
Identifiability and Estimation under Missing Not at Random Mechanisms

Abstract

Conducting valid statistical analyses is challenging
in the presence of missing-not-at-random (MNAR)
data, where the missingness mechanism is depen-
dent on the missing values themselves even condi-
tioned on the observed data. Here, we consider a
MNAR model that generalizes several prior pop-
ular MNAR models in two ways: first, it is less
restrictive in terms of statistical independence as-
sumptions imposed on the underlying joint data
distribution, and second, it allows for all variables
in the observed sample to have missing values.
This MNAR model corresponds to a so-called
criss-cross structure considered in the literature
on graphical models of missing data that prevents
nonparametric identification of the entire missing
data model. Nonetheless, part of the complete-
data distribution remains nonparametrically iden-
tifiable. By exploiting this fact and considering a
rich class of exponential family distributions, we
establish sufficient conditions for identification of
the complete-data distribution as well as the entire
missingness mechanism. We then propose methods
for testing the independence restrictions encoded
in such models using odds ratio as our parameter of
interest. We adopt two semiparametric approaches
for estimating the odds ratio parameter and estab-
lish the corresponding asymptotic theories: one
involves maximizing a conditional likelihood with
order statistics and the other uses estimating equa-
tions. The utility of our methods is illustrated via
simulation studies.

1 INTRODUCTION

Conducting valid statistical analyses is challenging in the
presence of missing data as the observed data may not be

representative of the population of interest. According to
the terminology of Rubin [1976], a missingness mechanism
is called missing-at-random (MAR) if it only depends on
the observed data values, and it is called missing-not-at-
random (MNAR) if it is dependent on the missing values
themselves even conditioned on the observed data. Under a
MAR model, identification of a target parameter as a func-
tion of the observed data is a relatively straightforward task,
and estimation strategies are well-studied, ranging from
likelihood-based methods such as expectation maximization
[Dempster et al., 1977, Little and Rubin, 2002], to multi-
ple imputation [Rubin, 1987], inverse probability weighting
[Robins et al., 1994, Li et al., 2013], and semiparametric
methods closely related to the estimation of causal parame-
ters [Robins et al., 1995, Tsiatis, 2006]. On the other hand,
MNAR mechanisms are substantially more complicated and
under-studied, yet they are construed as the most prevalent
form of missingness mechanisms in practice.

In the presence of MNAR mechanisms, it is generally not
possible to express the underlying complete-data distribu-
tion as a function of the observed data distribution without
imposing additional assumptions. A lack of identification
result implies that there exist at least two models that differ
in their respective complete-data distribution but share the
same observed data distribution. A well-known example of
a non-identified MNAR mechanism is the non-ignorable
non-response model in survey sampling, where the response
variable directly causes its own missingness, often referred
to as a self-censoring missingness mechanism. Other MNAR
models include scenarios where missingness of a variable
depends on other variables that themselves could be missing.

Common approaches for making progress in non-
identified MNAR models include imposing, often untestable,
(semi)parametric assumptions that yield identification [Wu
and Carroll, 1988, Little and Rubin, 2002, Zhao and Shao,
2015]. For instance, in order to deal with the self-censoring
mechanism involving a univariate response variable, sev-
eral authors have considered the presence of a fully ob-
served variable along with certain assumptions to identify
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and estimate distributional quantities involving the response
variable – e.g., Wang et al. [2014] considers a shadow vari-
able that is not determinant of the underlying missingness,
and Sun et al. [2018] considers an instrumental variable
that is dependent with the missingness indicator of the re-
sponse variable but independent of the response variable
itself (marginally or conditioned on other fully observed
variables). Other approaches include conducting sensitivity
analysis [Rotnitzky et al., 1998, Scharfstein and Irizarry,
2003, Scharfstein et al., 2021] or obtaining nonparametric
bounds for parameters of interest [Horowitz and Manski,
2000]. A recent line of work considers missing data models
with a collection of independence restrictions among vari-
ables and corresponding missingness indicators that can be
represented by directed acyclic graphs (DAGs); see Mohan
and Pearl [2021], Nabi et al. [2022] for detailed reviews.

In this work, we consider a MNAR model that corresponds
to a graphical characterization, the criss-cross structure dis-
cussed in Nabi and Bhattacharya [2022], where missingness
of the response variable depends on the missingness of co-
variates and vice versa. This kind of missingness is common
in cross-sectional and survey studies. Unlike most prior
work, all variables in our model can be subject to missing-
ness, i.e., our results do not rely on the presence of fully
observed variables. Furthermore, the MNAR model under
study generalizes several prior popular missing data mod-
els, including the permutation model [Robins, 1997], the
block-conditional MAR model [Zhou et al., 2010], and the
block-parallel model [Mohan et al., 2013], making it less
restrictive in terms of statistical independence assumptions
imposed on the underlying joint data distribution.

