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ABSTRACT

Recently, post-training quantization (PTQ) has driven much attention to produce
efficient neural networks without long-time retraining. Despite the low cost, cur-
rent PTQ works always fail under the extremely low-bit setting. In this study, we
pioneeringly confirm that properly incorporating activation quantization into the
PTQ reconstruction benefits the final accuracy. To deeply understand the inherent
reason, a theoretical framework is established, which inspires us that the flatness
of the optimized low-bit model on calibration and test data is crucial. Based on the
conclusion, a simple yet effective approach dubbed as QDROP is proposed, which
randomly drops the quantization of activations during reconstruction. Extensive
experiments on various tasks including computer vision (image classification, ob-
ject detection) and natural language processing (text classification and question
answering) prove its superiority. With QDROP, the limit of PTQ is pushed to the
2-bit activation for the first time and the accuracy boost can be up to 51.49%.
Without bells and whistles, QDROP establishes a new state of the art for PTQ.

1 INTRODUCTION

In recent years, deep learning has been applied to all walks of life and offered substantial con-
venience for people’s production and activities. While the performance of deep neural networks
continues to increase, the memory and computation cost also scale up fastly and bring new chal-
lenges for edge devices. Model compression techniques such as network pruning (Han et al., 2015),
distillation (Hinton et al., 2015), network quantization (Jacob et al., 2018) and neural architecture
search (Zoph & Le, 2016) etc., are dedicated to reducing calculation and storage overhead. In this
paper, we study quantization which adopts low-bit representation for weights and activations to
enable fixed-point computation and less memory space.

Based on the cost of a quantization algorithm, researchers usually divide the quantization work into
two categories: (1) Quantization-Aware Training (QAT) and (2) Post-Training Quantization (PTQ).
QAT finetunes a pre-trained model by leveraging the whole dataset and GPU effort. On the contrary,
PTQ demands much less computation to obtain a quantized model since it does not require end-to-
end training. Therefore, much attention has recently been paid to PTQ (Cai et al., 2020; Wang et al.,
2020; Hubara et al., 2021; Banner et al., 2019; Nahshan et al., 2019; Zhang et al., 2021; Li et al.,
2021b) due to its low cost and easy-to-use characteristics in practice.

Traditionally, PTQ pursues accuracy by performing the rounding-to-nearest operation, which fo-
cuses on minimizing the distance from the full-precision (FP) model in parameter space. In recent
progress, Nagel et al. (2020); Li et al. (2021a) considered minimizing the distance in model space,
i.e. the final loss objective. They use Taylor Expansion to analyze the change of loss value and
derive a method to reconstruct the pre-trained model’s feature by learning the rounding scheme.
Such methods are efficient and effective in 4-bit quantization and can even push the limit of weight
quantization to 2-bit. However, the extremely low-bit activation quantization, which faces more
challenges, still fails to achieve satisfactory accuracy. We argue that one key reason is that existing
theoretical analyses only model the weight quantization as perturbation while ignoring activation’s.
This will lead to the same optimized model no matter which bit the activations use, which is obvi-
ously counter-intuitive and thus causes a sub-optimal solution.
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In this work, the effect of activation quantization in PTQ is deeply investigated for the first time.
We empirically observe that perceiving the activation quantization benefits the extremely low-bit
PTQ reconstruction and surprisingly find that only partial activation quantization is more preferable.
An intuitive understanding is that incorporating activation will lead to a different optimized weight.
Inspired by this, we conduct theoretical studies on how activation quantization affects the weight
tuning, and the conclusion is that involving activation quantization into the reconstruction helps the
flatness of model on calibration data and dropping partial quantization contributes to the flatness on
test data. Motivated by both empirical and theoretical findings, we propose QDROP that randomly
drops quantization during the PTQ reconstruction to pursue the flatness from a general perspec-
tive. With this simple and effective approach, we set up a new state of the art for PTQ on various
tasks including image classification, object detection for computer vision, and text classification and
question answering for natural language processing.

This paper makes the following contributions:

1. We confirm the benefits unprecedentedly from involving activation quantization in the PTQ re-
construction and surprisingly observe that partial involvement of activation quantization performs
better than the whole.

2. A theoretical framework is established to deeply analyze the influence of incorporating activation
quantization into weight tuning. Using this framework, we conclude that the flatness of the
optimized low-bit model on calibration data and test data is crucial for the final accuracy.

3. Based on the empirical and theoretical analyses, we propose a simple yet effective method
QDROP that achieves the flatness from a general perspective. QDROP is easy to implement and
can consistently boost existing methods as a plug-and-play module for various neural networks
including CNNs like ResNets and Transformers like BERT.

4. Extensive experiments on a large variety of tasks and models prove that our method set up a new
state of the art for PTQ. With QDROP, the 2-bit post-training quantization becomes possible for
the first time.

2 PRELIMINARIES

Basic Notations. Throughout this paper, matrices (or tensors) are marked as X , whereas the
vectors are denoted by x. Sometimes we use w to represent the flattened version of the weight
matrix W . Operator · is marked as scalar multiplication,⊙ is marked as element-wise multiplication
for matrices or vectors. For matrix multiplication, we denote Wx as matrix-vector multiplication
or WX as matrix-matrix multiplication.

For a feedforward neural network with activation function, we denote it as G(x,w) and the loss
function as L(x,w), where x and w are the network inputs and weights, respectively. Note that we
assume x is sampled from training dataset Dt, thus the final loss is denoted by Ex∼Dt [L(ŵ,x)].
For the network forward function, we can write it as:

z
(ℓ+1)
i =

∑
j

W
(ℓ)
i,j · a

(ℓ)
j , f(z

(ℓ+1)
i ) = a

(ℓ+1)
i . (1)

where Wi,j denotes weight connecting the jth activation neuron and the ith output. The bracket
superscript (ℓ) is the layer index. f(·) indicates the activation function.

Post-training Quantization. Uniform quantizer maps continuous values x ∈ R into fixed-point
integers. For instance, the activation quantization function can be written as x̂ = ⌊xs ⌉s, where ⌊·⌉
denotes the rounding-to-nearest operator, s is the step size between two subsequent quantization
levels. While rounding-to-nearest operation minimizes the mean squared error between x̂ and x, the
minimization of parameter space certainly cannot equal to the minimization in final task loss (Li
et al., 2021a), i.e., Ex∼Dt [L(ŵ,x)]. However, in the post-training setting, we only have a tiny
subset Dc ∈ Dt that only contains 1k images. Thus, it is hard to minimize the final loss objective
with limited data.

