similarity

such as the Euclidean distance and the Hamming distance. The inner optimization is conducted over
Π(., .), which is the set of all matrices with prescribed margins defined as:

Π(GS ,G′
S) =

{
T ∈ {0, 1}K×K |T1 = 1, TT1 = 1

}
. (7)
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Due to the NP-hard nature of graph matching (Loiola et al., 2007), we adopt the greedy strategy to
optimize dG(GS ,G′

S) and attain the subgraph GS . It is worth noting that the greedy algorithm does
not guarantee to reach the globally optimal solution (Bang-Jensen et al., 2004), but can yield locally
optimal solutions in a reasonable amount of time. After that, we feed GS into hY and examine its
importance. If hY (GS) = hY (G), then GS is regarded as the potential explanations. Otherwise, GS
is abandoned since it cannot recover the information required by hY to make the prediction of G.

Non-uniqueness of GNN explanations. Unlike prior learning-based GNN explanation meth-
ods (Vu & Thai, 2020; Wang et al., 2021b; 2022b) that generate a unique subgraph GS for G, our
selection of GS varies according to the choice of the counterpart G′. Therefore, MatchExplainer can
provide many-to-one explanations for a single graph G once a bunch of counterparts are given. This
offers a new understanding that the determinants for GNNs’ predictions are non-unique, and GNNs
can gain correct predictions based on several different explanatory subgraphs with the same size.

Counterpart graph optimization. Since our MatchExplainer is able to discover a variety of pos-
sible explanatory subgraphs, how to screen out the most informative one becomes a critical is-
sue. As indicated in Theorem 1, I(GminS , Th) is the lower bound of I(G, Th), and their difference
I(G|G′, Th) entirely depends on the selection of the matching counterpart G′. Ideally, G′ ought to
share the exact same explanatory substructure with G, i.e., GS = G′

S . Meanwhile, the remaining
part G|G′ is independent to the learned knowledge Th, i.e., I(G|G′, Th) = 0, as shown in Figure 3.
Therefore, there are two distinct principles for selecting the counterpart graphs. The first line is to
seek G′ that has as close the explanatory subgraph as possible to G. The second line is to ensure that
G|G′ maintains little information relevant to the learned information Th.

Nevertheless, without sufficient domain knowledge regarding which substructure is majorly respon-
sible for the graph property, it would be impossible for us to manually select the counterpart graph
G′ that satisfies GS ≈ G′

S . As a remedy, the node correspondence-based distance dG(GS ,G′
S) can be

treated as the indicator for whether this pair of graphs enjoy a similar explanatory substructure.

Though dG(GS ,G′
S) is a feasible criterion to filtrate the most informative substructure, a more ef-

ficient way is to immediately minimize the intersection between G|G′ and Th. Towards this goal,
we remove the extracted subgraph GS from G and aspire to confuse GNNs’ predictions on G|GS .
Mathematically, the optimal G′ maximizes the difference between the prediction of the whole graph
and the prediction of the graph that is subtracted by GS . In other words, we wish to maximize:

∆G(G′, hY ) = hc
∗

Y (G)− hc
∗

Y (G|GS), (8)

where c∗ is the ground truth class of G and GS is the substructure via subgraph matching with G′.

Then given any graph G and a reference graph set R = {G1, ...,Gn}, we acquire all possible sub-
graphs via matching G to available graphs in R. Notably, not all graphs in R are qualified coun-
terparts. There are several intuitive conditions that the counterpart graph G′ has to satisfied. First,
G and G′ should belong to the same category predicted by hY , i.e., hY (G) = hY (G′). Besides, G′

needs to have at least K nodes. Otherwise, GS would be smaller than the given constrained size.
After the pairwise subgraph matching, we calculate their corresponding ∆G(., hY ) and pick up the
one that leads to the largest ∆G(., hY ) as the optimal counterpart graph.

Effectiveness vs. efficiency. The time-complexity is always an important topic to evaluate the
practicability of explainers. For our MatchExplainer, the size of the reference set, i.e., |R|, plays
a vital role in determining the time cost. However, a limited number of counterpart graphs can
also prohibit it from exploring better explanatory subgraphs. Thus, it is non-trivial to balance the
effectiveness and efficiency of MatchExplainer by choosing an appropriate size of R.