The criss-cross MNAR structure prevents nonparametric
identification of the entire missing data model. We show,
however, part of the complete-data distribution remains non-
parametrically identifiable. We consider a quantitative mea-
sure, based on the rank of a Jacobian matrix, to examine
the amount of information in the identifiable part that would
be sufficient for recovering the entire complete-data law,
a.k.a. the target law, as a function of only partially observed
data. We explore these sufficient conditions extensively in
the rich class of exponential family distributions. We further
extend these results to higher dimensional parameter spaces
and explore identifiability conditions for the entire missing-
ness selection model, studied under full law identification.
Aside from identification arguments, we explore procedures
for testing independence relations among variables that are
themselves missing in terms of an odds ratio parameter-
ization of the complete-data law, as well as other model
assumptions. We propose semiparametric estimating equa-
tions and conditional likelihoods based on order statistics
to compute parameters that can be used for model selection
purposes. Asymptotic properties of these two approaches
are studied. We show empirically that the estimating equa-
tion approach is more efficient compared to the conditional

likelihood approach while the latter is more robust to mis-
specifications of the missingness selection model.

The paper is organized as follows. We describe our notation
and a brief overview of missing data DAGs in Section 2,
and formally define the MNAR model under study in Sec-
tion 3. We first consider univariate settings and discuss our
(non)parametric identification and semiparametric estima-
tion results in Sections 4 and 5, respectively, followed by
generalizations to multidimensional covariate spaces in Sec-
tion 6. The simulation results are provided in Section 7,
followed by conclusions in Section 8. All proofs are de-
ferred to supplementary materials.

2 PRELIMINARIES

Let Z be a vector of random variables with finite support
and probability density p(Z). Given a finite sample, vari-
ables in Z, indexed here by k, may have missing instances.
Let R be the corresponding vector of binary missingness
indicators where Rk = 1 if Zk is observed and Rk = 0 if
Zk is missing. We only observe a coarsened version of Z
in our sample, which we denote by Z∗. Each Z∗

k ∈ Z is
deterministically defined as follows: Z∗

k = Zk if Rk = 1
and Z∗ = “?” if Rk = 0. Z has a counterfactual conno-
tation as it corresponds to variables “had they been fully
observed" or “had R been set to one" (no missingness) – see
Bhattacharya et al. [2019]. We use lowercase z to denote
the observed realization of Z.

Following the literature on graphical models of missing data,
it is descriptive to use directed acyclic graphs (DAGs) to
encode assumptions in a given missing data model. A DAG
G(V ) is a set of vertices V connected by directed edges
such that there are no directed cycles. The statistical model
of a DAG G(V ) is a set of distributions that factorize as
p(V ) =

∏
Vi∈V p(Vi | paG(Vi)), where paG(Vi) denotes

parents (direct causes) of Vi in G(V ); when the vertex set
is clear from the context, G(V ) is abbreviated as G. Using
the conventions in Mohan et al. [2013], Bhattacharya et al.
[2019], a missing data DAG (or mDAG for short) is de-
fined over the set of vertices that correspond to variables
in V = {Z,R,Z∗}. In addition to acyclicity, a mDAG re-
stricts the presence of certain edges: each Z∗

k ∈ Z∗ has only
two parents (Zk and Rk), Z∗

k does not have any outgoing
edges and variables in R cannot point to variables in Z. As
an example, Fig. 1 illustrates the self-censoring mechanism
in (a), the shadow variable setup in (b), and the instrumental
variable approach in (c). Here, Y is the non-response vari-
able, and X,W are fully observed variables. Deterministic
edges are drawn in gray in all mDAGs.

A missing data model associated with a mDAG G is the set
of distributions p(Z,R,Z∗) that factorize as∏

Vi∈Z

p(Vi | paG(Vi))×
∏

Rk∈R

p(Rk | paG(Rk)). (1)
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Figure 1: (a) Self-censoring MNAR mechanism; (b) Shadow
variable setup considered in Wang et al. [2014]; (c) Instru-
mental variable setup considered in Sun et al. [2018]. A
dashed edge implies potential dependence between the end-
point variables.

We exclude the factors p(Z∗
k | Zk, Rk) which are determin-

istically defined.Similar to a DAG, a mDAG encodes a set
of ordinary conditional independence restrictions which can
be easily read via Markov properties and d-separation rules:
given disjoint subsets of vertices A,B,C, the DAG global
Markov property states that if A ⊥d-sep B | C in G(V ), then
A ⊥ B | C in p(V ) [Pearl, 2009]. We refer to p(Z) as the
target law, p(R | Z) as the missingness mechanism, and
p(R,Z∗) as the observed data law. The product of target
law and missingness mechanism, i.e., p(Z,R), is referred
to as the full law. Note that in addition to partially missing
variables, we may also have variables that are fully observed.
However, in this work, we allow for the possibility of having
all variables be partially missing in our model.

