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ABSTRACT

State space models (SSMs) have demonstrated state-of-the-art sequence modeling
performance in some modalities, but underperform attention in language modeling.
Moreover, despite scaling nearly linearly in sequence length instead of quadratically,
SSMs are still slower than Transformers due to poor hardware utilization. In this paper,
we make progress on understanding the expressivity gap between SSMs and attention in
language modeling, and on reducing the hardware barrier between SSMs and attention.
First, we use synthetic language modeling tasks to understand the gap between SSMs
and attention. We find that existing SSMs struggle with two capabilities: recalling
earlier tokens in the sequence and comparing tokens across the sequence. To understand
the impact on language modeling, we propose a new SSM layer, H3, that is explicitly
designed for these abilities. H3 matches attention on the synthetic languages and comes
within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid H3-attention
model that retains two attention layers surprisingly outperforms Transformers on
OpenWebText by 1.0 PPL. When trained on the Pile at small/medium scale (125M
and 355M parameters), hybrid H3-attention language models display promising
initial results, achieving lower perplexity than Transformers and outperforming
Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE
benchmark. Next, to improve the efficiency of training SSMs on modern hardware,
we propose FLASHFFTCONV. FLASHFFTCONV uses a fused block FFT algorithm
to improve efficiency on sequences up to 8K, and introduces a novel state passing
algorithm that exploits the recurrent properties of SSMs to scale to longer sequences.
FLASHFFTCONV yields 2× speedup on the long-range arena benchmark and allows
hybrid language models to generate text 1.6× faster than Transformers.

1 INTRODUCTION

State space models (SSMs) have achieved state-of-the-art sequence modeling performance in domains
ranging from time series analysis (Gu et al., 2022a) to audio generation (Goel et al., 2022). However,
they have yet to match the performance of Transformers on language modeling, often underperforming
Transformers by multiple points in perplexity (Gu et al., 2022a). An natural question is whether this
gap in performance is due to inherent inductive biases and capabilities in attention (Edelman et al., 2022;
Olsson et al., 2022), or whether it is a function of the significant organizational resources that have been
spent training and tuning large attention-based language models (Chowdhery et al., 2022; Hoffmann
et al., 2022; Zhang et al., 2022), as well as specialized hardware support for attention, ranging from tensor
cores (NVIDIA, 2017) to transformer chips (NVIDIA, 2022b; Kao et al., 2021).

We take first steps towards answering these questions in this paper. First, we use synthetic language
modeling tasks to show that there is an expressivity gap between SSMs and attention. Using our
insights, we design a new SSM layer that nearly matches attention in language modeling. Second,
we propose better hardware-aware algorithms for SSMs that allow them to take advantage of modern
accelerators—and run faster than attention.

Understanding the Expressivity Gap. To understand the gap between SSMs and attention, we draw on
synthetic language modeling tasks that have been proposed as a mechanistic basis for in-context learning
in Transformers (Olsson et al., 2022) These synthetic languages focus on the ability to manipulate
text—recalling tokens from earlier time steps, or comparing tokens from different points in a sequence.
We find that existing SSMs struggle to model these synthetic languages. To probe how important these
skills are for language modeling, we propose H3 (Hungry Hungry Hippo), a new SSM-based layer
designed to solve these language modeling tasks. H3 stacks two SSMs, with multiplicative interactions

1



Under review as a conference paper at ICLR 2023

Shift
SSM

Diag
SSM

X

KQ V

Y

H3 Layer H3 for Associative Recall

null

null

Diag

I(xt-1=a)

I(xt+1=a)

I(x
t+

1=a
)

I(xN-1=a)

null

I(x
t=a

)
a

Shift

I(xN=a) a

nullyt nullyt+1

ShiftShift

a

I(xt=a)

3xt xt+1

Diag

3

I(xt=a)

3

3

axN

Diag

I(x
N
=a

)

3

3yN

Store key Store val Recall val

Input

Out

8K Chunk

Fused
Block

FFTConv

SSM
State

Fused
Block

FFTConv

SSM
State

FlashFFTConv
Figure 1: Left: H3 stacks two discrete SSMs with shift and diagonal matrices and uses multiplicative interactions
between input projections and their outputs to model comparisons between points in a sequence. Middle: H3 can
perform associative recall—which is easy for attention, but not existing SSMs. Right: FLASHFFTCONV uses a
new state-passing algorithm over fused block FFTConv to increase hardware efficiency of SSMs.

between their outputs and input projections. The SSMs allow H3 to keep a log of tokens (to recall them
later), while the multiplicative interactions allow for comparisons across the sequence.