Recently, a series of works (Nagel et al., 2020; Li et al., 2021a) learn to either round up or down and
view the new rounding mechanism as weight perturbation, i.e., ŵ = w + ∆w. Take a pre-trained
network G as an example, they leverage Taylor Expansion to analyze the target, which reveals the
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quantization interactions among weights:

min
ŵ

E [L(x, ŵ)− L(x,w)] ≈ min
ŵ

E
[
1

2
∆w⊤Hw∆w

]
, (2)

where Hw = Ex∼Dt
∇2

wL(w,x) is the expected second-order derivative. The above objective
could be transformed into the change of output weighted by the output Hessian.

min
ŵ

E
[
∆w⊤Hw∆w

]
≈ min

ŵ
E
[
∆a⊤Ha∆a

]
(3)

About the above minimization, they finetune only the weight by reconstructing each block/layer
output (See Figure 1(a)). But they did not explore the activation quantization during output recon-
struction with only modeling weight quantization as noise. The step size for activation quantization
is determined after the reconstruction stage.

Intuitively, when quantizing the activations of a full-precision model to 2-bit and 3-bit, there should
be different suitable weights. However, the existing works result in the same optimized weight due to
the neglect of activation quantization. Therefore, we argue that when quantizing the neural network,
the noise caused by activation quantization should be considered coherently with weights.

3 METHODOLOGY

In this section, to reveal the influence of introducing activation quantization before output recon-
struction, we first conduct empirical experiments and present two observations. Then a theoretical
framework is built to investigate how the activation quantization affects the optimized weights. Last,
equipped with the analysis conclusions, a simple yet effective method dubbed QDROP is proposed.

block 1 …

Case 2

Case 1

Case 3

block k-1 block k

block 1 … block k-1 block k

block 1 … block k-1 block k

Figure 1: 3 cases to involve activation quantization when optimiz-
ing the kth block’s weight rounding. Activations are quantized
inside the blue block and not quantized inside the orange block.

Case 1 2 3

ResNet-18 31.26 50.86 52.83
ResNet-50 9.52 51.90 53.42
MobileNetV2 4.88 37.85 38.51
RegNet-600MF 2.86 27.69 31.92
MnasNet 14.63 48.12 49.40

Table 1: 2-bit post-training quantization ac-
curacy on ImageNet dataset, given different
cases and different network models.

3.1 EMPIRICAL OBSERVATIONS

To investigate the influence of activation quantization when reconstructing the layer/block output,
we conduct preliminary experiments on the ImageNet (Russakovsky et al., 2015) dataset. Our exper-
iments are based on the open-sourced code Li et al. (2021a) except that we will introduce activation
quantization from 1 to k − 1 blocks before the kth block’s reconstruction. We give a simple visual-
ization in Fig. 1 to show 3 cases for putting activation quantization in different stages. Case 1 means
that all activation are kept in 32-bit full-precision during the reconstruction of block output, which
is also adopted in existing work Nagel et al. (2020); Li et al. (2021a). Case 2 and Case 3 are used for
incorporating activation quantization into the reconstruction stage. However, Case 3 will omit the
current block’s quantization while Case 2 will not. The detailed results of these three cases are listed
in Table 1 (Comparisons on W2A2 except that MobileNetV2 and MnasNet take W2A3 for crashed
results on 2-bit activation) and the algorithm is put in algorithm 2.

According to the comparison, we can obtain two observations:

1. For extremely low-bit quantization (e.g., W2A2), there will be huge accuracy improvement when
considering activation quantization during weight tuning. This is confirmed by comparing with
Case 1 and Case 2. We find Case 1 barely converges while Case 2 achieves good accuracy. It
reveals that a separate optimization of weights and activations cannot find an optimal solution.
After introducing the activation quantization, the weights will learn to diminish the influence of
activation quantization.
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2. Partially introducing block-wise activation quantization surpasses introducing the whole activa-
tion quantization. Case 3 does not quantize the activations inside the current tuning block but
achieves better results than Case 2. This inspires us that how much quantization of activations
we introduce will affect the final accuracy.

3.2 HOW DOES ACTIVATION QUANTIZATION AFFECT WEIGHT TUNING

The empirical observations have highlighted the importance of activation quantization during the
PTQ pipeline. To further explore how activation quantization will affect the weight tuning, we build
a theoretical framework that analyzes the final loss objective with both weights and activations being
quantized, which presents clues of high accuracy for extremely low-bit post-training quantization.

Conventionally, the activation quantization could be modeled as injecting some form of noise im-
posed on the full-precision counterpart, defined as e = (â−a). To remove the influence of activation
range on e, we translate the noise into a multiplicative form, i.e., â = a · (1 + u), where the range
of u is affected by bit-width and rounding error. Detailed illustration of the new form noise can be
found in Appendix A.

To present the activation noise, we add another argument in calculating the loss function and define
our optimization objective in PTQ as:

min
ŵ

Ex∼Dc
[L(w +∆w,x,1+ u(x))− L(w,x,1)]. (4)

And we adopt 1+ u(x) to denote such noise since it is related to specific input data point x.

We hereby use a transformation that can absorb the noise on activation. Consider a simple matrix-
vector multiplication Wa in forward pass, we have W (a⊙ (1+ u(x))) = (W ⊙ (1+ V (x)))a,
given by

W (a⊙

1 + u1(x)
1 + u2(x)

...
1 + un(x)

) = (W ⊙

1 + u1(x) 1 + u2(x) ... 1 + un(x)
1 + u1(x) 1 + u2(x) ... 1 + un(x)

...
1 + u1(x) 1 + u2(x) ... 1 + un(x)

)a. (5)

By taking Vi,j = uj , quantization noise on the activation vector (1 + u(x)) can be transplanted
into perturbations on weight, where we use 1+ v(x) to denote it. Note that for a specific input data
point x, there are two distinct u(x) and v(x). Proofs is available at Sec. B.1.

Also note that for a convolutional layer, we cannot apply such transformation since the input to
convolution is a matrix and will cause different V . Nonetheless, we can give a formal lemma that
absorbs u and holds corresponding v (See the Appendix Sec. B.2 for rigorous proof for convolu-
tional structure):
Lemma 1. For a quantized (convolutional) neural network, the influence of activation quantization
on the final loss objective in post-training quantization can be transformed into weight perturbation.

Ex∼Dc [L(ŵ,x,1+ u(x))− L(w,x,1)] ≈ Ex∼Dc [L(ŵ ⊙ (1+ v(x)),x,1)− L(w,x,1)] (6)

By interpolating L(ŵ,x) into Lemma 1, we can obtain the final theorem:
Theorem 1. For a neural network G with quantized weight ŵ and activation perturbation 1+u(x),
we have:

Ex∼Dc
[L(ŵ,x,1+ u(x))− L(w,x,1)] ≈
Ex∼Dc [(L(ŵ,x,1)− L(w,x,1))︸ ︷︷ ︸

(7−1)

+(L(ŵ ⊙ (1 + v(x)),x,1)− L(ŵ,x,1))︸ ︷︷ ︸
(7−2)

] (7)

Here, Theorem 1 divides optimization objective into two terms. Term (7-1) is the same as Eq. (2)
explored in (Nagel et al., 2020; Li et al., 2021a), which reveals how weight quantization interacts
with loss function. Term (7-2) is the loss change by introducing activation quantization on the weight
quantized network G(ŵ,x).