Aside from the mDAG factorization, an odds ratio parame-
terization of the full law (or parts of it) can be useful in han-
dling missing data models as it is illustrated by our methods
in later sections; for more use of such parameterization see
Nabi et al. [2020], Malinsky et al. [2021]. Given disjoint sets
of variables A,B,C and reference values A = a0, B = b0,
the odds ratio parameterization of p(A = a,B = b | C),
given by Chen [2007], is as follows:

1

Z(C)
× p(a | b0, C)× p(b | a0, C)× OR(a, b | C), (2)

where OR(A = a,B = b | C) is defined as

p(A = a | B = b, C)

p(A = a0 | B = b, C)
× p(A = a0 | B = b0, C)

p(A = a | B = b0, C)
,

and Z(C) =
∑

A,B p(A|B = b0, C)×p(B|A = a0, C)×
OR(A,B | C) is the normalizing term.

3 THE MNAR MISSING DATA MODEL

We partition Z into two disjoint sets X and Y , where the
missingness of X and Y depend on each other as follows:

(i) Rx ⊥ X | Y (ii) Ry ⊥ Y | X,Rx (3)

The above set of assumptions can be represented via the
mDAG shown in Fig. 2(a), which corresponds to the so-
called criss-cross structure discussed in Nabi and Bhat-
tacharya [2022]. This missing data model is a supermodel

X Y
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(a)

X Y

RyRx

X∗ Y ∗

(b)

X Y

RyRx

X∗ Y ∗

(c)
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Figure 2: (a) Criss-cross MNAR model; (b) Permutation
model [Robins, 1997]; (c) Block-parallel model [Mohan
et al., 2013]; (d) Block-conditional MAR model [Zhou et al.,
2010].

of several popular models in the literature such as the per-
mutation model [Robins, 1997] shown in Fig. 2(b), block-
parallel model [Mohan et al., 2013] shown in Fig. 2(c),
and block-conditional MAR model [Zhou et al., 2010]
shown in Fig. 2(d). For instance, the permutation model
implies the following set of independence restrictions: (i)
Rx ⊥ X | Y and (ii) Ry ⊥ Y,X | X∗, Rx. The inde-
pendence restriction in (ii) implies Ry ⊥ Y | X,Rx = 1
and Ry ⊥ Y,X | Rx = 0. These assumptions are a super-
set of the assumptions made in the criss-cross model, as
defined in (3). For more detailed comparisons across the
aforementioned models, see Nabi et al. [2022].

The importance of the criss-cross graphical characterization
is that in the presence of such structure, the target law is not
nonparametrically identifiable as a function of the observed
data distribution [Nabi and Bhattacharya, 2022], similar to
the presence of self-censoring structure shown in Fig. 1(a).
See Bhattacharya et al. [2019] for sufficient conditions under
which the target law is nonparametrically identifiable and
Nabi et al. [2020] for necessary and sufficient conditions
under which the full law is nonparametrically identifiable,
in a given mDAG.

4 IDENTIFICATION ARGUMENTS

4.1 NONPARAMETRIC IDENTIFICATION

Bhattacharya et al. [2019] proved that the conditional den-
sity of p(Ry | Rx = 0, X) is not nonparametrically iden-
tifiable in the criss-cross model. This directly implies that
the full law is not nonparametrically identified as a function
of the observed data law. Nabi and Bhattacharya [2022]
further proved that the target law is not identified either by
providing a counterexample using binary variables for X
and Y . We verify the lack of nonparametric identification
of the target law in Appendix A, using continuous variables
following normal distributions.

The conditional distribution p(X | Y ) is, however, nonpara-
metrically identified. This is because using the independence
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assumptions in display (3) and Bayes rule, we can write:

p(X | Y ) = p(X | Y,Rx = 1) =
p(X,Y,Rx = 1)∫
p(x, Y,Rx = 1)dx

,

where the marginal distribution p(X,Y,Rx = 1) equals:

p(X,Y,Rx = 1, Ry = 1)

p(Ry = 1 | Rx = 1, X, Y )
=

p(X,Y,Rx = 1, Ry = 1)

p(Ry = 1 | Rx = 1, X)
,

and thus it is identified. The probabilistic operation of taking
the full law and dividing it by the conditional density of
p(Ry | paG(Ry)) (evaluated at R = 1) corresponds to
an intervention on Ry that sets it to one. This provides an
intuitive inverse probability weighting estimation strategy
for parameters involving the conditional density of X given
Y . See Section 5.2 for a discussion on estimation and Nabi
et al. [2022] for more details on the interventional view to
identification in graphical models of missing data.

