
torchode: A Parallel ODE Solver for PyTorch

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce an ODE solver for the PyTorch ecosystem that can solve multiple1

ODEs in parallel independently from each other while achieving significant per-2

formance gains. Our implementation tracks each ODE’s progress separately and3

is carefully optimized for GPUs and compatibility with PyTorch’s JIT compiler.4

Its design lets researchers easily augment any aspect of the solver and collect and5

analyze internal solver statistics. In our experiments, our implementation is up to6

4.4 times faster per step than other ODE solvers and it is robust against within-batch7

interactions that lead other solvers to take up to 4 times as many steps.8

1 Introduction9

Ordinary differential equations (ODEs) are the natural framework to represent continuously evolving10

systems. They have been applied to the continuous transformation of probability distributions (Chen11

et al., 2018; Grathwohl et al., 2019), modeling irregularly-sampled time series (De Brouwer et al.,12

2019; Rubanova et al., 2019), and graph data (Poli et al., 2019) and connected to numerical methods13

for PDEs (Lienen & Günnemann, 2022). Various extensions (Dupont et al., 2019; Xia et al., 2021;14

Norcliffe et al., 2021) and regularization techniques (Pal et al., 2021; Ghosh et al., 2020; Finlay15

et al., 2020) have been proposed and (Gholami et al., 2019; Massaroli et al., 2020; Ott et al., 2021)16

have analyzed the choice of hyperparameters and model structure. Despite the large interest in these17

methods, the performance of PyTorch (Paszke et al., 2019) ODE solvers has not been a focus point18

and benchmarks indicate that solvers for PyTorch lag behind those in other ecosystems.119

torchode aims to demonstrate that faster model training and inference with ODEs is possible20

with PyTorch. Furthermore, parallel, independent solving of batched ODEs eliminates unintended21

interactions between batched instances that can dramatically increase the number of solver steps and22

introduce noise into model outputs and gradients.23

2 Related Work24

The most well-known ODE solver for PyTorch is torchdiffeq that popularized training with the25

adjoint equation (Chen et al., 2018). Their implementation comes with many low- to medium-order26

explicit solvers and has been the basis for a differentiable solver for controlled differential equations27

(Kidger et al., 2020). Another option in the PyTorch ecosystem is TorchDyn, a collection of tools28

for implicit models that includes an ODE solver but also utilities to plot and inspect the learned29

dynamics (Poli et al., 2021). torchode goes beyond their ODE solving capabilities by solving30

multiple independent problems in parallel with separate initial conditions, integration ranges and31

Code and supplementary material are available at figshare.com/s/a65e3c6be16939da495b.
1benchmarks.sciml.ai, github.com/patrick-kidger/diffrax/tree/main/benchmarks

Submitted to the DLDE Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS
2022). Do not distribute.

https://figshare.com/s/a65e3c6be16939da495b
https://benchmarks.sciml.ai
https://github.com/patrick-kidger/diffrax/tree/main/benchmarks

solver states such as accept/reject decisions and step sizes, and a particular concern for performance32

such as compatibility with PyTorch’s just-in-time (JIT) compiler.33

Recently, Kidger has released with diffrax (2022) a collection of solvers for ODEs, but also con-34

trolled, stochastic, and rough differential equations for the up-and-coming deep learning framework35

JAX (Bradbury et al., 2018). They exploit the features of JAX to offer many of the same benefits36

that torchode makes available to the PyTorch community and diffrax’s internal design was an37

important inspiration for the structure of our own implementation.38

Outside of Python, the Julia community has an impressive suite of solvers for all kinds of differential39

equations with DifferentialEquations.jl (Rackauckas & Nie, 2017). After a first evaluation40

of different types of sensitivity analysis in 2018 (Ma et al.), they released DiffEqFlux.jl which41

combines their ODE solvers with a popular deep learning framework (Rackauckas et al., 2019).42

3 Design & Features of torchode43

We designed torchode to be correct, performant, extensible and introspectable. The former two44

aspects are, of course, always desirable, while the latter two are especially important to researchers45

who may want to extend the solver with, for example, learned stepping methods or record solution46

statistics that the authors did not anticipate.47

Table 1: Feature comparison with existing PyTorch ODE solvers.