In another way to interpret Eq. (7), the term (7-2) stands for the loss change with jitters on the
quantized weight. This type of noise correlates with certain kinds of robustness.
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Figure 2: Measure sharpness on different data distributions among three cases. We adopt the measurement
defined in (Keskar et al., 2016). With the same degree of loss change ratio, those who can tolerate a larger
perturbation magnitude enjoy a flatter loss landscape.

As stated in some works about generalization and flatness (Dinh et al., 2017; Hochreiter & Schmid-
huber, 1997), intuitively, flat minimum means relatively small loss change under perturbations in
the parameters, otherwise, the minimum is sharp. In this paper, we follow the notion of flatness
defined in (Neyshabur et al., 2017), which considers loss change from the perspective of statistical
expectation. And as (Neyshabur et al., 2017) and (Jiang et al., 2019) refer to, we consider the
magnitude of the perturbation with respect to the magnitude of parameters and take the formulation
as Ev∼D[L(fw⊙(1+v)) − L(fw)], where each element of v is a random variable sampled from a
noise distribution D and L represents for optimization objective on the training set.

From this perspective, the term (7-2) can be interpreted as the flatness with perturbation related to
input data, and thereby we could achieve the following corollary.
Corollary 1. On calibration data x, with activation quantization noise u(x), there exists the cor-
responding v(x) that the trained quantized model is flatter under the perturbation v(x).

With Corollary 1, Case 2 and 3 discussed in Sec. 3.1 enjoy a flatter loss landscape benefited from
perceiving the activation quantization. This explains their superiority compared with Case 1. The
measurement of sharpness on calibration data (left part) in Fig. 2 further validates this point. With
similar perturbation magnitude, Case 2 and 3 suffer less loss degradation than Case 1.

3.3 QDROP

As aforementioned, introducing activation quantization is theoretically proved to produce a flatter
model than existing works and the directions of flatness depend on the data distribution. Since the
PTQ is especially sensitive to calibration data (Yu et al., 2021), we need to transfer the investigations
in Sec. 3.2 on calibration data into the test setting for a thorough understanding. In specific, we
consider Eq. (7) on test set and inspect two terms separately in the following. Based on the analyses,
our method QDROP will be derived to pursue an excellent performance on test data.

Term (7-1) on test set. As suggested in Sec. 3.2, with both quantized activations and weights,
we additionally optimize the term (7-2) representing the flatness on calibration data. This
term will encourage the quantized model to learn a flat minimum. As a result, the tradi-
tional objective of AdaRound (term (7-1)) can naturally generalize better for test data (i.e.,
Ex∼Dt

(L(ŵ,x,1)− L(w,x,1))).

Term (7-2) on test set. Furthermore, we should also concern about the term (7-2) on test data,
i.e. Ex∼Dt [L(ŵ ⊙ (1+ v(x)),x,1)− L(ŵ,x,1)]. As revealed in Sec. 3.2, the term (7-2) implies
the flatness where its situation on calibration data has been exploited. Here, we further investigate
the flatness on test samples. Note that v(x) is converted from u(x) and this activation quantization
noise varies with input data. Fig. 2 shows that there is a gap between the test data and calibration data
for the flatness of the 3 cases. According to Corollary 1, these 3 cases actually introduce different u
mathematically and thus will result in different flatness directions, given by:

Case 1: u = 0; Case2: u =
â

a
− 1; Case 3: u =

{
â
a − 1, block1 ∼ blockk−1

0, blockk
(8)
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Algorithm 1: QDROP in one block for one batch

Input: the kth block from layer i to layer j, a minibatch of quantized block input âi−1, FP32
block input ai−1, FP32 block output aj , quantization dropping probability p.

{1. Forward propagation:}
During training phase, substitute âi−1 with corresponding ai−1 at neuron-level with
probability p and mark the replaced input as ãi−1 ;

for l = i to j do
al ←W lãl−1;
âl ← Quantize(al);
During training phase, randomly drop some âl with al as defined in Eq. (9) and get ãl ;

{2. Backward propagation:}
Compute ∆aj = ãj − aj ;
Tune the weight by gradient descent ;
return Quantized block ;

For Case 1, there is no activation quantization during calibration without taking flatness into account.
Case 2 suggests the activation perturbation totally and therefore enjoys a good flatness on calibration
data. However, due to the mismatch on calibration data and test one, it is highly possible that Case
2 causes overfitting (See Table 9 for more details). Case 3, in fact achieves the best performance by
dropping some activation quantization along with a little different weight perturbation and might not
be restricted to flatness on calibration data (More evidence can be found in Table 11). This inspires
us to pursue a flat minimum from a general perspective, that only optimizing the target on calibration
set is suboptimal to test set.

QDROP. Inspired by this, we propose QDROP to further increase the flatness on as many directions
as possible. In particular, we randomly disable and enable the quantization of the activation each
forward pass:

QDROP : u =

{
0 with probability p
â
a − 1 with probability 1− p

. (9)

We name it QDROP because it randomly drops the quantization of activation. Theoretically, by
masking some u(x) randomly, QDROP can have more diverse v(x) and cover more directions of
flatness thus flatter on test samples, which contributes to the final high accuracy. Fig. 3 support our
analysis where QDROP has smoother loss landscape than Case 3, the winner among 3 Cases on test
data. Meanwhile, it is indeed a fine-grained version of Case 3 since Case 3 drops the quantization in
a block-wise manner, whereas our QDROP operates in an element-wise way.

Discussions. QDROP can be viewed as a generalized form of the existing schemes. Case 1 and 2
respectively corresponds to the dropping probability of p = 1 and p = 0. Case 3 is equivalent to
setting the block being optimized with dropping probability p = 1 and remains the quantization of
other parts. Note that the p obeys Bernoulli distribution and thus can be set as 0.5 for the maximal
entropy (Qin et al., 2020), which is helpful for flatness across various directions.

QDROP is easy to implement for various neural networks including CNNs and Transformers, and
plug-and-play with little additional computational complexity. With QDROP, the complicated prob-
lem of choosing optimization order, i.e. different cases in Sec. 3.1, can be avoided.

4 EXPERIMENTS

In this section, we conduct two sets of experiments to verify the effectiveness of QDROP. In Sec. 4.1,
we first conduct an ablation study for the impact with and without dropping quantization and analyze
the option of distinct quantization dropping rates. In Sec. 4.2, we compare our method with other
existing approaches across vision and language tasks.

Implementation Details. Our code is based on PyTorch Paszke et al. (2019), and has been attached
in our supplemental material. We set the default dropping probability p as 0.5, except we explic-
itly mention it. Our experiments including image classification on ImageNet, object detection on
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Figure 3: Loss surface of the quantized weight for QDROP, Case 1 and 3 on test data and ResNet-18 W3A3.
To better distinguish Case 1 and 3, we zoom into the local loss surface with perturbation v1 and v2 magnitude
in [-0.025,0.025].