4 THE MATCHDROP METHODOLOGY

Preventing the false positive sampling. Deep graph learning faces unique challenges such as
feature data incompleteness, structural data sparsity, and over-smoothing. To address these issues,
a growing number of data augmentation techniques (Hamilton et al., 2017; Rong et al., 2019) have
been proposed in the graph domain and shown promising outcomes. Among them, the graph sam-
pling and node dropping (Feng et al., 2020; Xu et al., 2021) are two commonly used mechanisms.
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However, most previous approaches are completely randomized, resulting in the false positive sam-
pling and inject spurious information to the training process. For instance, 1,3-dinitrobenzene
(C6H4N2O4) is a mutagen molecule and its explanation is the NO2 groups (Debnath et al., 1991).
If any edge or node of the NO2 group is accidentally dropped or destroyed, the mutagenicity prop-
erty no longer exists. And it will misguide GNNs if the original label is assigned to this molecular
graph after node or edge sampling.

MatchDrop (ours)
(Keep the necessary parts unchanged.)

Previous Graph Sampling Methods

Example: C6H4N2O4 Approaches Result

It leads to false positive 
sampling and does 
harm to the training.

The most informative 
part remains and the 
false positive sampling 
is forbidden.

Perturbation

(Completely random perturbation.)

NO2

H

N+ N+

H

H

O H

OO

O

Figure 1: The illustration of our proposed MatchDrop.

To tackle this drawback, recall that
our MatchExplainer offers a conve-
nient way to discover the the most
essential part of a given graph. It
is natural to keep this crucial por-
tion unchanged and only drop nodes
or edges in the remaining portion.
Based on this idea, we propose a
simple but effective method dubbed
MatchDrop, which keeps the most in-
formative part of graphs found by our
MatchExplainer and alter the less in-
formative part (see Figure 1).

The procedure of our MatchDrop is
described as follows. To begin with, we train a GNN hY for several epochs until it converges to an
acceptable accuracy, which guarantees the effectiveness of the subsequent subgraph selection. Then
for each graph G in the training set Dtrain, we randomly select another graph G′ ∈ Dtrain with the
same class as the counterpart graph. Afterwards, we explore its subgraph GS via MatchExplainer
with a retaining ratio ρ (i.e., |GS | = ρ|G|) and use it as the model input to train hY .

Notably, similar to the typical image augmentation skills such as rotation and flapping (Shorten &
Khoshgoftaar, 2019), MatchDrop is a novel data augmentation technique for GNN training. How-
ever, instead of augmenting G randomly, MatchDrop reserves the most informative part and only
changes the less important substructure. This significantly reduces the possibility of false positive
sampling. Additionally, unlike other learnable mechanisms to inspect subgraphs, our MatchDrop is
entirely parameter-free and therefore can be deployed at any stage of the training period.

Training objective. The training of GNNs is supervised by the cross entropy (CE) loss. Suppose
there are M classes in total, then the loss takes the following form as:

LS = − 1

|Dtrain|
∑

G∈Dtrain

M∑
c=1

YG log (hcY (hS(G, ρ))) , (9)

where hcY (.) indicates the predicted probability of GS to be of class c and YG is the ground truth
value. hS employs MatchExplainer to mine the subgraph GS by matching G to a randomly selected
counterpart graph G′ in the training set Dtrain with a pre-defined ratio ρ.

5 EXPERIMENTAL ANALYSIS

5.1 DATASETS AND EXPERIMENTAL SETTINGS

Following Wang et al. (2021b), we use four standard datasets with various target GNNs.

• Molecule graph classification: MUTAG (Debnath et al., 1991; Kazius et al., 2005) is a molecular
dataset for the graph classification problem. Each graph stands for a molecule with nodes for
atoms and edges for bonds. The labels are determined by their mutagenic effect on a bacterium.
The well-trained Graph Isomorphism Network (GIN) (Xu et al., 2018) has approximately achieved
a 82% testing accuracy.

• Motif graph classification.: Wang et al. (2021b) create a synthetic dataset, BA-3Motif, with 3000
graphs. They take advantage of the Barabasi-Albert (BA) graphs as the base, and attach each base
with one of three motifs: house, cycle, grid. We train an ASAP model (Ranjan et al., 2020) that
realizes a 99.75% testing accuracy.
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Table 1: Comparisons of our MatchExplainer with other baseline explainers.
MUTAG VG-5 MNIST BA-3Motif

ACC-AUC ACC-AUC ACC-AUC ACC-AUC Recall@ 5

SA 0.769 0.769 0.559 0.518 0.243
Grad-CAM 0.786± 0.011 0.909± 0.005 0.581± 0.009 0.533± 0.003 0.212± 0.002
GNNExplainer 0.895± 0.010 0.895± 0.003 0.535± 0.013 0.528± 0.005 0.157± 0.002
PG-Explainer 0.631± 0.008 0.790± 0.004 0.504± 0.010 0.586± 0.004 0.293± 0.001
PGM-Explainer 0.714± 0.007 0.792± 0.001 0.615± 0.003 0.575± 0.002 0.250± 0.000
ReFine 0.955± 0.005 0.914± 0.001 0.636± 0.003 0.576± 0.0131 0.297± 0.0001