torchode torchdiffeq TorchDyn

Parallel solving ✓ ✗ ✗
JIT compilation ✓ ✗ ✗

Extensible ✓ ✗ ✓
Solver statistics ✓ ✗ ✗

Step size controller PID I I

The major architectural differ-48

ence between torchode and49

existing ODE solvers for Py-50

Torch is that we treat the batch51

dimension in batch training52

explicitly. This means that the53

solver holds a separate state54

for each instance in a batch,55

such as initial condition, inte-56

gration bounds and step size, and is able to accept or reject their steps independently. Batching57

instances together that need to be solved over different intervals, even of different lengths, requires no58

special handling in torchode and even parameters such as tolerances could be specified separately59

for each problem. Most importantly, our parallel integration avoids unintended interactions between60

problems in a batch that we explore in Section 4.1.61

Two other aspects of torchode’s design that are of particular importance in research are extensibility62

and introspectability. Every component can be re-configured or easily replaced with a custom63

implementation. By default, torchode collects solver statistics such as the number of total and64

accepted steps. This mechanism is extensible as well and lets a custom step size controller, for65

example, return internal state to the user for further analysis without relying on global state.66

The speed of model training and evaluation constrains computational resources as well as researcher67

productivity. Therefore, performance is a critical concern for ODE solvers and torchode takes68

various implementation measures to optimize throughput as detailed below and evaluated in Sec-69

tion 4.2. Another way to save time is the choice of time step. It needs to be small enough to control70

error accumulation but as large as possible to progress quickly. torchode includes a PID controller71

that is based on analyzing the step size problem in terms of control theory (Söderlind, 2002, 2003).72

These controllers generalize the integral (I) controllers used in torchdiffeq and TorchDyn and73

are included in DifferentialEquations.jl and diffrax. In our evaluation in Appendix C these74

controllers can save up to 5% of steps if the step size changes quickly.75

What makes torchode fast? ODE solving is inherently sequential except for efforts on parallel-76

in-time solving (Gander, 2015). Taking the evaluation time of the dynamics as fixed, performance77

of an ODE-based model can therefore only be improved through a more efficient implementation78

of the solver’s looping code, so as to minimize the time between consecutive dynamics evaluations.79

In addition to the common FSAL and SSAL optimizations for Runge-Kutta methods to reuse80

intermediate results, torchode avoids expensive operations such as conditionals evaluated on the81

host that require a CPU-GPU synchronization as much as possible and seeks to minimize the number82

of PyTorch kernels launched. We rely extensively on operations that combine multiple instructions83

in one kernel such as einsum and addcmul, in-place operations, pre-allocated buffers, and fast84

2

−2 −1 0 1 2

Displacement x

−30

−20

−10

0

10

20

30
V

el
oc

ity
ẋ

Cycle length ≈ 42.6s

Time

Time

Phase-Space Diagram

0 200 400 600

Step

0

50

100

St
ep

Si
ze

[m
s]

Solving for one cycle

0% 25% 50% 75% 100%

Solver Progress

0

50

100

St
ep

Si
ze

[m
s]

Jointly solving two independent oscillators
Original
1/4 cycle shift

Solved jointly

1 2 4 8 16 32 64 128 256 512 1024

n oscillators shifted by 1/2n cycles

1000

2000

3000

4000

So
lv

er
St

ep
s

Solving many shifted oscillators
torchode

torchdiffeq

diffrax

TorchDyn

Van der Pol’s damped oscillator (µ = 25)

Figure 1: Van der Pol’s oscillator is a cyclic system with nonlinear damping that exhibits a strong
variation in step size under explicit methods such as 5th order Dormand-Prince. If multiple oscillators
are treated jointly, the stiffest oscillator dominates the common step size, increasing the number of
solver steps unnecessarily. torchode solves the instances independently, keeping the steps constant
and the efficiency high. Step sizes have been smoothed by removing high-frequency variations.

