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Abstract

Graph Similarity Computation (GSC) is essential to wide-ranging graph appli-1

cations such as retrieval, plagiarism/anomaly detection, etc. The exact computation2

of graph similarity, e.g., Graph Edit Distance (GED), is an NP-hard problem that3

cannot be exactly solved within an adequate time given large graphs. Thanks4

to the strong representation power of graph neural network (GNN), a variety of5

GNN-based inexact methods emerged. To capture the subtle difference across6

graphs, the key success is designing the dense interaction, which, however, is a7

trade-off between speed and accuracy. For Slow Learning of graph similarity, this8

paper proposes a novel early-fusion approach by designing a co-attention-based9

feature fusion network on multilevel GNN features. To further improve the speed10

without much accuracy drop, we introduce an efficient GSC solution by distill-11

ing the knowledge from the slow early-fusion model to the student one for Fast12

Inference. Such a student model also enables the offline collection of individual13

graph embeddings, speeding up the inference time in orders. To address the in-14

stability through knowledge transfer, we decompose the dynamic joint embedding15

into the static pseudo individual ones for precise teacher-student alignment. The16

experimental analysis on the real-world datasets demonstrates the superiority of17

our approach over the state-of-the-art methods on both accuracy and efficiency.18

Particularly, we speed up the prior art by 65x on the benchmark AIDS data.19

1 Introduction20

Measuring the similarity across graphs, i.e., Graph Similarity Computation (GSC), is one of the21

core problems of graph data mining, centered around by multiple downstream tasks such as graph22

retrieval [1, 2], plagiarism/anomaly detection [22, 40], graph clustering [38], etc. As shown in Fig. 1,23

the graph similarity can be defined as distances between graphs, such as Graph Edit Distance (GED).24

The conventional solutions towards GSC are the exact computation of these graph distances, which,25

however, is an NP-hard problem. Therefore, such exact solutions are less favorable when handling26

large-scale graphs due to the expensive computation cost. Computational time, especially run time in27

inference stage, is particularly important in industrial scenario. As a motivating example, in graph-28

structured molecules or chemical compounds query for in-silico drug screening, fast identifying29

similar compounds in a large database is a key process [25].30

Leveraging the strong representational power of graph neural network (GNN) [21, 13, 42, 41], the31

GNN-based approximate GSC solutions have gained increasing popularity. To adapt GNNs to the32

GSC task, the target similarity score (e.g., GED) is normalized into the range of (0, 1]. In this way, the33

GSC can be regarded as a single-value regression problem that outputs a similarity score given two34

graphs as inputs. A standard design can be summarized as a twin of GNNs bridged by a co-attention35

with a Multi-layer Perception (MLP) stacked as the regression head. Such approaches can be trained36
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Figure 1: Illustration of graph edit distance (GED), which is defined as the number of edit operations
in the optimal path to transform the source graph to the target graph.

in a fully-supervised way using the Mean Square Error (MSE) loss computed over the ground truth37

similarity score. Many GNN-based GSC methods [1, 2, 22] followed such strategy, which, however,38

suffers from the fusion issue.39

The paper presents a novel solution to both effectively and efficiently address the task of approximate40

GSC. Compared to the commonly used graph convectional network as the backbone [1, 2], this paper41

adopts a more robust network, i.e., Graph Isomorphism Network (GIN) [42]. Cross-graph fusion is42

essential to the model. The multi-scale features within different GIN layers are fused with a new43

design. We have adopted an attention layer stacked over the concatenated cross-graph features for44

smooth feature fusion. To this end, similar features will be assigned with more weights to contribute45

to the desired task. Moreover, to make the model easier to deploy, we take an MLP for feature46

learning which is simple but effective to achieve cutting-edge performance.47
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Figure 2: Illustration of knowledge distillation
to achieve a fast model (right side) given a
early-fusion-based slow model (left side).