MatchExplainer 0.997 0.993 0.938 0.634 0.305
Relative Impro. 4.5% 8.6% 48.9% 8.1% 2.6%

• Handwriting graph classification: Knyazev et al. (2019) transforms the MNIST images into 70K
superpixel graphs with at most 75 nodes each graph. The nodes are superpixels, and edges are the
spatial distances between them. There are 10 types of digits as the label. We adopt a Spline-based
GNN (Fey et al., 2018) that gains around 98% accuracy in the testing set.

• Scene graph classification: Wang et al. (2021b) select 4443 pairs of images and scene graphs
from Visual Genome (Krishna et al., 2017) to construct the VG-5 dataset (Pope et al., 2019).
Each graph is labeled with five categories: stadium, street, farm, surfing and forest. The regions of
objects are represented as the nodes, while edges indicates the relationships between object nodes.
We train an AAPNP (Klicpera et al., 2018) that reaches 61.9% testing accuracy.

We compare our MatchExplainer with several state-of-the-art and popular explanation baselines,
which are listed as below:

• SA (Baldassarre & Azizpour, 2019) directly uses the gradients of the model prediction with re-
spect to the adjacency matrix of the input graph as the importance of edges.

• Grad-CAM (Selvaraju et al., 2017; Pope et al., 2019) uses the gradients of any target concept such
as the motif in a graph flowing into the final convolutional layer to produce a coarse localization
map highlighting the important regions in the graph for predicting the concept.

• GNNExplainer (Ying et al., 2019) optimizes soft masks for edges and node features to maximize
the mutual information between the original predictions and new predictions.

• PGExplainer (Luo et al., 2020) hires a parameterized model to decide whether an edge is impor-
tant, which is trained over multiple explained instances with all edges.

• PGM-Explainer (Vu & Thai, 2020) collects the prediction change on the random node perturba-
tions, and then learns a Bayesian network from these perturbation-prediction observations, so as
to capture the dependencies among the nodes and the prediction.

• Refiner (Wang et al., 2021b) exploits the pre-training and fine-tuning idea to develop a multi-
grained GNN explainer. It has both global understanding of model workings and local insights on
specific instances.

As the ground-truth explanations are usually unknown, it is tough to quantitatively evaluate the
excellence of explanations. There, we follow Wang et al. (2021b) and employ the predictive accu-
racy (ACC@ρ) and Recall@N as the metrics. Specifically, ACC@ρ measures the fidelity of the
explanatory subgraphs by forwarding them into the target model and examine how well it recovers
the target prediction. ACC-AUC are reported as the area under the ACC curve over different selec-
tion ratios ρ ∈ {0.1, 0.2, ..., 1.0}. Recall@N is computed as EG [|Gs ∩ G∗

S | / |G∗
S |], where G∗

S is the
ground-truth explanatory subgraph. Remarkbly, Recall@N is only suitable for BA3-motif, since
this dataset is synthetic and the motifs are foregone.

5.2 CAN MATCHEXPLAINER FIND BETTER EXPLANATORY SUBGRAPHS?

Quantitative evaluations. To investigate the effectiveness of MatchExplainer, we conduct broad
experiments on four datasets and the comparisons are reported in Table 1. For MUTAG, VG-5 and

1These results are reproduced
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Table 2: Efficiency studies of different methods (in seconds).
Method Phase MUTAG VG-5 MNIST BA-3Motif

GNNexplainer
Training 186.0 1127.2 1135.4 66.1

Inference (per graph) 1.290 0.565 0.732 0.517
Training + Inference (total) 703.4 1644.6 1782.1 271.6

PG-Explainer
Training 186.3 286.3 1154.1 112.4

Inference (per graph) 0.056 0.094 0.025 0.020
Training + Inference (total) 208.6 309.5 1162.1 120.4

Refine
Training 1191.6 1933.3 5025.8 763.0

Inference (per graph) 0.068 0.107 0.026 0.027
Training + Inference (total) 1218.9 1959.7 5051.2 773.8

MatchExplainer
Training – – – –

Inference (per graph) 0.485 0.732 0.682 7.687
Training + Inference (total) 194.6 180.3 667.8 3052.1

BA3-Motif, we exploit the whole training and validation data as the reference set. For MNIST, we
randomly select 10% available samples as the reference set to speed up matching. It can be found
that MatchExplainer outperforms every baseline in all cases. Particularly, previous explainers fail
to explain GNNs well in MNIST with ACC-AUCs lower than 65%, but MatchExplainer can reach
as high as 93.8%. And if we use the whole training and validation data in MNIST as the reference,
its ACC-AUC can increase to 97.2%. This phenomenon demonstrates the advantage of subgraph
matching in explaining GNNs when the dataset has clear patterns of explanatory subgraphs. Addi-
tionally, MatchExplainer also achieves significant relative improvements over the strongest baseline
by 8.6% and 8.1% in VG-5 and BA3-Motif, respectively.