polynomial evaluation via Horner’s rule that saves half of the multiplications over the naive evaluation85

method. Finally, JIT compilation minimizes Python’s CPU overhead and allows us to reach even86

higher GPU utilization.87

What slows torchode down? The extra cost incurred by tracking a separate solver state for every88

problem is negligible on a highly parallel computing device such as a GPU. However, because each89

ODE progresses at a different pace, they might pass a different number of evaluation points at each90

step. Keeping track of this requires indexing with a Boolean tensor, a relatively expensive operation.91

4 Experiments92

4.1 Batching ODEs: What could possibly go wrong?93

As is established practice in deep learning, mini-batching of instances is also common in the training94

of and inference with neural ODEs. A mini-batch is constructed by concatenating a set of n initial95

value problems of size p and then solving it as a single problem of size np. Since the learned96

3

Table 2: Loop time (LT) in milliseconds (one solver step excluding model evaluation time) and
corresponding speed up (SU) over torchdiffeq on a pure ODE problem (VdP), a discretize-then-
optimize setup (FEN) and an optimize-then-discretize setup (CNF).

VdP FEN CNF-Fw. CNF-Bw.

LT SU LT SU LT SU LT SU

torchdiffeq 3.58 ×1.0 3.9 ×1.0 3.4 ×1.0 7.4 ×1.0
TorchDyn 3.54 ×1.0 1.49 ×2.6 1.63 ×2.1 7.6 ×1.0
torchode 3.21 ×1.1 1.71 ×2.3 1.5 ×2.3 2.38 ×3.1

torchode-JIT 1.63 ×2.2 0.91 ×4.3 - - - -

dynamics still apply to each instance independently, this should have no adverse effects. However,97

jointly solving the individual problems means that they share step size and error estimate, and solver98

steps will be either accepted or rejected for all instances at once. In effect, the solver tolerances for a99

certain initial value problem vary depending on the behavior of the other problems in the batch.100

To investigate this problem, we will consider a damped oscillator as in Van der Pol’s (VdP) equation101

ẍ = µ(1− x2)ẋ− x. (1)

If the damping µ is significantly greater than 0, Eq. (1) has time-varying stiffness which means that102

an explicit solver (as is commonly used with neural ODEs) will exhibit a significant variation in step103

size over the course of a cycle of the oscillator. If we combine multiple instances of the oscillator104

with varying initial conditions in a batch, the common step size of the batch at any point in time will105

be roughly the minimum over the step sizes of the individual instances. Therefore, torchdiffeq106

and TorchDyn need up to four times as many steps to solve a batch of these problems as the parallel107

solvers of torchode and diffrax. See Fig. 1 for a visual explanation of the phenomenon.108

While the scenario of stacked VdP problems mainly reduces the efficiency of the solver, we believe109

that one could also construct an “adversarial” example that maximizes the error of a specific instance110

in a batch by controlling its effective tolerances.111

4.2 Benchmarks112

We evaluate torchode against torchdiffeq and TorchDyn in three settings: solving the VdP equa-113

tion and two learning scenarios to measure the impact that a carefully tuned, parallel implementation114

can have on training and inference of machine learning (ML) models. First, we consider finite element115

networks (FEN), a graph neural network that learns the dynamics of physical systems (Lienen &116

Günnemann, 2022), which we train via backpropagation through the solver (discretize-then-optimize).117

Second, we consider a continous normalizing flow (CNF) based on the FFJORD method (Grathwohl118

et al., 2019), which is trained via the adjoint equation (optimize-then-discretize) (Chen et al., 2018).119

The results in Table 2 show that torchode’s solver loop is significantly faster than torchdiffeq’s.120

Additionally, JIT compilation roughly doubles torchode’s throughput. See Appendix A for the full121

results, a detailed discussion and a complete description of the setups. The independent solving of122

batch instances explored in Section 4.1 seems to have only a small effect on the number of solver123

steps and achieved loss values (see Appendix A) for FEN and CNF, most likely because, overall, the124

learned models exhibit only small variations in stiffness.125

5 Conclusion126

We have shown that significant efficiency gains in the solver loop of continuous-time models such as127

neural ODEs and CNFs are possible. torchode solves ODE problems up to 4× faster than existing128