Intuitively, speed and accuracy can be considered48

as a trade-off. GSC naturally requires dense con-49

nections/interactions between the two input graphs,50

which will consequently cause increasing compu-51

tations as the cost. This paper focuses on the effi-52

ciency of inference speed which can be addressed53

by either model compression or faster data load-54

ing pipeline. Especially in industrial scenarios, the55

raw graph data are usually pre-processed as the em-56

beddings off-line that can be easily applied to the57

real-time downstream tasks, e.g., molecular graph58

retrieval. However, as shown in Fig. 2, most of the59

co-attention-based GSC solutions employ feature60

fusion in the early stage, which only outputs the61

joint embedding of pairing graphs. Inspired by [26],62

we propose a lightweight model that removes all the early feature fusion modules in the encoder63

for efficient GSC. In this way, as shown in Fig. 2, the individual embedding of each graph can be64

collected by a Siamese GNN. Such pairing graph embeddings will be fused with an attention layer to65

predict the final similarity score.66

To overcome the accuracy drop of such a small network, we take a novel paradigm of Knowledge67

Distillation (KD) specifically designed for our task. As shown in Fig. 3, we propose an early-feature68

fusion network regarded as the teacher model, and the student model is a siamese network without69

co-attention. It is found that the direct distillation of joint embeddings fails to work where the KD70

loss disturbs largely during training. To solve this, we generate the pseudo individual embeddings71

of the teacher model and use them for KD by minimizing their relational distances [29]. To ensure72

pseudo individual embeddings fully covering the information of raw graphs, we further apply an73

MSE loss on the reconstructed joint embeddings concatenated from pseudo individual ones. We have74

verified that there is only a marginal accuracy drop compared with the original joint embeddings,75

which justifies the claim above. To sum up, our contributions can be summarized in three folds:76

• We introduce a new early-feature fusion model to achieve the competitive accuracy by77

designing a strong co-attention network and taking the GIN as the backbone.78

• For efficient inference and off-line embedding collection, we propose a novel Knowledge79

Distillation method for GSC where the joint embeddings are decomposed to distill.80

• Extensive experiments on the popular GED benchmarks demonstrate the superiority of our81

model over the state-of-the-art GSC methods on both accuracy and efficiency. Compared82

with the co-attention models, there is a 65 times faster in inference speed compared with83

the best competitor on AIDS dataset.84
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2 Related Works85

2.1 Graph Similarity Computation (GSC)86

Graph similarity computation measures the similarity of two given graphs, where similarity metrics87

can be defined as Graph Edit-Distance [6], Graph Isomorphism [8], and Maximum Common Subgraph88

[7]. Exact computation of these metrics is generally an NP-complete problem [47]. To speed up89

the computation, kernel-based methods have been extensively proposed to approximate the exact90

solvers [43, 3, 28, 44]. Recently, inspired by the strong representation power of deep neural network,91

a number of neural network based methods have been proposed and demonstrated a huge success92

[46, 1, 2, 24, 22, 40, 39]. Among them, regression-based similarity learning has a great promise due93

to the competitive performance in both efficiency and efficacy [1, 22, 2]. The intuition here is to94

learn an embedding vector using a graph neural network (GNN), and then measure the similarity of95

graph embeddings. While such a graph-level embedding encoded by GNN alone is not sufficient96

to well distinguish the nuances of subgraph level structures. To integrate subgraph information for97

final similarity computation, several methods are proposed recently, such as node-level pairwise98

comparison [1], cross-graph attention-based matching [22], multi-scale neighbor aggregation [2], etc.99

Despite the superior efficacy reported under various metrics (such as Accuracy, Mean Squared Error100

(mse), Spearman’s Rank Correlation Coefficient), the complex subgraph matching/fusion components101

(termed ‘early-fusion’ in Fig. 2) in different layers dramatically slow down the similarity measure.102

Moreover, early-fusion prevents pre-computing the embeddings for all candidate graphs for further103

reducing inference time in the graph retrieval scenario. Motivated by this, we propose a slow learning104

and fast inference method by leveraging the knowledge distillation idea to transfer the fine-grained105

but slowly learned early-fusion teach model to the fast-inference student model.106

2.2 Knowledge Distillation (KD)107

Knowledge distillation is a general neural network training method, where a (typically pretrained)108

teacher network is introduced to guide the learning of a student network. Its idea was first pioneered109

by Bucilua et al. [5] to compress large machine learning models, where they proposed to transfer110

the knowledge of a model ensemble into a neural network by labeling unlabeled data as transfer111

set. This idea was later refined by Hinton et al. [16], where they adopted softened probabilities112

of the teacher as a target for the student to learn and coined the term “knowledge distillation”.113