We take advantage of the nonparametric identification of
p(X | Y ) in two ways: one is by combining this knowl-
edge with consideration of a class of exponential family
distributions to provide sufficient conditions for the identi-
fication of target and full laws (Section 4.2), and the other
is by exploiting the knowledge in p(X | Y ) to estimate the
odds ratio between X and Y as a method of an indepen-
dence test, using either a conditional likelihood approach
(Section 5.1) or a generalized estimating equation (GEE)
approach (Section 5.2).

4.2 PARAMETRIC IDENTIFICATION

We first consider identification of the target law p(X,Y )
when X is assumed to be univariate. We generalize our
identification results to multivariate X in Section 6.

4.2.1 Target law identification

Assume p(X) and p(Y | X) belong to the exponential
family distribution. That is,

p(x) ∼ exp

{
xηx − bx(ηx)

Φx
+ cx(x; Φx)

}
(4)

p(y | x) ∼ exp

{
yη − b(η)

Φ
+c(y; Φ)

}
, g(µ(η))=α+βx,

where b, c, bx, cx are known functions, Φ,Φx > 0 are dis-
persion parameters that may be known or unknown, and g is
a known one-to-one, third-order continuously differentiable
link function. Let µ(η) := E[Y |X] and µx(ηx) := E[X].
From the exponential family theory, we know that b′(η) =
µ(η) and b′x(ηx) = µx. If µ = g−1, then g is called the
canonical link function and is denoted by gc. We outline
sufficient conditions for identifying the parameter vector
θ = (α, β,Φ, ηx,Φx) in the following theorem.

Theorem 1. Assume the model in display (4) and X takes
k + 1 distinct values x0, x1, · · · , xk. Let φ = [g ◦ µ]−1,
ζ = b([g ◦ µ]−1). Define the following equations:

ϕi(θ) = {φ(α+ xiβ)− φ(α+ x0β)}/Φ

ζi(θ) =
−ζ(α+ x1β) + ζ(α+ x0β)

Φ
+

ηx(x1 − x0)

Φx

+ c(x1; Φx)− c(x0; Φx).

Define the Jacobian matrix J = ∂(Φ, Z)/∂θ, where Φ =
{ϕ1, . . . , ϕk} and Z = {ζ1, . . . , ζk}. Under regularity con-
ditions (detailed in Appendix B.1), the target law p(X,Y )
is identifiable if

(i) k ≥ dim(θ), (ii) Jacobian matrix J has full rank.

See Appendix B.1 for a proof. To provide an insight into
Theorem 1, we emphasize the following observation: for
any two distinct points of X , say x1, and x0, we have

p(x1 | y)
p(x0 | y)

=
p(y | x1)

p(y | x0)
× p(x1)

p(x0)
. (5)

The left-hand side of equation (5) is identified, therefore as
we vary the choice of distinct points of X , we are getting
a series of equations that connect the identified conditional
distribution p(X | Y ) to the target law. The rank of the
Jacobian matrix J provides a quantitative measure for the
amount of information about the target law that is reflected
in the conditional distribution p(X | Y ). When J is full
rank, we are able to obtain a unique solution of the target
law, as a function of observed data law, by solving a sys-
tem of equations. In the case of J being rank deficient, we
observe that removing some columns of J can lead J to
be full rank. Removing columns from J has the interpreta-
tion of assuming the corresponding parameters to be known,
which yields sufficient conditions for identification claims.
A similar argument is made by Zhao and Shao [2015] in the
non-ignorable non-response model (a.k.a. self-censoring)
where X is assumed to be fully observed and the parametric
marginal density of X is known.

We highlight that our identification framework is highly
generalizable. As the dimensionality of the distribution in-
creases, the core of the theorem remains unchanged. We
delve into the generalization of Theorem 1 thoroughly in
Section 6. In addition, the method proposed is not restricted
to the exponential family distributions, while focusing on
this family results in clean and concise identification char-
acterizations. We will further demonstrate in Section 4.2.2
that the full law identification is easier to establish within
the exponential family.

In Appendix C, we show the utilization of Theorem 1 in es-
tablishing sufficient conditions for target law identification
in widely used exponential family distributions, including
normal, Bernoulli, exponential, and Poisson distributions
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with either canonical or inverse links. The second condition
in Theorem 1, namely that the Jacobian matrix must be of
full rank, has different implications on what specific knowl-
edge is required for θ in advance. For instance, under normal
distributions with an inverse link discussed in Appendix C.2
or exponential distributions discussed in Appendix C.7, the
target law is identified without any further restrictions on
the parameter vector θ. While in certain other distributions,
the full-rank requirement of the Jacobian matrix implies that
part of θ must be known apriori. For instance, in bivariate
normal distributions with a canonical link discussed in Ap-
pendix C.1, it is essential for identification arguments that
at least the marginal mean of either X or Y is known. We
emphasize that Theorem 1 only provides sufficient, not nec-
essary, identification conditions. This means that stronger-
than-needed characterizations might be established.