PyTorch solvers, while at the same time sidestepping any possible performance pitfalls and unintended129

interactions that can result from naive batching. Because torchode is fully JIT-compatible, models130

can be JIT compiled regardless of where in their architecture they rely on ODEs and automatically131

benefit from any future improvements to PyTorch’s JIT compiler. Finally, torchode simplifies132

high-performance deployment of ODE models trained with PyTorch by allowing them to be exported133

via ONNX (that relies on JIT) and run with an optimized inference engine such as onnxruntime.134

4

https://onnxruntime.ai

References135

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-136

rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.137

JAX: Composable transformations of Python+NumPy programs, 2018. 2138

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. Neural Ordinary139

Differential Equations. In Neural Information Processing Systems, 2018. 1, 2, 4.2, A140

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous141

Modeling of Sporadically-Observed Time Series. In Neural Information Processing Systems, 2019.142

1143

J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. Journal of Computa-144

tional and Applied Mathematics, 6:19–26, 1980. A145

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. In Neural Informa-146

tion Processing Systems, 2019. 1147

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M. Oberman. How to Train Your148

Neural ODE: The World of Jacobian and Kinetic Regularization. In International Conference on149

Machine Learning, 2020. 1150

Martin J Gander. 50 Years of Time Parallel Time Integration. In Multiple Shooting and Time Domain151

Decomposition Methods, pp. 69–113. Springer, 2015. 3152

Amir Gholami, Kurt Keutzer, and George Biros. ANODE: Unconditionally Accurate Memory-153

Efficient Gradients for Neural ODEs. In International Joint Conferences on Artificial Intelligence,154

2019. 1155

Arnab Ghosh, Harkirat Singh Behl, Emilien Dupont, Philip H. S. Torr, and Vinay Namboodiri.156

STEER: Simple Temporal Regularization For Neural ODEs. In Neural Information Processing157

Systems. arXiv, 2020. 1158

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:159

Free-Form Continuous Dynamics for Scalable Reversible Generative Models. In International160

Conference on Learning Representations, 2019. 1, 4.2, A161

Patrick Kidger. On Neural Differential Equations. arXiv, 2022. 2162

Patrick Kidger, James Morrill, James Foster, and Terry J. Lyons. Neural Controlled Differential163

Equations for Irregular Time Series. In Neural Information Processing Systems, 2020. 2164

Marten Lienen and Stephan Günnemann. Learning the Dynamics of Physical Systems from Sparse165

Observations with Finite Element Networks. In International Conference on Learning Representa-166

tions, 2022. 1, 4.2, A167

Yingbo Ma, Vaibhav Dixit, Mike Innes, Xingjian Guo, and Christopher Rackauckas. A Comparison168

of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential169

Equation Solutions. arXiv, 2018. 2170

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting171

Neural ODEs. In Neural Information Processing Systems, 2020. 1172

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ODE Processes.173

In International Conference on Learning Representations, 2021. 1174

Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. ResNet After All: Neural175

ODEs and Their Numerical Solution. In International Conference on Learning Representations,176

2021. 1177

Avik Pal, Yingbo Ma, Viral Shah, and Christopher Rackauckas. Opening the Blackbox: Acceler-178

ating Neural Differential Equations by Regularizing Internal Solver Heuristics. In International179

Conference on Machine Learning, 2021. 1180

5

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor181

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward182

Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,183

Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning184

Library. In Neural Information Processing Systems, 2019. 1185

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo186

Park. Graph Neural Ordinary Differential Equations. In Conference on Artificial Intelligence,187

Workshop on Deep Learning on Graphs: Methodologies and Applications, 2019. 1188

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park, and Stefano189

Ermon. TorchDyn: Implicit Models and Neural Numerical Methods in PyTorch. In Neural190

Information Processing Systems, Workshop on Physical Reasoning and Inductive Biases for the191

Real World, 2021. 2192

Chris Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon White, and Vaibhav Dixit.193

DiffEqFlux.jl - A Julia Library for Neural Differential Equations. arXiv, 2019. 2194

Christopher Rackauckas and Qing Nie. DifferentialEquations.jl – A Performant and Feature-Rich195

Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software, 5,196

2017. 2197

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent Ordinary Differential Equations for198