Ever since, many methods have been proposed revolving around the central question in KD: “what114

is the definition of knowledge to be distilled”. Popular definitions include feature distance [33],115

feature map attention [45], feature distribution [30], activation boundary [15], inter-sample distance116

structure [29, 31, 23, 35], and mutual information [34]. See [37, 11] for a more comprehensive117

survey. [26] is proposed to distill separate models from a co-attention one. Despite the progress,118

they mainly focus on convolutional neural networks for vision tasks (mainly image recognition) or119

recurrent neural networks for sequential data tasks (e.g., for natural language understanding [19]).120

3 Approach121

This section will introduce 1) the architecture of the early-fusion network (i.e., teacher model); 2) the122

KD process and its interpretation. Before that, we start from the formalized problem definition.123

3.1 Problem Formulation124

Formally, a graph G is defined upon the node set V and edge set E as G = (V, E). In specific, the125

edge linking the a pair of nodes including u ∈ V and v ∈ V can be denoted as the (u, v) ∈ E . In126

our setting, all the accessible graphs are undirected, i.e., (u, v) ∈ E ↔ (v, u) ∈ E . The quantity127

of nodes is represented as N = |V| . A convenient way to represent the graphs is the adjacency128

matrix A ∈ R|V|×|V|. We denote the presence of edges as A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0129

otherwise. Mostly, graph attributes (e.g., node labels) are available. Such node-level features can be130

denoted as a real-value matrix X ∈ R|V|×m with the m dimension and the order of feature matrix X131

is consistent with the adjacency matrix [12].132

In GSC task, we have the access to pairing graphs Gi and Gj ∈ D, whereD = {G0,G1, ...} is the graph133

set. The similarity of such two graphs can be represented as Graph Edit Distance (GED) or Maximum134

Common Subgraph (MCS). As shown in Fig. 1, the GED is defined as the number of edit operations135

in the optimal trajectory to transform the source graph to the target. The MCS is the maximum136
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Figure 3: Overview of early-feature fusion network (Teacher Net) which is composed of a feature
encoder and a regression head as the whole. Within the the feature encoder, there are multiple
components including GIN as the backbone, the Embedding Fusion Network (EFN) and graph
pooling. The regression head is a MLP which projects the joint embedding into the desired similarity.

subgraph common to both two graphs. To well fit GNN, the standard GED value is normalized as137

the nGED, i.e., nGED(Gi,Gj) =
GED(Gi,Gj)

(|G1|+|G2|)/2 . In the following, nGED should be transformed to the138

value ranging (0, 1] as the ground truth similarity score sij , i.e., sij = exp(−nGED(Gi,Gj)) ∈ S,139

where S ∈ R|D|×|D| indicates the similarity matrix among all the graphs [2] .140

3.2 Early-fusion Network (Teacher Model)141

As discussed above, the key success of GSC is to enrich the interaction between the pairs of graphs142

through feature extraction. Therefore, our teacher model follows the conventional approaches [1, 2,143

22] that fuse the cross-graph features in the early stage. The architecture of our proposed early-fusion144

(teacher) model is shown in Fig. 3. Specifically, we take the Graph Isomorphism Network (GIN) [42]145

as the backbone model for abstract feature extraction. The multi-level features are encoded within146

different convolution layers. For smooth fusion, we take an attention layer to enrich the representation147

ability of the embeddings and take an MLP for further feature learning. More details are given below.148

3.2.1 Graph Isomorphism Network (GIN)149

The isomorphism on graphs, i.e., Gi ' Gj , is defined as a bijection between Gi and Gj : f : V (Gi)→150

V (Gj). Graph isomorphism is highly related to GSC where the graphs isomorphism also represents151

that the GED is 0: Gi ' Gj ↔ GED(Gi,Gj) = 0. Therefore, the strong power of GIN in representing152

the graph isomorphism will be beneficial to GSC. GNN involves multiple learning steps, including153

message passing, node feature updating, and readout. Let A : G → h ∈ Rd denoting a general GNN.154

The iterative updating of node features from the (k − 1)-th to the k-th layer can be formulated as:155

h(k)v = φ
(
h(k−1)v , f(

{
h(k−1)u : u ∈ N (v)