Furthermore, it is also worth noting that MatchExplainer realizes nearly 100% ACC-AUCs
in each task but BA-3Motif. For BA-3Motif, we find that its predictive accuracy are
[0.31, 0.31, 0.31, 0.34, 0.49, 0.71, 0.97, 1.0, 1.0, 1.0] with different selection ratios. This aligns with
the fact that most motifs in this task occupy a large fraction of the whole graph. Once the selection
ratio is greater than 0.7, MatchExplainer is capable of figuring out the correct explanatory subgraph.

We visualize the explanations of MatchExplainer on MUTAG in Appendix C for qualitative evalua-
tions.

Efficiency studies. We compute the average inference time cost for each dataset with different
methods to obtain explanations of a single graph. We also count the overall training and inference
time expenditure, and summarize the results in Table 2. Specifically, we train GNNExplainer and
PG-Explainer for 10 epochs, and pre-train Refine for 50 epochs before evaluation. It can be observed
that though prior approaches enjoy fast inference speed, they suffer from long-term training phases.
As an alternative, our MatchExplainer is completely training-free. When comparing the total time,
MatchExplainer is the least computationally expensive in MUTAG, VG-5 and MNIST. However,
as most motifs in BA-3Motif are large-size, MatchExplainer has to traverse a large reference set to
obtain appropriate counterpart graphs, which unavoidably results in spending far more time.

5.3 CAN MATCHDROP GENERALLY IMPROVE THE PERFORMANCE OF GNNS?

Implementations. We take account of two backbones: GCN (Kipf & Welling, 2016), and GIN (Xu
et al., 2018) with a depth of 6. Similar to Rong et al. (2019), we adopt random hyper-parameter
search for each architecture to enable more robust comparisons. There, RandomDrop stands for
randomly sampling subgraphs, which can be also treated as a specific form of node dropping. FP-
Drop is the opposite operation of our MatchDrop, where the subgraph sampling or node dropping is
only performed in the explanatory subgraphs while the rest remains the same. We add FPDrop as a
baseline to help unravel the reason of why MatchDrop works. PGDrop is similar to MatchDrop, but
uses a fixed PGExplainer (Luo et al., 2020) to explore the informative substructure. The selection
ratios ρ for FPDrop, PGDrop and MatchDrop are all set as 0.95.

Overall results. Table 3 documents the performance on all datasets except BA-3Motif, since its
testing accuracy has already approached 100%. It can be observed that MatchDrop consistently
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Table 3: Testing accuracy (%) comparisons on different backbones with and without MatchDrop.
Dataset Backbone Original FPDrop RandomDrop PGDrop MatchDrop

MUTAG GCN 0.828± 0.004 0.803± 0.017 0.832± 0.008 0.825± 0.02 0.844±0.006
GIN 0.832± 0.003 0.806± 0.020 0.835± 0.009 0.828± 0.01 0.845±0.007

VG-5 GCN 0.619± 0.003 0.587± 0.014 0.623± 0.007 0.604± 0.002 0.638±0.008
GIN 0.621± 0.004 0.593± 0.018 0.622± 0.006 0.600± 0.004 0.630±0.003

MNIST GCN 0.982± 0.001 0.955± 0.008 0.982± 0.002 0.975± 0.003 0.986±0.002
GIN 0.988± 0.001 0.959± 0.005 0.989± 0.001 0.979± 0.002 0.990±0.001

promotes the testing accuracy for all cases. Exceptionally, FPdrop imposes a negative impact over
the performance of GNNs. This indicates that false positive sampling does harm to the conventional
graph augmentation methods, which can be surmounted by our MatchDrop effectively. On the other
hand, PGDrop also gives rise to the decrease of accuracy. One possible reason is that parameterized
explainers like PGExplainr are trained on samples that GNNs predict correctly, so they are incapable
to explore explanatory subgraphs on unseen graphs that GNNs forecast mistakenly.