Method Bits (W/A) ResNet-18 ResNet-50 MobileNetV2 RegNet-600MF RegNet-3.2GF MNasNet-2.0

No Drop 2/2 51.19 52.59 5.86 28.95 40.98 16.482
QDROP 2/2 54.72 58.67 13.05 41.49 55.11 28.77

No Drop 2/3 62.03 66.76 38.06 55.38 65.08 47.612
QDROP 2/3 62.91 68.11 42.75 58.40 68.00 55.80

Table 2: Effect of QDROP.

MS COCO, and natural language processing on GLUE benchmark and SQuAD. The weight tuning
method is the same with Nagel et al. (2020); Li et al. (2021a). Each block or layer output is recon-
structed for 20k iterations. For ImageNet dataset, we sample 1024 images as calibration set, while
COCO we use 256 images. In NLP, we sample 1024 examples. We also keep the first and the last
layer in 8-bit except NLP tasks and adopt per-channel weight quantization. We use W4A4 to repre-
sent 4-bit weight and activation quantization. More model choices and other settings is described in
Appendix E.

4.1 ABLATION STUDY

Effect of QDROP. We propose QDROP and here we would like to test the effect of PTQ with or
without QDROP. We use ImageNet classification benchmark and quantize the weight parameters to
2-bit and quantize activation to 2/3-bit. As shown in Table 2, QDROP improves the accuracy across
all bit settings evaluated for 6 models on ImageNet. Furthermore, the gains are more obvious when
applying QDROP to lightweight network architecture: 4.69% increment for MobileNetV2 under
W2A3 and 14.13% for RegNet-3.2GF with W2A2.

Effect of Dropping Probability. We also explore

Figure 5: Impact of dropping probability on ImageNet.

the dropping probability in PTQ. We choose
p in [0,0.25,0.5,0.75,1] and test on ResNet-50
and MobileNetV2. The results are summarized
in Fig. 5. We find 0.5 generally performs best
among 5 candidates. Although there could be a
fine-grained best solution for each architecture,
we shall avoid cumbersome hyper-parameter
search and continue using 0.5.

4.2 LITERATURE COMPARISON

ImageNet. We choose ResNet-18 and -50 (He et al., 2016), MobileNetV2 (Sandler et al., 2018) in
ImageNet comparison. Besides these common architectures, we also compare the searched MNas-
Net (Tan et al., 2019) and RegNet (Radosavovic et al., 2020). Some baseline methods do not report
the low bit cases, therefore we implement them based on the open-source codes with unified set-
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Methods Bits (W/A) ResNet-18 ResNet-50 MobileNetV2 RegNet-600MF RegNet-3.2GF MNasNet-2.0

Full Prec. 32/32 71.08 77.00 72.49 73.71 78.36 76.68

ACIQ-Mix (Banner et al., 2019) 4/4 67.00 73.80 - - - -
ZeroQ (Cai et al., 2020)* 4/4 21.71 2.94 26.24 28.54 12.24 3.89
LAPQ (Nahshan et al., 2019) 4/4 60.30 70.00 49.70 57.71* 55.89* 65.32*
AdaQuant (Hubara et al., 2021) 4/4 69.60 75.90 47.16* - - -
Bit-Split (Wang et al., 2020) 4/4 67.56 73.71 - - - -
AdaRound (Nagel et al., 2020)* 4/4 69.36 74.76 64.33 - - -
BRECQ (Li et al., 2021a) 4/4 69.60 75.05 66.57 68.33 74.21 73.56
QDROP (Ours) 4/4 69.62 75.45 68.84 71.18 76.66 73.71

LAPQ (Nahshan et al., 2019)* 2/4 0.18 0.14 0.13 0.17 0.12 0.18
AdaQuant (Hubara et al., 2021)* 2/4 0.11 0.12 0.15 - - -
AdaRound (Nagel et al., 2020)* 2/4 64.14 68.40 41.52 59.27 65.33 53.77
BRECQ (Li et al., 2021a) 2/4 64.80 70.29 53.34 59.31 67.15 63.01
QDROP (Ours) 2/4 65.25 70.65 54.22 63.80 71.70 64.24

AdaRound (Nagel et al., 2020)* 3/3 64.66 66.66 15.20 51.01 56.79 47.89
AdaQuant (Hubara et al., 2021)* 3/3 60.09 67.46 2.23 - - -
BRECQ (Li et al., 2021a)* 3/3 65.87 68.96 23.41 55.16 57.12 49.78
QDROP (Ours) 3/3 66.75 72.38 57.98 65.54 72.51 66.81

BRECQ (Li et al., 2021a)* 2/2 42.54 29.01 0.24 3.58 3.62 0.61
QDROP (Ours) 2/2 54.72 58.67 13.05 41.47 55.11 28.77

Table 3: Comparison among different post-training quantization strategies with low-bit activation in terms of
accuracy on ImageNet. * represents for our implementation according to open-source codes and we apply the
same settings such as per-channel weight quantization.

Method Bits (W/A) Faster RCNN RetinaNet

ResNet-18 ResNet-50 MobileNetV2 ResNet-18 ResNet-50 MobileNetV2

Full Prec. 32/32 34.60 38.56 33.47 33.22 36.80 32.63

AdaRound* 4/4 32.57 34.47 26.11 31.04 33.51 24.99
BRECQ* 4/4 32.58 34.59 26.58 31.21 33.47 24.84
QDROP 4/4 33.37 36.96 30.88 31.99 35.67 29.75

AdaRound* 2/8 30.54 33.15 25.35 29.30 32.22 24.22
BRECQ 2/8 31.82 34.23 27.54 31.42 34.75 27.59
QDROP 2/8 32.20 36.14 28.48 31.03 34.84 27.42

BRECQ* 2/4 29.92 30.23 19.35 28.73 29.47 18.46
QDROP 2/4 31.01 34.23 25.04 29.69 33.01 24.89

Table 4: Comparison among typical post-training quantization strategies in terms of mAP on MS COCO. Note
that refer to BRECQ, we didn’t quantize head and keep the first and last layer in backbone to 8-bit. Other
notations align the upper table.

tings. We summarize the results in Table 3. First, the W4A4 quantization is investigated. It can
be observed that QDROP provides 0 ∼ 3% accuracy uplift when compared to strong baselines
including AdaRound, BRECQ, AdaQuant. With W2A4 quantization, QDROP can improve the ac-
curacy of ResNet-50 by 0.5%, and RegNet-3.2GF by 4.6%. In addition, to fully exploit the limit of
QDROP, we conduct more challenging cases which quantize the weights and activations to 2 or 3
bits. According to the last two rows of Table 3, our proposed QDROP consistently achieves good
results while existing methods suffer from non-negligible accuracy drop. In W3A3 quantization, our
method can quantize ResNet-50 to 72.4% accuracy while the best existing work only has 69% accu-
racy. On MobileNetV2, the difference is even larger, where our method reaches 58% accuracy and
BRECQ only gets 23%. In the W2A2 setting, the PTQ becomes much harder. QDROP outperforms
the competing method by a large margin: 12.18% upswings for ResNet-18, 29.66% for ResNet-50
and 51.49% for RegNet-3.2GF.