}
)
)
, (1)

where N (v) is the set of neighbouring nodes of node v and its embedding at layer k is denoted as156

h
(k)
v . φ and f represent the different mapping functions. In GIN, it has been discussed that the MLP157

can model the f and φ very well due to the universal approximation theory [18, 17]. Therefore, the158

composition of f (k+1) ◦ φ(k) is replaced by an MLP. The node embedding of GIN is updated as:159

h(k)v = MLP(k)
(

(1 + ε(k)) · h(k−1)v +
∑

u∈N (v)

h(k−1)u

)
, (2)

where ε(k) can be either learnable or fix parameter. To readout the graph’s global embedding, multiple160

order-invariant mapping functions, such as ‘mean’, ‘max’ or ‘sum’, are useful for information161

aggregation. In GIN, it has been verified that ‘sum’ is the most powerful one to learn and model all162

the labels without the constraints of node quantities. Therefore, GIN takes the ‘sum’ as the aggregator:163

164

hG = CONCAT
(

(sum(
{
h(k)v |v ∈ G

}
)|k = 0, ...,K

)
, (3)

where the features in all the layers, i.e., from layer 0 to layer K, are concatenated as the global feature.165

In this paper, we take K as 2 where there are 3 GIN layers in total for feature learning.166
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Figure 4: Illustration of embedding decomposition and KD process between the teacher and student
models. The pseudo individual embeddings, which are applied for KD, are collected as the linear
subtraction between joint embedding and duplicate graph embedding. More details are in Sec. 3.3.

3.2.2 Embedding Fusion Network (EFN)167

Feature fusion across graphs is crucial for GSC. In this paper, we have proposed a novel Embedding168

Fusion Network (EFN) as part of the whole framework to address such a challenge. The inputs169

fed into EFN are graph-level embeddings, similar to [1]. In specific, given the node-level feature170

X ∈ R|V|×m where the n-th row, xn ∈ Rm representing the embedding of node n, we firstly obtain171

the global context c ∈ Rm as c = tanh( 1
NW

∑N
n=1 xn), where W ∈ Rm×m is a learnable matrix.172

Then, there is a node-wise attention to aware of the similarity between node and global context:173

h =
∑N
n=1 σ(xTn cxn) where σ(·) is the sigmoid function and h ∈ Rm is the graph-level embedding.174

The concatenated feature of graph i and j is denoted as hij = CONCAT(hi, hj) ∈ R2m. Since175

features hi, hj come from different graphs, it is necessary to weigh the importance of each for the176

selection of useful ones. The attention mechanism can help to explore the element-wise dependence177

among the features of two graphs for concatenating them smoothly in the feature space. Therefore,178

we apply an attention layer on the concatenated feature hij to accomplish this goal as:179

h∗ij = MLP(ϕ(WUδ(WDhij)) · hij + hij), (4)

where h∗ij ∈ Rd is regarded as the joint embedding of graph i and graph j, and ϕ(·) and δ(·) denote180

the sigmoid gating and ReLU function respectively. WD is the weight set of a NN layer, which acts181

as downscaling with reduction ratio r assigned as 4. After ReLU activation, the low-dimension signal182

is then increased to hij with the ratio r by a upscaling layer, whose weight set is denoted as WU .183

As shown in Fig. 3, there is an additional EFN between the feature encoder and regression head. Such184

EFN is applied to fusing the multi-level joint embeddings across pairing graphs. Following the similar185

strategy, we firstly achieve the concatenated multi-level features hallij = CONCAT(h
(1)
ij , h

(2)
ij , h

(3)
ij ) ∈186

R3d. Then, an EFN is applied to take the concatenated embedding hallij for multi-level feature fusion187

as Eq(4): h∗ij = EFN(hallij ) ∈ RD, where D is assigned as 16.188

The whole early-fusion network consists of two components: the encoder net and the regression189

net parameterized by ΘE and ΘR. As shown in Fig. 3, the GIN and EFNs stated above can be190

summarized as an encoder net as h∗ij = E(Gi,Gj ,ΘE). Then, an MLP-based regression net is191

attached to project the joint embedding h∗ij into the desired similarity score sij optimized by the192