4.2.2 Full law identification

Under the conditions of Theorem 1, we can use the joint
factorization of the full law in the criss-cross model to show
that the conditional density of Rx given Y , a.k.a. the propen-
sity score of Rx, is identified: p(X,Y,Rx = 1, Ry = ry) =
p(X,Y ) × p(Rx = 1 | Y ) × p(Ry = ry | X,Rx = 1),
for ry = 0, 1. To fully identify the full law, we need
to show whether the full law evaluated at Rx = 0,
i.e., p(X,Y,Rx = 0, Ry = ry), is identified or not, or
equivalently whether or not the propensity score of Ry

evaluated at Rx = 0, i.e., p(Ry = 1 | Rx = 0, X), is
identified. The question of full law identification translates
into the nonexistence of any two distinct propensity scores
for Ry, e.g., p1(Ry | X,Rx) ̸= p2(Ry | X,Rx), such that∫
[ p1(Ry = 1 | Rx = 0, x) − p2(Ry = 1 | Rx = 0, x) ]

p(x | Y ) dx = 0. Let h(X) = p1(Ry = 1 | Rx =
0, X) − p2(Ry = 1 | Rx = 0, X). This condition then
implies that if E[h(X) | Y ] = 0, then it must be the case
that h(X) = 0 for the full law to be identified. This relates
to the completeness condition described below.

Condition 1. For any function h(X) with finite mean,
E{h(X) | Y } = 0 implies h(X) = 0 almost surely.

With the completeness condition introduced, we can estab-
lish identification of the full law as follows.

Lemma 1. Given the conditions in Theorem 1 and Condi-
tion 1, the full law p(X,Y,Rx, Ry) is identified.

See Appendix B.3 for a proof. Identification under the com-
pleteness condition is widely seen among previous works
[Newey and Powell, 2003, Miao et al., 2015, Zhao and
Ma, 2022]. As a special case, full law identification can be
established from the completeness property of the exponen-
tial family distributions. More specifically, Condition 1 is
guaranteed to hold if p(X | Y ) takes the following form:

p(X | Y ) = s (X) t(Y ) exp
[
µ(Y )T τ (X)

]
,

where s (X) > 0, τ (X) is one-to-one in X , and the support
of µ(Y ) is an open set.

We show that the specific examples discussed in Appen-
dices C.1, C.3, C.4, C.5, and C.6 all have p(X | Y ) lie in
the exponential family, therefore the full law is guaranteed
to be identified (under conditions outlined in Theorem 1). In
examples discussed in Appendices C.2 and C.7, p(X | Y )
falls out of the exponential family, therefore the full law
may or may not be identified.

5 ESTIMATION AND INFERENCE

Our primary target of inference is the odds ratio between
X and Y , denoted by OR(X,Y ) and defined in (2). Since
the conditional density p(X | Y ) is nonparametrically iden-
tified, this odds ratio is also nonparametrically identified.
In order to estimate this parameter, we establish two semi-
parametric methods outlined below. Hereafter, we use n to
denote the size of the completely observed samples and N
the size of all samples.

5.1 CONDITIONAL LIKELIHOOD WITH ORDER
STATISTICS

As our first approach to estimate OR(X,Y ), we adopt the
conditional likelihood approach based on order statistics,
motivated by the fact that p(X | Y,Rx = 1, Ry = 1) equals

p(Rx = 1, Ry = 1 | Y,X)∫
p(Rx = 1, Ry = 1 | Y, x)p(x | Y )dx

p(X | Y ),

where p(Rx = 1, Ry = 1 | Y,X) = p(Ry = 1 | Rx =
1, X)p(Rx = 1 | Y ) is a multiplier of a function of Y -
only and a function of X-only, and

∫
p(Rx = 1, Ry =

1 | Y,X)p(X | Y )dX is a function of Y -only. Consider
the following conditional likelihood p(x1, . . . , xn | rx1 =
ry1

= 1, . . . , rxn
= ryn

= 1, y1, . . . , yn, X̃) which equals∏n
i=1 p (xi | yi)∑

permutation of x

∏n
i=1 p

(
x(i) | yi

) ,
where X̃ denotes the order statistics (x(1), . . . , x(n)) and the
permutation is over all possible permutations of {1, . . . , n}.
By exploiting the information available in this conditional
likelihood, it is possible to estimate some parameters, such
as the odds ratio, in the model of p(X | Y ). The nice
feature of applying this conditional likelihood is that for
each subject i, the corresponding terms p(Rx = 1, Ry =
1 | Y,X) and