MS COCO. In this part, we validate the performance of QDROP on object detection task using MS
COCO dataset. We use both two-stage Faster RNN (Ren et al., 2015) and one-stage RetinaNet (Lin
et al., 2017) models. Backbone are selected from ResNet-18, ResNet-50, and MobileNetV2. Note
that we set the first layer and the last layer to 8-bit and do not quantize the head of the model,
however, the neck (FPN) is quantized. Experiments show that W4A4 quantization using QDROP
nearly do not affect Faster RCNN’s mAP. For RethinaNet, our method has 5 mAP improvement on
MobileNetV2 backbone. In low bit setting W2A4, our method shows great improvement both on
Faster-RCNN and RetinaNet, up to 6.5 mAP.
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Method SST-2 QNLI QQP STS-B MNLI MRPC RTE CoLA SQuAD1.1
(acc) (acc) (f1/acc) (Pearson/Spearman corr) (acc m/mm) (acc) (acc) (Matthews corr) (f1)

Full Prec. 92.43 91.54 87.81/90.91 88.04/ 87.63 84.57/84.46 87.71 72.56 53.39 88.42

AdaQuant* - - - - - - - - 5.17
BRECQ* 50.86 50.72 4.47/62.28 5.94/ 6.39 31.91/31.81 31.69 52.34 0.946 68.58
NO DROP 87.94 68.05 68.09/76.69 82.24/81.68 69.19/71.28 77.39 53.43 40.17 75.97
QDROP 88.06 76.75 72.66/79.04 82.39/81.88 71.43/73.70 79.15 60.65 40.85 77.26

Table 5: Performance on NLP tasks compared to other methods on E8W4A4. Here, we use symbol EeWwAa
to additionally express the embedding bit and conduct experiments on GLUE and SQuAD1.1.

GLUE benchmark and SQuAD. Transformer has made significant progress in the language pro-
cessing field. And Bert, as a representative baseline in NLP, is getting larger and many compression
works have been proposed. We test QDROP in NLP tasks including the GLUE benchmark and
SQuAD1.1. They are all conducted on the typical NLP model, i.e, BERT (Devlin et al., 2018).
Compared with those QAT methods (Zafrir et al., 2019; Bai et al., 2020), which usually adopt data
augmentation trick to achieve dozens of times the original data, we only randomly extract 1024
examples without any extra data processing and quantize all the parts of BERT while some works
(Zafrir et al., 2019) ignore quantization of attention probability. Besides AdaQuant and BRECQ,
which suffer a huge accuracy degradation, our QDROP surpasses No Drop all the tasks, specifically
on QNLI(8.7%), QQP(4.6%) and RTE(7.2%). As for SST-2, despite little enhancement by dropping
quantization, it is indeed close to the FP32 value within 4.4%. And for STS-B, we argue that the
original fine-tuned model is trained with limited data, which might not be very representative to
show the power of our method.

4.3 ROBUSTNESS OF QDROP

In this part, we discuss the effectiveness of QDROP under more challenging situations including
even less data and cross-domain ones. Concerning about size of calibration data, we consider an-
other 4 options. It can be observed that dropping some quantization behaves better under each
setting and is even comparable with No Drop with half of the original calibration data. Motivated
by Yu et al. (2021), we also reconstruct block output by 1024 examples from out-of-domain data,
i.e, CIFAR100 (Krizhevsky et al., 2009), MS COCO, and test on ImageNet. Results are available
in Table 6, where our QDROP still works steadily. It is worth noting that on MS COCO W4A4, it
actually reaches the accuracy from calibrating by in-domain data with and without dropping quanti-
zation, which implies the similar data distribution between MS COCO and ImageNet.

64 128 256 512 1024
Calibration Data Amount

55

60

A
cc

ur
ac

y

ResNet-18 W2A3

QDrop
No Drop

64 128 256 512 1024
Calibration Data Amount

55

60

65

RegNet-3.2GF W2A3

QDrop
No Drop

Figure 6: Impact of calibration data size on ImageNet.

Calibration Bits (W/A) No Drop QDROP

MS COCO 4/4 69.49 69.60
MS COCO 3/3 65.642 66.444
CIFAR100 4/4 56.656 60.340
CIFAR100 3/3 27.940 39.716

Table 6: Cross domain data.

5 CONCLUSION

In this paper, we have introduced QDROP, a novel mechanism for post-training quantization. QDrop
aims to achieve good test accuracy given a tiny calibration set. This is done by optimization towards
a flat minima. We dissect the PTQ objective theoretically into a flatness problem and improve the
flatness from a general perspective. QDROP is easy to implement, computationally fast, and can be
combined with existing methods to achieve further improvement. We comprehensively verify the
effectiveness of QDROP on a large variety of tasks. It can achieve a nearly lossless 4-bit quantized
network and can significantly improve the 2-bit quantization results, establishing a new state of the
art for post-training quantization.
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A ACTUAL MEANING OF NOISE u

As mentioned in Sec. 2, we refer the quantizer to â = ⌊as ⌉ · s, where s is the step size that can be
learned or be determined by collecting activation distribution in PTQ. By marking the rounding error
as c, which subjects to U [−0.5, 0.5], the additive noise e = â− a can be denoted as c · s. However,
this traditional noise does not decouple the noise from step size s and the range of activations. The
range of noise e will vary when the range of activations change, making it complicated to analyze
across the whole network in a unified form. Some existing papers (Jiang et al., 2019) also indicate
the problem that the additive noise doesn’t take parameters’ magnitude into account and suggest a
multiplicative form form (Keskar et al., 2016). To be specific, they claim that:

Perturbing the parameters without taking their magnitude into account can cause
many of them to switch signs. Therefore, one cannot apply large perturbations to
the model without changing the loss significantly. One possible modification to
improve the perturbations is to choose the perturbation magnitude based on the
magnitude of the parameter. In that case, it is guaranteed that if the magnitude
of perturbation is less than the magnitude of the parameter, then the sign of the
parameter does not change.

To eliminate the influence induced by the range of activations, we take the noise of multiplicative
form: â = (1 + u) · a. In the quantization background, we denote the fixed-point integer value with
respect to a as ā (a = (ā+ c) · s and â = ā · s). And then u can be denoted as:

u =
â

a
− 1

=
ā · s

(ā+ c) · s
− 1

=
ā

ā+ c
− 1

=
−c
ā+ c

(10)

To be noted, u is derived from the definition of the quantizer and can be equivalently transformed
from the generalized noise here.