MSE loss as:193

Lreg =
1

|D|
∑
i,j∈D

(
R(E(Gi,Gj ,ΘE),ΘR)− sij

)2
, (5)

where R(·) denotes the regression network and D represents the set of all the training graphs.194

3.3 Efficient Graph Similarity Computation195

Although the proposed early-fusion network can achieve the competitive results with a similar time196

cost as previous co-attention-based methods [1, 2, 22], there are two crucial limitations on the197

efficiency of such methods: 1) the individual graph embeddings are unable to collect; 2) there is still198

a room to improve inference speed. In the paper, we have further taken the Knowledge Distillation199

(KD) and linear regularization for embedding decomposition to address such two challenges.200

5



3.3.1 Embedding Decomposition201

To decompose the joint embedding h∗ij into the separate individual embeddings h∗i and h∗j is a202

necessary step for KD. The primary reason for embedding decomposition is that we hope to achieve203

the individual embeddings for offline storage. The other reason involves the stability of the knowledge204

transfer. We found that distilling the joint embeddings between the teacher and student models failed205

to work. More details about this point will be provided in the ablation study of Sec. 4.3. Such a206

phenomenon indicates the necessity to separate the individual ones from the joint embedding. Then,207

the individual features will be aligned between the teacher and student models through the KD loss.208

The detail of the proposed linear embedding decomposition is shown in Fig. 4. The basic assumption209

of this design is that the joint embedding might be represented as the linear combination of individual210

embeddings in the high-dimensional feature space. Specifically, given graph A and graph B, the211

joint embedding can be easily achieved as h∗AB = E(GA,GB). Moreover, we also have access to212

the h∗AA = E(GA,GA) and h∗BB = E(GB ,GB) given duplicate inputs. Under the assumption of213

linear combination, the pseudo individual graph embedding will be computed as h∗aB = h∗AB −h∗AA214

where h∗aB is supposed to cover all the knowledge of graph B and parts of graph A. And the pseudo215

individual graph embedding of graph A is collected in the same way: h∗Ab = h∗AB − h∗BB . To216

ensure the consistence with the desired task, we later concatenate the pairs of pseudo individual217

graph embeddings as h∗AaBb = CONCAT(h∗aB ,h
∗
Ab) that redundantly covers the knowledge of joint218

embedding h∗AB . Another MLP-based regression network R′ is applied to project it into the desired219

target score R′(h∗AaBb,Θ
′
R) ∈ R optimized by the MSE loss as Eq( 4):220

L
′

reg =
1

|D|
∑
i,j∈D

(
R′([E(Gi,Gj ,ΘE)−E(Gi,Gi,ΘE);E(Gi,Gj ,ΘE)−E(Gj ,Gj ,ΘE)],ΘR′)−sij

)2
,

(6)
where [ · ; · ] represents the operator of two features concatenation. More details and the verification221

of the proposed linear embedding decomposition are provided in the ablation study of Sec. 4.3.222

3.3.2 Knowledge Distillation (KD)223

To get a fast model from a slow one, there are multiple compression solutions such as pruning,224

quantitation, etc. This paper adopts a more practical and effective method to handle this issue by using225

the knowledge distillation [26, 16]. As shown in Fig. 4, with the linear embedding decomposition of226

the joint feature hTAB , we could obtain pseudo individual embeddings hTaB and hTAb of the teacher227

model. For the student model, we take a siamese GIN as the feature encoder, i.e., hSA = GIN(GA,ΘS
E)228

and hSB = GIN(GB ,ΘS
E). Then, the next step is to fuse the individual embeddings to achieve the229

joint embedding as hSAB = I(hSA,h
S
B ,Θ

S
I ), where I(·) is a standard EFN. The pseudo individual230

embeddings, i.e., hSAb and hSaB , is computed following the same strategy of the teacher network.231

To enforce the student model to inherit the teacher model’s knowledge, it is necessary to minimize232

the discrepancy of the pseudo individual features. Here we apply both the first order and second order233

distance [26] for distillation. Therefore, the knowledge distillation (KD) loss is formulated as:234