Irregularly-Sampled Time Series. In Neural Information Processing Systems, 2019. 1199

Gustaf Söderlind. Automatic Control and Adaptive Time-Stepping. Numerical Algorithms, 31(1-4):200

281–310, 2002. 3201

Gustaf Söderlind. Digital Filters in Adaptive Time-Stepping. ACM Transactions on Mathematical202

Software, 29:1–26, 2003. 3203

Ch Tsitouras. Runge–Kutta pairs of order 5 (4) satisfying only the first column simplifying assumption.204

Computers & Mathematics with Applications, 62(2):770–775, 2011. A205

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan M. Nguyen, Andrea L. Bertozzi, Stanley J. Osher, and Bao206

Wang. Heavy Ball Neural Ordinary Differential Equations. In Neural Information Processing207

Systems, 2021. 1208

6

Table 3: VdP-Benchmarks. All times are measured in milliseconds.

torchode torchode-JIT torchdiffeq TorchDyn diffrax

loop time 3.21 ± 0.11 1.629 ± 0.010 3.58 ± 0.04 3.54 ± 0.07 0.9014 ± 0.0011

Table 4: FEN-Benchmarks. All times are measured during the forward pass in milliseconds.

torchode torchode-JIT torchdiffeq TorchDyn

loop time 1.71 ± 0.05 0.91 ± 0.03 3.9 ± 0.3 1.49 ± 0.06

total time / step 11.9 ± 0.3 10.92 ± 0.14 14.1 ± 0.4 11.2 ± 0.4
model time / step 10.1 ± 0.3 9.92 ± 0.14 10.9 ± 0.3 9.6 ± 0.3

steps 13.2 ± 0.2 13.3 ± 0.2 13.6 ± 0.2 13.3 ± 0.3
MAE 0.845 ± 0.003 0.847 ± 0.005 0.846 ± 0.004 0.846 ± 0.004

A Detailed Benchmark Descriptions and Results209

The library versions we used are PyTorch 1.12.1, torchdiffeq 0.2.3 and TorchDyn 1.0.3 with210

an unreleased bug fix for the error estimate of the dopri5 method. For diffrax we used 0.2.1211

and JAX 0.3.16. All experiments used the 5th order Dormand-Prince method usually abbreviated212

dopri5 (Dormand & Prince, 1980) because it is consistently implemented across all libraries, even213

though the 5th order Tsitouras method tsit5 (Tsitouras, 2011), also available in torchode, is often214

recommended over it today.215

We ran all benchmarks on an NVIDIA Geforce GTX 1080 Ti GPU with an Intel Xeon E5-2630 v4216

CPU, because that is the most relevant configuration for deep learning applications and the situation217

that torchode is optimized for. In particular, torchode’s evaluation point tracking is implemented218

in a way that relies on the massive parallelism of a GPU.219

In general, we measured the total time, the model time and the solver time per step for each setup.220

The total time measures everything that happens during a forward pass and is computed by measuring221

the total time for a prediction. Therefore it includes the time spent evaluating the model (learned222

dynamics), the time spent inside the solver itself as well as any surrounding code. Then we measure223

separately the time spent evaluating the (learned) model/dynamics and the time spent inside the ODE224

solver (excluding the model time). The solver time divided by the number of solver steps is our main225

quantity of interest and we call it loop time. Different solver implementations often take different226

numbers of steps for the same problem due to differing but equally valid implementation decisions.227

However, the time that each solver needs to make one step is independent of, for example, how228

exactly an internal error estimate is computed. Therefore, loop time is a fair and accurate metric to229

compare implementation efficiency across solvers.230

All metrics and times are measured over three runs and are specified up to the first significant digit of231

the standard deviation; except, if that digit is 1, we give an extra digit. Table 2 shows the mean loop232

times without standard deviations.233

In the first benchmark, we solve a batch of 256 VdP problems for one cycle with µ = 2, absolute234

and relative tolerances of 10−5 and 200 evenly spaced evaluation points. Because evaluating the235

dynamics is so cheap in this case, we have not measured the model time separately for this setup and236

included it in the model time. Therefore, the loop time in Table 3 mostly measures how fast the solver237

can drive the GPU. torchode is then faster than torchdiffeq and TorchDyn because it uses many238

combined PyTorch kernels and fewer tensor operations in total, which means that it can schedule239

the cheap dynamics evaluations faster. JIT compilation amplifies this effect by reducing the CPU240

overhead of the Python interpreter.241

For the second benchmark, we have trained a FEN on the Black Sea dataset as in (Lienen &242