From this formulation, we can find that the range of u is not related to the activation range or step
size s and is only influenced by the rounding error and the bit-width. In a word, the multiplicative
form has its pysical meaning in quantization background and is beneficial as discussed above.

B PROOF OF LEMMA 1 AND THEOREM 1

We demonstrate them by considering the situation of (1) fully connected and (2) convolutional net-
works separately. As transformation with fully connected ones has been revealed in main body, we
add some extra illustration here and mainly target at the convolutional layers.

B.1 FULLY CONNECTED NETWORKS

Here, we give the proof of Eq. (5) by leveraging the definition of FC layers in Eq. (1). We first look
at each input sample and temporarily omit x in the notation below for simplicity.

With activation noise u,
z
(ℓ+1)
i =

∑
j

W
(ℓ)
i,j · (1 + u

(ℓ)
j ) · a(ℓ)

j

=
∑
j

(1 + u
(ℓ)
j ) ·W (ℓ)

i,j · a
(ℓ)
j

(11)

By taking V
(ℓ)
i,j = u

(ℓ)
j , we have

z
(ℓ+1)
i =

∑
j

(1 + V
(ℓ)
i,j ) ·W (ℓ)

i,j · a
(ℓ)
i (12)
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Thus, with proper constructed v, the noise on activation (u) can be viewed as the perturbation on
weight (v).

For every layer, we can conduct this transformation from u to v. Therefore, considering operat-
ing on the quantized weight and calibration data, optimizing Ex∼Dc [L(ŵ,x,1 + u(x))] can be
approximated to optimizing Ex∼Dc [L(ŵ ⊙ 1+ v(x)),x,1]. Then we have

Ex∼Dc
[L(ŵ,x,1+ u(x))− L(w,x,1)] ≈ Ex∼Dc

[L(ŵ ⊙ (1+ v(x),x,1)− L(w,x,1)] (13)

Now, Lemma 1 is proved for the case of fully connected networks.

B.2 CONVOLUTIONAL NETWORKS

We first look at each input sample and temporarily omit x in the notation below for simplicity. One
layer in the network G can be interpreted as:

A
(ℓ+1)
i,j = f(Z

(ℓ+1)
i,j ) = f(

∑
p,q

W (ℓ)
p,q ·A

(ℓ)
i+p,j+q) (14)

where the f(·) is the activation function, (p, q) pair represents for one element in weight matrix and
(i, j) pair represents for one element in activation matrix.

Due to complicated design of convolution structure, based on G we introduce two networks G1,G2
to make proofs more clearly.

Definition 1. G1 means inserting random noise on activations, G2 means sticking random variables
into weight.

G1 :A
(ℓ+1)
i,j = f(Z

(ℓ+1)
i,j ) = f(

∑
p,q

W (ℓ)
p,q · (1 +U

(ℓ)
i+p,j+q) ·A

(ℓ)
i+p,j+q)

G2 :A
(ℓ+1)
i,j = f(Z

(ℓ+1)
i,j ) = f(

∑
p,q

(1 + V (ℓ)
p,q ) ·W (ℓ)

p,q ·A
(ℓ)
i+p,j+q))

(15)

Definition 2. We mark losses of network G1 and G2 in the following way:

Loss of G1 : L(w,x,1+ u) when taking u = 0, it becomes L(w,x,1).

Loss of G2 : L(w ⊙ (1+ v),x) when taking v = 0, it becomes L(w ⊙ 1,x).
(16)

With the definitions, we first prove that G1 and G2 share common parts in their first-order derivative
to its noise in Lemma 2.

Lemma 2. Assuming the same weight and taking u = 0 and v = 0 for G1 and G2, we have:

∂L(w,x,1)

∂U
(ℓ)
i,j

=
∑
p,q

T
(ℓ)
(i,j),(p,q)

∂L(w ⊙ 1,x)

∂V
(ℓ)
p,q

=
∑
i,j

T
(ℓ)
(i,j),(p,q)

(17)

where

T
(ℓ)
(i,j),(p,q) =

∂L(w,x,1)

∂A
(ℓ+1)
i−p,j−q

· f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j

=
∂L(w ⊙ 1,x)

∂A
(ℓ+1)
i−p,j−q

· f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j

(18)

Note that with u = 0 and v = 0, the activations are the same for the two networks so we don’t use
different notations here.

Proof.
∂L(w,x,1)

∂U
(ℓ)
i,j

=
∑
p,q

∂L(w,x,1)

∂A
(ℓ+1)
i−p,j−q

· f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j (19)
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∂L(w ⊙ 1,x)

∂V
(ℓ)
p,q

=
∑
i,j

∂L(w ⊙ 1,x)

∂A
(ℓ+1)
i,j

· f ′(Z
(ℓ+1)
i,j ) ·W (ℓ)

p,q ·A
(ℓ)
i+p,j+q

=
∑
i,j

∂L(w ⊙ 1,x)

∂A
(ℓ+1)
i−p,j−q

· f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j

(20)

Because of taking the same weight, and calculating the derivatives to U
(ℓ)
i,j at u = 0 and derivatives

to V
(ℓ)
i,j at v = 0, we have the same activation values for these two networks. Therefore, Eq. (21)

holds:

∂L(w,x,1)

∂Ai−p,j−q
(ℓ+1)

·f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j =

∂L(w ⊙ 1,x)

∂Ai−p,j−q
(ℓ+1)

·f ′(Z
(ℓ+1)
i−p,j−q) ·W

(ℓ)
p,q ·A

(ℓ)
i,j (21)

By marking the above value as T (ℓ)
(i,j),(p,q), we can get Lemma 2.

Based on Lemma 2, we further derive Theorem 2 as the pre-condition of the final Lemma 1.
Theorem 2. By taking

V (ℓ)
p,q =

∑
i,j U

(ℓ)
i,j · T

(ℓ)
(i,j),(p,q)∑

i,j T
(ℓ)
(i,j),(p,q)

(22)

we have
u⊤∇uL(w,x,1) = v⊤∇vL(w ⊙ 1,x) (23)

Proof. According to Lemma 2

u⊤∇uL(w,x,1) =
∑
ℓ

∑
i,j

U
(ℓ)
i,j ·

∂L(w,x,1)

∂U
(ℓ)
i,j

=
∑
ℓ

∑
i,j

U
(ℓ)
i,j ·

∑
p,q

T
(ℓ)
(i,j),(p,q)

=
∑
ℓ

∑
i,j

∑
p,q

U
(ℓ)
i,j · T

(ℓ)
(i,j),(p,q)

=
∑
ℓ

∑
p,q

∑
i,j

U
(ℓ)
i,j · T

(ℓ)
(i,j),(p,q)

=
∑
ℓ

∑
p,q

∑
i,j U

(ℓ)
i,j · T

(ℓ)
(i,j),(p,q)∑

i,j T
(ℓ)
(i,j),(p,q)

·
∑
i,j

T
(ℓ)
(i,j),(p,q)

=
∑
ℓ

∑
p,q

∑
i,j U

(ℓ)
i,j · T

(ℓ)
(i,j),(p,q)∑

i,j T
(ℓ)
(i,j),(p,q)

· ∂L(w ⊙ 1,x)

∂Vp,q
(ℓ)

(24)

By taking V
(ℓ)
p,q =

∑
i,j U

(ℓ)
i,j ·T

(ℓ)

(i,j),(p,q)∑
i,j T

(ℓ)

(i,j),(p,q)

,

u⊤∇uL(w,x,1) =
∑
ℓ

∑
p,q

V (ℓ)
p,q ·

∂L(w ⊙ 1,x)

∂Vp,q
(ℓ)

= v⊤∇vL(w ⊙ 1,x)

(25)

Thus Theorem 2 is affirmed.