LKD(GA,GB) = α
2 (
∥∥hTAb − hSAb

∥∥
1

+
∥∥hTaA − hSaB

∥∥
1
) + (1− α)lδ(ψD(hTAb,h

T
aB),hSAb,h

S
aB),

(7)

where ψD(hi,hj) = ‖hi − hj‖1 is distance-wise potential function measuring the first order distance235

in the same domain, and lδ is the Huber loss [26]. The second order distance is used to maintain the236

relational information. α is a trade-off parameter assigned as 0.5. On the top of the KD layer, an237

MLP-based regression network will be attached over the joint embedding hSAB . Apart from the KD238

loss, there is a supervision (i.e., MSE) loss LSreg on the student model to fulfill the object of the task.239

4 Experiments240

Although our proposed approach can be generalized to different graph distances, we pick the Graph241

Edit Distance (GED) as the evaluation task, which follows the standard protocol [1].242

4.1 Setup243

We deploy the GIN [42] as the backbone of the encoder network. The regression network is a two-244

layer MLP with randomly initialed weights. To optimize the proposed model, we take the Adam [20]245

as the optimizer based on PyTorch Geometric (PyG) [10]. The learning rate is assigned as 0.001 with246
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Table 1: Quantitative GED results of baselines and our method over AIDS, LINUX, IMDB and ALKANE.

Methods AIDS LINUX

mse ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑ mse ↓ ρ ↑ τ ↑ p@10 ↑ p@20 ↑
Beam 12.09 0.609 0.463 0.481 0.493 9.268 0.827 0.714 0.973 0.924

Hungarian 25.30 0.510 0.378 0.360 0.392 29.81 0.638 0.517 0.913 0.836
VJ 29.16 0.517 0.383 0.310 0.345 63.86 0.581 0.450 0.287 0.251

GENN-A* 0.635 0.959 - 0.871 - 0.324 0.991 - 0.962 -
SimGNN 1.189 0.843 0.690 0.421 0.514 1.509 0.939 0.830 0.942 0.933

E-SimGNN 2.096 0.869 0.699 0.534 0.641 0.469 0.982 0.892 0.971 0.968
GMN 1.886 0.751 - 0.401 - 1.027 0.933 - 0.833 -

GraphSim 0.787 0.874 - 0.534 - 0.058 0.981 - 0.992 -
Teacher 1.601 0.901 0.739 0.658 0.729 0.163 0.988 0.908 0.994 0.998
Student 1.546 0.898 0.736 0.649 0.724 0.293 0.984 0.898 0.978 0.983

Methods IMDB ALKANE

mse ρ τ p@10 p@20 mse ρ τ p@10 p@20
SimGNN 1.264 0.878 0.770 0.759 0.777 2.446 0.859 0.686 0.87 0.782

E-SimGNN 1.148 0.864 0.75 0.806 0.807 1.622 0.886 0.722 0.982 0.955
GMN 4.422 0.725 - 0.604 - - - - - -

GraphSim 0.743 0.926 - 0.828 - - - - - -
Teacher 0.553 0.938 0.829 0.872 0.878 0.533 0.930 0.787 0.998 0.991
Student 0.581 0.935 0.826 0.857 0.869 1.198 0.899 0.741 0.993 0.978

weight decay 0.0005. The batch size is 128, and the model will be trained over 6, 000 epochs. Our247

implementation depends on PyG-based re-implementations of SimGNN 1 and Extended-SimGNN 2.248

All experiments are run on the machine with Intel i7-5930K CPU@3.50GHz with 64GB memory.249

4.1.1 Benchmarks250

Our proposed method has been evaluated over four popular datasets: AIDS, LINUX, IMDB and251

ALKANE. We have used the standard dataloader, i.e., ‘GEDDataset’, directly provided in the PyG 3.252

• AIDS (i.e., AIDS700nef) is composed of 700 chemical compound graphs which is split into253

560/140 for training and test. Each graph has 10 or less nodes assigned with 29 types of labels.254

• LINUX dataset consists of program dependence graphs generated from the Linux kernel. Each255

graph represents a function, where a node represents a statement and an edge means the dependency.256

There are 1000 graphs in total with equal or less than 10 nodes each. The nodes have no labels.257

• IMDB dataset (i.e., “IMDB-MULTI”) has 1,500 unlabeled graphs representing ego-networks of258

movie actors/actresses. There will be an edge if the two actors/actresses show in the same movie.259