∫
p(Rx = 1, Ry = 1 | Y, x)p(x | Y )dx

are all canceled out during the above derivations; there-
fore, this conditional likelihood approach is robust to the
model misspecification of the propensity scores, i.e., neither
p(Ry = 1 | Rx = 1, X) nor p(Rx = 1 | Y ) need to be
correctly specified in order to have a consistent estimation
of the odds ratio.
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Since the above conditional likelihood has the computa-
tion complexity of order n!, in reality, we approximate the
conditional likelihood with the following pairwise pseudo-
likelihood∏

i<k

p (xi | yi) p (xk | yk)
p (xi | yi) p (xk | yk) + p (xi | yk) p (xk | yi)

=
∏
i<k

1

1 +Q (xi, yi;xk, yk)
,

where Q (xi, yi;xk, yk) is the inverse of OR and equals

{p (xi | yk) p (xk | yi)}/{p (xi | yi) p (xk | yk)}.

Therefore, by analyzing the completely observed subjects
from the biased sample p(X | Y,Rx = 1, Ry = 1), we
are able to estimate the odds ratio OR between X and Y .
This conditional likelihood approach was first proposed in
[Kalbfleisch, 1978] for hypothesis testing and then was used
in a variety of statistical problems including both parameter
estimation [Liang and Qin, 2000] and variable selection
[Zhao et al., 2018]; see [Chen, 2021] for a more comprehen-
sive exposition.

To illustrate the above pairwise pseudo-likelihood, we first
consider a special case that X | Y ∼ N(α+ βY, σ2), then

OR = exp

(
β

σ2
(xi − xk)(yi − yk)

)
= exp

[
β

σ2
(wjvj)

]
,

where wj = − sign (yi − yk) and vj = (xi−xk) |yi − yk|,
j = 1, . . . , n(n − 1)/2 corresponds to each pair of
(i, k), i, k = 1, . . . , n. Hence, the logarithm of the above
pairwise pseudo-likelihood can be written as

−
∑
j

log

{
1 + exp

[
β

σ2
(wjvj)

]}
.

Thus, one can obtain the estimate of the parameter β
σ2 , de-

noted as θ hereafter, by performing the logistic regression
with response uk and covariate vk without the intercept term,
where

uk =

{
1 if yi − yk > 0

0 if yi − yk < 0.

Denote θ̃ the parameter estimate. Our result below demon-
strates the asymptotic normality of θ̃.

Theorem 2. Denote Q(xi, yi;xk, yk; θ) = Qik(θ) and
ζik(θ)=∂ log{1+Qik(θ)}/∂θ. Assume that E∥ζ12(θ)∥2 <
∞ for any θ in the parameter space. Then,

√
N(θ̃ − θ0)

d−→ N(0, A−1BA−1),

where A = E {Rx1Ry1Rx2Ry2∂ζ12(θ0)/∂θ} and B =
4E {Rx1

Ry1
Rx2

Ry2
Rx3

Ry3
ζ12(θ0)ζ13(θ0)}.

See Appendix D.1 for a proof. The aforementioned pair-
wise pseudo-likelihood is favorable under a large sample
size given its computational efficiency. However, the pair-
wise pseudo-likelihood estimator is generally inefficient.
To improve efficiency, groupwise pseudo-likelihood can
be adopted. Instead of picking two observations at a time,
groupwise pseudo-likelihood uses more than two observa-
tions as a group. For example, with a group size of three,
we will have

L ∝
∏

i<j<k

p(xi | yi) p(xj | yj) p(xk | yk)∑
P : permutation of (i,j,k)

p(xP (i) | yi) p(xP (j) | yj) p(xP (k) | yk)
.

Increased group size gives better efficiency with the cost of
computational time. The final choice of group size should
base on the consideration of computational time and sta-
tistical efficiency. Computational techniques with adaptive
Monte Carlo approximation and Metropolis algorithm for
directly maximizing the conditional likelihood are also well
established and can be found in Chapter 4 of Chen [2021].

5.2 GENERALIZED ESTIMATING EQUATIONS

In the estimation approach presented in Section 5.1, we need
to specify the conditional density function p(X | Y ) either
fully parametrically or semiparametrically. Alternatively,
the model p(X | Y ) can be semiparametrically specified.
For instance, assuming E(X | Y ) = h(Y ; θ) with h(·) a
known function and θ the unknown parameter of interest,
we have the following estimating equation

E
[Rx ×Ry

π(X)
× f(Y )× (X − E(X | Y ))

]
= 0,

for any arbitrary function f(Y ). Hereafter, we denote
π(X) = p(Ry = 1 | Rx = 1, X) and w(Y ) = p(Rx = 1 |
Y ). Note that the model π(X) does not involve any missing
data, so any off-the-shelf statistical method can be applied
to model π(X). To better illustrate our proposed method,
we do not particularly discuss the method for estimating
π(X) here.