We now prove Lemma 1 equipped with Taylor Expansion technique and Theorem 2.

Proof. First, by adopting Taylor Expansions at u = 0, we can get that:

L(ŵ,x,1+ u)− L(w,x,1) ≈ L(ŵ,x,1) + u⊤∇uL(ŵ,x,1)− L(w,x,1) (26)
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Then, according to Theorem 2, the above equation can be rewritten as:

L(ŵ,x,1+ u)− L(w,x,1) ≈ L(ŵ ⊙ 1,x) + v⊤∇vL(ŵ ⊙ 1,x)− L(w,x,1) (27)

Again, by adopting Taylor Expansions at v = 0 for the right part of Eq. (27), we arrive at:

L(ŵ,x,1+ u)− L(w,x,1) ≈ L(ŵ ⊙ (1+ v),x)− L(w,x,1) (28)

Finally, apply expectation on Eq. (28), and Lemma 1 is proved:

Ex∼Dc [L(ŵ,x,1+ u(x))− L(w,x,1)]

≈ Ex∼Dc
[L(ŵ ⊙ (1+ v(x)),x)− L(w,x,1)]

(29)

With the Lemma 1 proved, we can easily derive Theorem 1 by the following transformation:

Ex∼Dc
[L(ŵ,x,1+ u(x))− L(w,x,1)]

≈ Ex∼Dc [L(ŵ ⊙ (1+ v(x)),x)− L(w,x,1)]

= Ex∼Dc [L(ŵ ⊙ (1+ v(x)),x,1)− L(w,x,1) + L(ŵ,x,1)− L(ŵ,x,1)]

= Ex∼Dc
[L(ŵ,x,1)− L(w,x,1) + L(ŵ ⊙ (1+ v(x)),x,1)− L(ŵ,x,1)]

(30)

C EXPERIMENTS

C.1 SUPPLEMENTARY EXPERIMENTS OF SEC. 3.1

To further illustrate that different optimization weight is the key point for accuracy of post-training
quantization, we conduct some ablation studies that replacing activation quantization or weight one
with setting in quantization-aware training, which usually behaves well, respectively.

In detail, by altering the activation quantization with QAT training, we use the whole ImageNet and
the LSQ (Esser et al., 2019) scheme to learn the step size of activation for 5 epochs. And for weight
one, we still keep rounding up or down strategy, which is adopted in PTQ but with the whole training
set and 40 optimization epochs.

However, results in Table 8 are surprising that although the optimization space in weight is kept
very restricted, leveraging the whole data to implement weight tuning can achieve a large accuracy
boost. And the activation quantization step size might not be as important as weight. These findings
indicate that exploring a quantization-friendly weight may be the fresh insight for accurate post-
training quantization, where this work dedicates to. In the next part, we will further discuss about it
from a flatness perspective.

C.2 FLATNESS AND POST-TRAINING QUANTIZATION

While there are plenty of works exploring the correlation between flatness and generalization and
devoting to fruitful techniques to achieve a better loss landscape, the interaction between quantiza-
tion and flatness has not been exploited much. In this paper, we first connect flatter weight with
activation quantization from PTQ view, as implied in Sec. 3.2. From this, we conjecture that flatness
and quantization might be helpful to each other.

By leveraging some mechanisms such as (Izmailov et al., 2018; Foret et al., 2020), FP32 models
with smoother loss surface are adopted to validate the performance on quantization compared with
the naive one.

In Table 7, model SWA20 is enabled by applying the SWA technique (Izmailov et al., 2018) to
ResNet-18 and finetuning 20 epochs on the whole ImageNet. From the table, the observation is that
the promotion about generalization can not fully reveal the enhancement induced by SWA about
quantization. With even lower bits thus larger noise, SWA20 surpasses the naive one by a large
margin.
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Method Bits (W/A) ResNet-18 SWA20

FP32 71.058 71.502

Min-Max*
8/8 70.938 71.402

4/8 52.326 65.264

4/4 26.052 44.368

OMSE (Choukroun et al., 2019)* 32/4 64.146 65.990

4/4 38.318 55.860

BRECQ (Li et al., 2021a)* 2/4 65.350 66.334

2/2 41.740 44.304

Table 7: Experiments between ResNet-18 and SWA20 when adopting different PTQ methods. SWA20 is ac-
quired by finetuning ResNet-18 using SWA technique for 20 epochs.

The above experimental results imply that distinct FP32 models with analogous accuracy might
contribute to surprisingly disparate outcomes after PTQ, especially for those naive mechanisms
without any weight tuning.

In turn, there have been some studies that delve into robustness boost by applying quantization.
(Fu et al., 2021) advocates that quantization can be properly leveraged to enhance DNNs’ robust-
ness, even beyond their full-precision counterparts. They propose a random bit training strategy to
accomplish it, which our work illustrates the correlation with bit and perturbation in Appendix A.

C.3 SUPPLEMENTARY EXPERIMENTS OF SEC. 3.3

Overfitting phenomenon. To further check the overfitting phenomenon as discussed in Sec. 3.3,
we take ResNet-18 W2A2 as an example and compare the test accuracy and train accuracy among
3 Cases and QDROP. Results are listed in Table 9. It can be seen that with extremely low-bit
quantization, for Case 2 and Case 3, although accuracy on test data drops a lot, performance on train
data remains high.

Recall that introducing activation quantization adds an extra term where the noise on weight v(x)
varies with input data. Combined with the experimental results, we argue that it might be easy to
cause some overfitting phenomenon on tuning Term (7-2) in Theorem 1 with only 1024 calibration
samples. The two accuracy of QDROP also confirmed this phenomeon. Although QDROP sacrifices
some performance on train data, it covers more diverse directions of perturbation from flatness
perspective and is more likely to be flatter on test data. As for Case 1, which doesn’t take Term (7-2)
into account, naturally behaves worst with low-bit activation quantization.

Other choices for perturbation type. Rethinking Sec. 3.3, there are numerous tricks to promote
the flatness on the test set, such as using data augmentation for diverse x, modifying v(x) directly
even like (Foret et al., 2020), which injects the worst-case weight perturbations or adjusting u(x)
to acquire v(x) from another distribution.