• ALKANE [4] is a purely structural dataset containing 120 chemical compound graphs. All the260

graphs are acyclic (i.e., trees) without node labels. There is no split of training and testing in the PyG.261

262

4.1.2 Evaluation Matrix263

Mean Squared Error (mse) (in the format of 10−3) is the most popular matrix that measures the264

average squared error between the predicted scores with the ground-truth similarities. Spearman’s265

Rank Correlation Coefficient (ρ) and Kendall’s Rank Correlation Coefficient (τ ) evaluate the266

correlation of ranking-wise computed results and ground-truth results. Precision at k (p@k) is the267

intersection of top k predicted results with the ground-truth top k over the value k.268

4.1.3 Baselines269

Beam [27] is a variant of the A* algorithm [14] in sub-exponential time by beam search. Hungar-270

ian [32] is the cubic-time algorithm based on the Hungarian Algorithm for bipartite graph matching,271

and the VJ [9] algorithm is a variant of Hungarian method. SimGNN [1] is a co-attention-based272

GSC method that directly predicts the GED score given two input graphs. Extended-SimGNN2 (i.e.,273

E-SimGNN) is an improved version of SimGNN using GIN as the backbone. GraphSim [2] is a274

1https://github.com/benedekrozemberczki/SimGNN
2https://github.com/gospodima/Extended-SimGNN
3https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/

datasets/ged_dataset.html#GEDDataset
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Table 2: Ablation study results over the AIDS and IMDB datasets. KD represents the knowledge distillation.

Methods AIDS IMDB

KD mse ρ τ p@10 p@20 mse ρ τ p@10 p@20
w/o Attn % 1.762 0.899 0.737 0.651 0.724 0.752 0.933 0.823 0.856 0.868
w/o GIN % 2.158 0.863 0.691 0.535 0.637 0.594 0.926 0.803 0.862 0.866

Single Level % 1.824 0.875 0.706 0.576 0.658 0.690 0.930 0.815 0.850 0.865
Student % 1.77 0.882 0.717 0.601 0.683 0.763 0.928 0.813 0.829 0.851
Teacher % 1.601 0.901 0.739 0.658 0.729 0.553 0.938 0.829 0.872 0.878

Joint Feat ! 2.258 0.874 0.703 0.588 0.679 1.032 0.872 0.761 0.814 0.829
1st Order ! 1.604 0.894 0.731 0.614 0.715 0.548 0.934 0.824 0.856 0.865
2nd Order ! 1.647 0.893 0.731 0.631 0.715 0.692 0.929 0.814 0.847 0.866
w/o L

′
reg ! 1.711 0.890 0.726 0.612 0.710 0.694 0.926 0.811 0.842 0.860

Student ! 1.546 0.898 0.736 0.649 0.724 0.581 0.935 0.826 0.857 0.869

Table 3: Inference time to solve GED computation on AIDS. Student-R means the student model with raw
input graphs. Student-F denotes that the embeddings are stored offline, which can be online loaded for inference.

Model Hungarian GENN-A* SimGNN E-SimGNN Teacher Student-R Student-F
Time (sec) 29.915 13.323 11.139 9.672 11.139 10.149 0.148

multi-scale model which fuses the cross-graph features in multiple GNN layers. GMN [22] is another275

GNN-based method. It manages to fuse the cross-graph information with the node-level message276

passing. GENN-A* [39] is the more recent work which applies the GNN to accelerate the hard GED277

solvers such as A*. Beam, Hungarian, VJ and GENN-A* are the GED solvers that require to output278

edit path, which, however, are hard to generalize to other GSC metrics. Most of the baseline results279

are copied from their published papers, and we run the Extended-SimGNN for results collection.280

(a) (b) (c)
Figure 5: t-SNE Visualization of joint embeddings on IMDB. (a)-(c) SimGNN; Extended-SimGNN;
Our Teacher Model. The color of dots represent the similarity score decreasing from 1 to 0.