Günnemann, 2022) with batch size 8 and measure the times and metrics during the evaluation on the243

test set. First, we notice in Table 4 that, again, JIT compilation reduces the loop time of torchode244

significantly. Note that the learned dynamics are JIT compiled for all libraries, so this measures only245

7

Table 5: CNF-Benchmarks. All times are measured in milliseconds.

torchode torchode-joint torchdiffeq TorchDyn

fw. loop time 1.33 ± 0.16 1.5 ± 0.1 3.4 ± 0.2 1.63 ± 0.03
bw. loop time 58.1 ± 1.1 2.38 ± 0.06 7.4 ± 0.3 7.6 ± 1.3

fw. time / step 73 ± 3 62.1 ± 1.6 66.1 ± 1.6 60.9 ± 0.3
fw. model time / step 71 ± 3 60.5 ± 1.5 62.6 ± 1.7 59.2 ± 0.2

bw. time / step 3100 ± 300 555 ± 12 563 ± 8 540 ± 3
bw. model time / step 3100 ± 300 553 ± 12 556 ± 9 532 ± 3

fw. steps 13.4 ± 1.6 15 ± 1 16 ± 3 17 ± 3
bw. steps 9 ± 1 12 ± 1 14 ± 4 13 ± 5
bits / dim 1.38 ± 0.14 1.268 ± 0.015 1.28 ± 0.02 1.28 ± 0.03

the additional improvement from compiling the solver loop, too. Interestingly, TorchDyn is actually246

faster than non-compiled torchode in this benchmark, in contrast to the previous benchmark. We247

suppose that this is because TorchDyn’s minimalistic implementation has less Python overhead than248

torchode and because of the small number of evaluation points (10) and the smaller batch size249

compared to the VdP benchmark, torchode’s more efficient evaluation implementation carries less250

weight.251

As a third benchmark, we repeat an experiment from (Grathwohl et al., 2019) and train a CNF for252

density estimation on MNIST using the code accompanying their paper2. The batch size is 500 in this253

case. See Table 5 for the results. In this case, there is no JIT compiled version of torchode in the254

data, because custom extensions of PyTorch’s automatic differentiation are currently not supported255

by its JIT compiler. Since learning via the adjoint equation (Chen et al., 2018) has to be implemented256

as a custom gradient propagation method, it is incompatible with JIT compilation as of PyTorch257

1.12.1.258

One should notice immediately, that, while torchode has the fastest forward loop time, its backward259

loop time is the slowest by more than an order of magnitude. The reason is the interaction between260

the adjoint equation and torchode’s independent parallel solving of ODEs. The adjoint equation261

is an ODE, just like the equation described by the learned model. Therefore, torchode solves a262

separate adjoint equation for every instance in a batch to eliminate any interference between these263

separate and independent ODEs. However, the adjoint equation is often significantly larger than the264

original ODE because it has an additional variable for every parameter of the model. Let’s say we are265

solving an ODE with an initial state y0 ∈ Rb×f with batch size b, f features and a model fθ, θ ∈ Rp266

with p parameters. Then the adjoint equation in TorchDyn and torchdiffeq has size bf + p, while267

torchode will by default solve an equation with b(f + p) variables.268

The achieved MAE and bits / dim, respectively, in Tables 4 and 5 show that this independent solving269

of ODEs has no positive effect on the learning process or the performance metrics achieved. We270

suppose that the learned dynamics are usually simple enough to not be susceptible to the failure case271

shown in Section 4.1. On the contrary, jointly solving the adjoint equation seems to be beneficial for272

the learning process as evidenced by the higher bits / dim of torchode in Table 5. For this reason,273

torchode includes a separate adjoint equation backward pass that solves the adjoint equation jointly274

on the whole batch, shown in the column torchode-joint in Table 5. This version has a significantly275

faster backward loop than torchdiffeq and TorchDyn because at the larger ODE size of bf + p276

the saved operations from Horner’s rule and combined kernels produce appreciable time savings.277