Thus, the estimator of the parameter θ, denoted as θ̂, can be
obtained by solving the following empirical version of the
estimating equation

1

N

N∑
i=1

Rxi
×Ryi

π(xi)
× f(yi)× (xi − h(yi; θ)) = 0.

In the following, we develop the asymptotic normality of
the estimator θ̂. In particular, we also identify the optimal
choice of f(y), fopt(y), such that it achieves the best possi-
ble estimation efficiency among all choices of arbitrary func-
tion f(y). For simplicity, we denote Ψ(X,Y,Rx, Ry; θ) =
Rx×Ry

π(X) × f(Y )× (X − h(Y ; θ)).
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Theorem 3. Assume that E∥Ψ(X,Y,Rx, Ry; θ)∥2 < ∞
for any θ in the parameter space. Then,

(a) For any function f(Y ), we have

√
N(θ̂ − θ0)

d−→ N(0, C−1D(C−1)T ),

where D = E
{

RxRy

π(X)2 (X − h(Y ; θ))2f(Y )f(Y )T
}

,

C=E
{
RxRy

π(X) a(Y )f(Y )T
}

, and a(Y )=∂h(Y ;θ)
∂θ

∣∣∣∣
θ=θ0

.

(b) The optimal choice of f(Y ) is

fopt(Y ) =

[
E
{
(X − h(Y ; θ))2

π(X)
| Y

}]−1

a(Y ).

See Appendix D.2 for a proof.

5.3 ALTERNATIVE ESTIMATION TARGETS

In addition to the associational relation between X and Y ,
one might be interested in testing additional model assump-
tions, e.g., whether the missingness of X is indeed influ-
enced by Y or not. This can be easily set up by rewriting
the propensity score of Rx using a parameterization that en-
codes the odds ratio between Rx and Y as p(Rx = 1 | y) =
{1+exp(λ+η(y))}−1 where η(y) := log(OR(Rx = 0, y))
and λ = log[p(Rx = 0 | y0)/p(Rx = 1 | y0)]. Under the
conditions of Theorem 1, η(y) would be identified. Explor-
ing detailed estimation strategies are left to future work.

It is worth pointing out that under the conditions of Theo-
rem 1 and Condition 1, one can simply estimate the entire pa-
rameter vector of the full law, assuming the parametric forms
of the propensity scores in the missingness mechanism are
known. More flexible estimation approaches are possible
if one is willing to make additional modeling assumptions.
For instance, in addition to independence restrictions in
display (3), we may assume p(Ry = 1 | Rx, X) is not a
function of X when Rx = 0. This reduces down the criss-
cross model to the permutation MNAR model proposed
by Robins [1997], where the full law is nonparametrically
identified and the model is nonparametrically saturated, i.e.,
it imposes no restriction on the observed data law. In this
case, we can proceed with nonparametric influence function
based estimation, as discussed in Appendix E.

6 MULTIDIMENSIONAL X

We now discuss how our identification arguments can be
easily generalized to higher dimensional vector spaces. For
a reasonable representation of sampling distributions, we
extend Theorem 1 to instances where X follows either a
multivariate normal or a multinomial distribution. The cor-
responding identification theories under these two scenarios

are provided in Appendix B.2; generalization to other sam-
pling distributions can be carried out in a similar fashion.

As two special cases, we consider X to follow a multivariate
normal or a multinomial distribution while Y | X follows
a normal distribution under the canonical link. We assume
that the first condition in Theorem 1 is satisfied by having
sufficient observations.

Example 1. (X is multivariate normal and Y | X is normal
under canonical link) Suppose

X ∼ Nd(µ,Σ), Y | X ∼ N(α+XTβ,Φ).

Assume the nuisance parameter Σ is known. The unknown
vector of parameters is θ = (α, β,Φ, µ). A sufficient con-
dition for identification of the target law p(X,Y ) is for the
intercept α to be known. According to Lemma 1, the full law
is also identified.

Example 2. (X is multinomial and Y | X is normal under
canonical link) Suppose

X ∼ Multinomiald(n, p), Y | X ∼ N(α+XTβ,Φ),

where p = (p1, . . . , pd) is the vector of event probabili-
ties, and n is the number of trials. We can write p(x) =
exp[xT η + c(x)] where η = (log p1, . . . , log pd) , c(x) =
log n!

x1! ... xd!
. Assume n is known. The unknown vector of

parameters is θ = (α, β,Φ, η). A sufficient condition for
identification of the target law p(X,Y ) is for the intercept
α to be known, or knowing at least one element of η. Ac-
cording to Lemma 1, the full law is also identified.