4.2 Quantitative Results281

The quantitative results on GED are summarized in Tab. 1. The results of SimGNN on ALKANE are282

run by us. It is easily observed that the proposed methods, including both the early-fusion model (i.e.,283

teacher model) and student model, outperform the baselines on most of the scenarios. Although ours284

are beaten by GENN-A* in some cases, the proposed approaches have the superiority in extensibility285

and scalability since there is no need to output the edit path step-by-step. On the IMDB and ALKANE286

datasets, the teacher model obviously outperforms the baseline ones with a large margin. Comparing287

the performance of teacher and student model, there is a slight superiority of the former one in most288

of the cases. While the student model beats the teacher on the mse metric of the AIDS dataset, which289

means the reducing model redundancy can further improve the performance in some cases.290

4.3 Ablation Study291

To investigate the effects of each module, we introduce the ablation study on the AIDS and IMDB292

datasets in Tab. 2 and provide some visualization results in the Subsection 4.5. As shown in Tab. 2,293

the w/o KD setting has five different components including: without attention in EFN; taking GCN294

as the backbone (i.e., w/o GIN) to analyze the effects of GIN; Single Level meaning only taking the295

final-layer GIN feature for embedding fusion; Student and Teacher. It is reasonable to compare the296

student models with or without KD. By comparing such two results, the with-KD model has a strong297

superiority over the latter one. And we can easily find that the teacher model should be regarded298

as the upper bound of the with-KD student model. Considering the process of KD, the embedding299

decomposition proves to be useful since the joint feature KD (i.e., Joint Feat) is largely inferior to the300
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(a) (b) (c) (d)
Figure 6: The curve of losses through KD. (a)-(d): Training and validation MSE loss on AIDS;
Training and validation MSE loss on IMDB; KD loss on AIDS; KD loss on IMDB;

10 15 30 501 2 3 4 5Rank

△ =3△ =4△ =7△ =3

SimGNN
△ =0△ =0△ =0△ =0△=0

E-SimGNN
△ =4△ =1△ =0△ =3△ =0△ =0△ =0△ =0△ =0

Ours-T
△ =2△ =1△ =1△ =0△ =0△ =0△ =0△ =0△ =0

△ =7

△ =7

△ =2

100

Figure 7: Ranking results of SimGNN, E-SimGNN and our teacher model on IMDB. ∆ represents
the absolute difference between the ground truth GED and the GED of predicted result.

pseudo individual one. Although there is no much difference between the first-order and second-order301

distances, the combination of such two distances is helpful to boost the overall performance.302

4.4 Inference Time303

The comparison on inference time is shown in the Tab. 3 where the Hungarian and GENN-A* are304

copied from [39] and others are run by our own. The student model beats other methods in two305

orders in the case of embedding-based inference. Such results sufficiently indicate the high efficiency306

of our siamese-based student model in the GSC task, which has the potential for real-time setting.307

4.5 Analysis and Visualization308

Convergence Analysis. We evaluate the convergence of baseline methods as well as our proposed309

methods on the ablation scenarios in Fig. 6. Comparing the sub-figures (a) and (b), we can clearly see310

that the proposed method (i.e., ‘both’) reaches the lower MSE loss through iteration. Moreover, the311

Val-both loss is highly overlapped with the training loss (i.e., ‘Train-both’), which means that there is312

no clear overfitting of our models. In the KD case, the second-order loss is harder to minimize.313

Feature t-SNE Visualization. As illustrated in Fig. 5, we employ the t-SNE algorithm [36] to314

visualize joint embeddings obtained by the encoder given a fixed query graph. The features learned315

by our approach are more clustered and separable in comparison with (a) and (b).316

Example Ranking Results. As shown in Fig. 7, there are no clear differences and errors in the top317

5 ranking results. While, the baselines fail to rank the correct graphs in the later sequence, which318

indicates the superiority of our teacher model in handling the more challenging cases.319

5 Conclusion320

This paper proposes a novel GSC approach for fast inference based on the slow learning. The321

slow learning involves designing a co-attention-based feature fusion network on multilevel GNN322

features that achieves cutting-edge accuracy. To further accelerate the inference speed without much323

accuracy drop, we apply the knowledge distillation to compress the proposed co-attention network,324

i.e., teacher model, to the student one. Moreover, such a student model also enables the offline325

collection of individual graph embeddings, which is beneficial for online retrieval. We decompose326

the joint embedding into the pseudo individual ones linearly for precise teacher-student alignment327

to address the instability through knowledge transfer. The experiments on four real-world datasets328

demonstrate our approach’s superiority over the previous methods on both accuracy and efficiency.329
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