In this part, we inspect other strategies and discover that they all cause some performance drop
to some extent except the data augmentation trick. We hypothesis that it is made by increas-
ing the objective loss described in Eq. (4), where for asymmetric weight reconstruction, the in-
creased weird loss in one block induced by employing these tricks will be amplified to subse-
quent ones and lead to a failure. However, our method, which tries to drop some quantiza-
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tion and keep it in FP32 signal, masks some reconstruction loss thereby has no such worries.

Activation setting Weight setting Accuracy
PTQ PTQ 51.19

QAT PTQ 52.84
PTQ QAT 58.93

Table 8: Ablation study of quantization settings on
ResNet-18 W2A2

Methods Train accuracy Test accuracy
Case 1 31.26 34.67
Case 2 50.86 70.12
Case 3 52.83 70.61
QDROP 54.72 66.50

Table 9: Train accuracy and Test accuracy on
ResNet-18 W2A2

Hessian information. As Hessian information is known to be a metric to characterize flatness prop-
erty (Keskar et al., 2016; Dong et al., 2019), we also calculate the top-1, top-5 Hessian eigenvalues
(λ1, λ5) and the Hessian trace (Tr) among 3 Cases and QDROP to better support our analysis. In
table Table 11, QDROP has the smallest value of Hessian information, which matches with our
theoretical framework and observations of loss landscape.

Methods Accuracy

Baseline 51.19

Stochastic Round 48.49

SAM (Foret et al., 2020) 50.05

Data Augmentation 51.87
QDROP (Ours) 54.72

Table 10: Impact of different design choices
for Sec. 3.3, with W2A2 on ImageNet and
ResNet-18

Method λ1 λ5 Tr

Case 1 14770 6746 122894
Case 2 8423 4050 86287
Case 3 8258 3821 84044
QDROP 6850 3044 66371

Table 11: Hessian information of the ResNet-18 W3A3
quantized model. λ1 represents for the top-1 Hessian
eigenvalue, λ5 for top-5 Hessian eigenvalues and Tr for
Hessian trace.

D RELATED WORKS

Post-training quantization Rounding-to-nearest operation is known to be the direct and easy way
for quantizing parameters or activations in PTQ. Although there is almost no accuracy drop when
quantizing to 8-bit, lower bit quantization is yet a hard task and worth exploring. (Choukroun et al.,
2019) transforms quantization to a Minimum Mean Squared Error problem both for weights and
activations. (Nagel et al., 2019) equalizes weight ranges among channels thus be more favorable
to per-layer quantization and employs bias correction to absorb the output error induced by quanti-
zation. However, such methods neglect the task loss thus lead to a sub-optimal. AdaRound (Nagel
et al., 2020), which proposes to learn the rounding mechanism by reconstructing output layer by
layer brings more opportunities for 4-bit quantization. Besides layer reconstruction, BRECQ (Li
et al., 2021a) discusses more choices and advises to do block reconstruction with better accuracy at
2-bit weight quantization. Nonetheless, we argue that AdaRound and BRECQ isolate weight quan-
tization and activation one theoretically and experimentally, which might be a key point of failures
on extremely low-bit quantization.

Flatness The idea of “flat” minima might date back to (Hochreiter & Schmidhuber, 1997), where
the benefits are recognized in recent years, such as generalization (Jiang et al., 2019; Keskar et al.,
2016) and adversarial training (Wu et al., 2020; Zheng et al., 2021). Some previous works (Izmailov
et al., 2018; Foret et al., 2020) devote to improve the flatness of the trained weight for robustness
under perturbation or distribution shift. Other ideas try to model flatness or sharpness formally by
visualization of loss landscape or mathematical formulas. And for quantization, which could be
viewed as some kind of noise, a flat model has been implied to be preferable, (Dong et al., 2019;
Yang et al., 2019; Kadambi et al., 2020). Despite the natural fact that flatness helps with weight
quantization, how does activation quantization involves with smoother loss surface has not been dis-
cussed deeply, particularly for post-training quantization. In this work, we introduce noise scheme
by randomly dropping activation quantization and achieve a general flatness. Another paper (Fan
et al., 2020) also utilizes randomness by adding noise to weight for the simulation of weight quan-
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Algorithm 2: Implementations of three cases in Sec. 3.1
Input: Model with K blocks.
if Case 2 then

for k = 1 to K do
parameterize activation step size in this block ;

for k = 1 to K do
Tuning weight like (Li et al., 2021a) by reconstructing block output ;
if Case 3 then

parameterize activation step size in this block ;
if Case 1 then

for k = 1 to K do
parameterize activation step size in this block ;

return Quantized model ;

tization. But they target at reducing the induced bias of Straight Through Estimation (STE) in QAT
and also have different motivations and solve different problems from us.

E IMPLEMENTATION DETAILS

Observation. Here, we give the concrete implementation of experiments in Sec. 3.1. We actually
consider three ways of introducing activation for Case 2, but we find the difference of outcomes
among them are negligible thus employing one of them for clearer clarification.

ImageNet. We extract 1024 training examples from ImageNet dataset as calibration dataset based
on the standard pre-process. Pretrain-models are downloaded from BRECQ’s open source code.
Hyper-parameters we keep it as BRECQ, such as set batch size 32, learning rate for activation step
size 4e-5, learning rate for weight tuning 1e-3, iterations 2x104. Following BRECQ, we first fold
batch normalization layer into convolution before tuning the weight then reconstruct output block-
wise, where we tune the weight by rounding up or down, use LSQ (Esser et al., 2019)to parameterize
activation step size. As for our extra content, we learn the weight and activation parameters together
and use 50% rate to drop some activation quantization.

Object detection. Here, we also obey BRECQ’ setting and use the same pretrain-models with 256
training samples taken from MS COCO dataset for calibration. Parameters about resolution is set to
800 (max size 1333) and 600 (max size 1000) for ResNets and MobileNetV2, respectively and batch
size is set to 2 while others are the same as classification task. To be noted, we didn’t quantize the
head with applying block reconstruction to backbone and layer reconstruction to neck like BRECQ.

GLUE benchmark and SQuAD. The BERT fine-tuned models are taken from huggingface group
(https://huggingface.co/). And we sampled 1024 examples from training set. We keep the maximum
sequence length to be 128 for GLUE benchmark but maximum sequence length 384 with doc stride
128 for SQuAD1.1, which is the usual choice. Also, we quantize all the part in BERT as well as the
internal structure of the attention module with only affirming the embedding weight to 8-bit. Other
settings and hyper-parameters are chosen in the same way as ImageNet experiments.

Baselines. We run baseline methods from open-source codes, such as AdaQuant (Hubara et al.,
2020), BRECQ and Adaround. And we try our best to align some optimal settings like per-channel
quantization for fair comparisons.
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