Furthermore, torchode avoids any computations related to evaluating the solution at intermediate278

points if only the final solution is of interest as is the case for CNFs.279

B Example Code280

Listing 1 shows a code example that solves a batch of VdP problems with torchode. The recorded281

solution statistics show how torchode keeps track of separate step sizes, step acceptance and solver282

status for every instance. The number of function evaluations is the same for all problem instances283

2github.com/rtqichen/ffjord

8

https://github.com/rtqichen/ffjord

import torch
from torchode import Status, solve_ivp

def vdp(t, y, mu):
x, xdot = y[..., 0], y[..., 1]
return torch.stack((xdot, mu * (1 - x**2) * xdot - x), dim=-1)

batch_size, mu = 5, 10.0
y0 = torch.randn((batch_size, 2))
t_eval = torch.linspace(0.0, 10.0, steps=50)
sol = solve_ivp(vdp, y0, t_eval, method="tsit5", args=mu)

print(sol.status) # => tensor([0, 0, 0, 0, 0])
assert all(sol.status == Status.SUCCESS.value)
print(sol.stats)
=> {'n_f_evals': tensor([1412, 1412, 1412, 1412, 1412]),
'n_steps': tensor([201, 230, 227, 235, 220]),
'n_accepted': tensor([197, 223, 222, 229, 214]),
'n_initialized': tensor([50, 50, 50, 50, 50])}

Listing 1: A code example solving a batch of VdP problems with torchode.

even though they differ in their number of solver steps, because, in general, the dynamics have to be284

evaluated on a batch of the same size as the initial condition that got passed into the solver. So the285

model will continue to be evaluated on a problem instance until all problems in the batch have been286

solved, though these “overhanging” evaluations do not influence the result anymore.287

C Impact of PID Control288

20 40 60 80 100

Damping µ

-5%

0%

+5%

+10%

+15%

Integral Controller (0, 1, 0)

PID Coefficients
(0.2, 0.4, 0.0)

(0.3, 0.3, 0.0)

(0.4, 0.3, 0.0)

(0.4, 1.0, 0.0)

Solver Steps Compared to an Integral Controller

Figure 2: Solver steps required to solve one cycle of Van der Pol’s oscillator (see Eq. (1)) with various
PID coefficients compared to an integral controller.

To gain some insight into the effect of PID control on the number of solver steps, we solve Van der289

Pol’s Eq. (1) for one cycle with various PID coefficients3 and compare the number of solver steps to290

the steps that the same solver would take with an integral controller. By varying the damping strength291

µ and therefore also the stiffness of the problem, we can control how strongly the step size varies292

across one cycle. See Fig. 1 for the step sizes at µ = 25. For µ = 0, the limit cycle in phase space293

is a circle with very smooth step size behavior. With growing µ, the limit cycle becomes more and294

more distorted and the variance in step size grows.295

3We have taken the coefficients from diffrax’s documentation.

9

https://docs.kidger.site/diffrax/api/stepsize_controller/#diffrax.PIDController

The results in Fig. 2 show that there is a trade-off. For small variance in step size, i.e. µ < 15, the296

PID controllers even take more steps than an integral controller. Only after µ > 25 does PID control297

actually pay off with 3 to 5% in step savings over an integral controller.298

We conclude that PID control is a valuable tool for ODE problems that are difficult in the sense that299

the step size for an explicit method varies quickly and by at least two orders of magnitude. Given that300

the step size behavior of learned ODE models is quite benign in our experience, we recommend the301

simple integral controller by default for deep learning applications and to try a PID controller when302

the number of solver steps exceeds 100 or a significant variation in step size has been observed.303

10

	Introduction
	Related Work
	Design & Features of torchode
	Experiments
	Batching ODEs: What could possibly go wrong?
	Benchmarks

	Conclusion
	Appendix
	Detailed Benchmark Descriptions and Results
	Example Code
	Impact of PID Control