7 SIMULATIONS

We now examine the finite sample behavior of our proposed
estimation strategies, namely (i) non-optimal GEE, (ii) opti-
mal GEE, and (iii) conditional likelihood with order statis-
tics. We conduct simulation studies of (X,Y ) following
bivariate normal distribution(

Y
X

)
∼ N

[(
µ1

µ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)]
,

with µ1 = 2, µ2 = 0.4, σ1 = 1, σ2 = 3, ρ = 0.3. The
missingness mechanism is set as follows:

p(Rx = 1 | Y ) = expit(−0.5 + Y ),

p(Ry = 1 | X,Rx) = expit(2−Rx + 0.7X).

Under this setup, approximately 5% of observations have
both X and Y missing, 16% of observations have X missing
and Y observed, 25% of observations have X observed and
Y missing and 54% of observations have both X and Y
observed. Under the above setup, we have

X | Y ∼ N(α+ βY, σ2) = N(−1.4 + 0.9Y, 8.19)

OR = exp
{ β

σ2
(xi − xk)(yi − yk)

}
.
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Figure 3: OR estimation with varying sample size.

Table 1: Parameter estimates with varying sample size.

Non-optimal GEE Optimal GEE
N Statistics α β α β

500 bias 0.1411 -0.0335 0.0613 -0.0028

MSE 0.0199 0.0011 0.0038 0.0000

SD 0.7980 0.3346 0.7830 0.3037

1000 bias 0.1079 -0.0281 0.1010 -0.0248

MSE 0.0116 0.0008 0.0102 0.0006

SD 0.6586 0.2601 0.6142 0.2467

2000 bias -0.0820 0.0348 -0.0332 0.0140

MSE 0.0067 0.0012 0.0011 0.0002

SD 0.7864 0.3081 0.7043 0.2722

4000 bias -0.0213 0.0088 -0.0242 0.0097

MSE 0.0005 0.0001 0.0006 0.0001

SD 0.5989 0.2249 0.4927 0.1795

Assuming the nuisance parameters σ1, σ2 are known, we
aim at estimating α and β with non-optimal and optimal
GEE approaches. We further estimate the odds ratio when
(xi − xk)(yi − yk) = 1 using all three aforementioned
methods. For non-optimal GEE, we choose f(Y ) = (1, Y ).
Note that for the optimal GEE, fopt(Y ) might be a function
of α, β. In such scenarios, to construct f̂opt(Y ), we utilize
the estimated values α̂ and β̂, obtained as medians over
100 simulation runs from the non-optimal GEE. All code
necessary to reproduce our simulations is included with this
submission.

We evaluate the performance of our three proposed estima-
tors based on three main criteria: (i) finite sample behavior
as sample size increases, (ii) bias behavior as a result of
model misspecification for p(Ry = 1 | X,Rx = 1), and
(iii) efficiency behavior as a result of varying the correlation
between X and Y. For each case, we conduct 100 simulation
runs. The empirical comparisons for the second and third

criteria are deferred to Appendix F due to page limits.

Figure 3 illustrates how the odds ratio estimation varies
across a range of sample sizes from 500 to 4000. In order
to ensure a fair comparison across the three methods, we
assume that the intercept α of E(X | Y ) is known for both
non-optimal and optimal GEEs. The results demonstrate
that all three methods yield unbiased estimates with reduced
estimation uncertainty as the sample size increases. The
conditional likelihood estimators are less efficient followed
by non-optimal GEE, especially when the sample size is
small. Overall, all three methods provide comparable OR
estimates with small bias, mean-squared error (MSE), and
standard deviation (SD) when the sample size is large.

Apart from OR estimation, the GEE approach is also ca-
pable of estimating the intercept α. Table 1 compares the
performance of the two GEEs for estimating α and β, in
terms of bias, MSE, and SD. As expected, the results show
that the optimal GEE method outperforms the non-optimal
GEE method in terms of smaller SD, regardless of the sam-
ple size. Additionally, for small sample sizes, the optimal
GEE exhibits smaller bias and MSE than the non-optimal
GEE. For additional simulations, see Appendix F.

8 CONCLUSIONS

In this paper, we considered a MNAR model which, like the
self-censoring missingness mechanism, is an impediment
to nonparametric identification of the complete-data distri-
bution. We provided sufficient identification assumptions
for both target and full laws by examining the rich class
of exponential family distributions. We provided different
semiparametric estimation strategies for computing parame-
ters of the underlying joint distribution that can be used for
pairwise independence tests and model selection purposes.
An interesting avenue for future work is the exploration of a
doubly-robust estimation theory that would enable the use
of more flexible machine learning and statistical models in
computing various model parameters.
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