6 RELATED WORK

6.1 EXPLAINABILITY OF GNNS

Though increasing interests have been appealed in explaining GNNs, the study in this area is still
insufficient compared to the domain of images and natural languages. Generally, there are two
research lines. The widely-adopted one is the parametric explanation methods. They run a pa-
rameterized model to dig out informative substructures, such as GNNExplainer (Ying et al., 2019),
PGExplainer (Luo et al., 2020), and PGM-Explainer (Vu & Thai, 2020). The other line is the non-
parametric explanation methods, which employ heuristics like gradient-like scores obtained by back-
propagation as the feature contributions (Baldassarre & Azizpour, 2019; Pope et al., 2019; Schnake
et al., 2020). Nevertheless, the latter usually shows much poorer results than the former parametric
methods. In contrast, our MatchExplainer procures state-of-the-art performance astonishingly.

6.2 GRAPH AUGMENTATIONS

Data augmentation has recently attracted growing attention in graph representation learning to
counter issues like data noise and data scarcity (Zhao et al., 2022). The related work can be roughly
broken down into feature-wise (Zhang et al., 2017; Liu et al., 2021b; Taguchi et al., 2021), structure-
wise (You et al., 2020; Zhao et al., 2021b), and label-wise (Verma et al., 2019) categories based on
the augmentation modality (Ding et al., 2022). Among them, many efforts are raised on augmenting
the graph structures. Compared with adding or deleting edges (Xu et al., 2022), the augmentation
operations on node sets are more complicated. A typical application is to promote the propagation of
the whole graph by inserting a supernode (Gilmer et al., 2017), while Zhao et al. (2021a) interpolate
nodes to enrich the minority classes. On the contrary, some implement graph or subgraph sampling
by dropping nodes for different purposes, such as scaling up GNNs (Hamilton et al., 2017), en-
abling contrastive learning (Qiu et al., 2020), and prohibiting over-fitting and over-smoothing (Rong
et al., 2019). Nonetheless, few of those graph sampling or node dropping approaches manage to find
augmented graph instances from the input graph that best preserve the original properties.

7 CONCLUSION

In this paper, we propose a subgraph matching technique called MatchExplainer for GNN explana-
tions. Distinct from the popular trend of using a parameterized network that lacks interpretability,
we design a non-parametric algorithm to search for the most informative joint subgraph between
a pair of graphs. Furthermore, we combine MatchExplainer with the classic graph augmentation
method and show its great capacity in ameliorating the false positive sampling challenge. Exper-
iments convincingly demonstrate the efficacy of our MatchExplainer by winning over parametric
approaches with significant margins.
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A INFORMATION DIAGRAMS

We provide information diagrams in Figure 2 to illustrate the key concepts defined in Section 3.1.
MatchExplainer makes the subgraph extracting the shared information between G and G′ to obtain
the sufficient explanations which is approximately minimal.
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Figure 2: Demonstration of different explanatory subgraphs via graph matching.

Figure 3 depicts the motivation of counterpart optimization. Namely, MatchExplainer aims to couple
the target graph G with a counterpart graph G′ that shares as similar as possible the explanations.

Counterpart Optimization 
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Figure 3: Demonstration of counterpart optimization.

B EXPERIMENTAL DETAILS

Explaining GNNs. All experiments are conducted on a single A100 PCIE GPU (40GB). For the
parametric methods containing GNNExplainer, PGExplainer, PGM-Explainer, and Refine, we use
the reported performance in Wang et al. (2021b). Regarding the re-implementation of Refine in
BA-3Motif, we use the original code with the same hyperparamters, and we adopt Adam opti-
mizer (Kingma & Ba, 2014) and set the learning rate of pre-training and fine-tuning as 1e-3 and
1e-4, respectively.

Graph augmentations. All experiments are also implemented on a single A100 PCIE GPU
(40GB). We employ three sorts of different GNN variants (GCN, GAT, and GIN) to fit these datasets
and verify the efficacy of various graph augmentation methods. We employ Adam optimizer for
model training. For MUTAG, the batch size is 128 and the learning rate is 1e-3. For BA3-Motif, the
batch size is 128 and the learning rate is 1e-3. For VG-5, the batch size is 256 and the learning rate
is 0.5 * 1e-3. We fix the number of epochs to 100 for all datasets.
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C EXPLANATIONS FOR GRAPH CLASSIFICATION MODELS

In this section, we report visualizations of explanations in Figure 4.

Prediction:

Mutagenic

Prediction:

Non-

mutagenic

Figure 4: Explanatory subgraphs in Mutagenicity, where 50% nodes are highlighted.
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