H3 matches attention on the synthetic languages and almost closes the gap with Transformers on
language modeling—coming within 0.4 perplexity of Transformers on OpenWebText (compared
to 3.4 ppl for existing SSMs—even those explicitly designed for language modeling (Mehta et al.,
2022)). Furthermore, a simple hybrid H3-attention model that retains two attention layers surprisingly
outperforms Transformers on OpenWebText by 1.0 perplexity. To further evaluate H3 on language
modeling, we train 125M- and 355M-parameter hybrid H3-attention language models on the Pile (Gao
et al., 2020), using hyperparameters from GPT-3 (Brown et al., 2020). These hybrid models outperform
Transformer-based language models of the same size in perplexity, and match or outperform them
on a majority of tasks in the SuperGLUE benchmark in zero- and few-shot learning. Since the SSM
layers in these hybrid models admit a recurrent view, they can also perform 1.6× faster inference than
Transformers. Furthermore, H3 maintains quality on non-text sequence modeling, matching the S4
model (Gu et al., 2022a) on raw speech classification and setting state-of-the-art performance on seizure
classification over raw EEG signals. These results suggest that H3, or other SSM-attention hybrids, may
be a promising direction for future language models or multimodal foundation models, especially with
more resources towards finding optimal hyperparameters and training schedules for SSMs.

Scaling SSMs. Next, we improve the efficiency of SSMs on modern hardware, to reduce the hardware
barrier between attention and SSMs. SSMs scale nearly linearly in sequence length instead of
quadratically like attention, but still run slower on modern hardware due to poor hardware utilization.
To close this gap, we propose FLASHFFTCONV, a hierarchical algorithm for computing SSMs, inspired
by IO-Aware attention (Dao et al., 2022b). The technical challenge is that SSMs require a FFT-based
convolution over the input sequence, which requires an FFT, pointwise multiply, and inverse FFT. When
implemented in cuFFT (NVIDIA, 2022a), this operation incurs expensive GPU memory reads/writes, and
cannot utilize the specialized matrix multiply units available on modern hardware1. To use specialized
matrix multiply units, we appeal to classical techniques that split the FFT into blocks and computes it
using a series of matrix multiplications. Combined with kernel fusion, this “block” FFT solution increases
hardware efficiency, but only as long as the sequence length can fit into GPU SRAM (on-chip memory,
analogous to L1 cache on the CPU)—up to sequence length 8K on modern A100.

To scale to sequences longer than 8K, we propose a state passing algorithm (Figure 1 right), specialized
to SSMs. The key insight is that we can use the recurrent properties of SSMs to process the input in
chunks—as long as we keep track of an additional state vector. The state passing algorithm splits the input
into the largest chunks that can fit into GPU SRAM, efficiently computes the FFT-based convolution using
block FFT, and updates an intermediate state to start the next chunk. Using this state-passing algorithm,
FLASHFFTCONV can scale SSMs to any sequence length—even longer than can fit on GPU SRAM
at once—while maintaining a near linear compute complexity. FLASHFFTCONV sets state-of-the-art
speed on long range arena using S4 (Gu et al., 2022a), outperforming Transformers by 5.8× and previous
S4 models by 2×. FLASHFFTCONV trains H3 4-8× times faster than attention for long sequences.

1An A100 GPU has a maximum of 312 TFLOPs/s of FP16 with tensor cores, but only 20 TFLOPs/s of FP32
(and 40 TFLOPs/s of FP16) without tensor cores (NVIDIA, 2020). This trend started with the V100 GPUs (NVIDIA,
2017) and has continued with the H100 GPUs (NVIDIA, 2022b).
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2 BACKGROUND

We present some background on state space models and linear attention, which inspired our H3 layer.

2.1 STATE SPACE MODELS

A continuous-time state-space representation (Brogan, 1974) defines a linear mapping from an input
signal u(t)∈R (as a function of time t) to an output signal y(t)∈R through a state-variable x(t)∈Rm,
with the following differential equation, for some matrices A ∈ Rm×m, B ∈ Rm×1, C ∈ R1×m,
D∈R1×1: ẋ(t)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(t).

Similarly, a discrete-time state-space representation defines a linear mapping from a discrete input signal
ui (for i=1,2,...) to a discrete output signal yi though a state-variable xi∈Rm:

xi=Axi−1+Bui
yi=Cxi+Dui.

A state-space model (SSM) uses these representations as a layer in a deep learning pipeline, where the
matrices A,B,C,D are learned from data (e.g., with gradient-based optimization). One often has d of
these SSMs in parallel, each corresponding to one hidden dimension. To preserve the sequence history,
HiPPO (Gu et al., 2020) projects the history on a basis of orthogonal polynomials, which translates to
having SSMs whose A,B matrices are initialized to some special matrices.

This recurrent form of SSMs allows efficient inference (i.e., generation): to generate the output of the
next time-step, one only needs the state of the current time-step, not the entire input history. Furthermore,
SSMs can freely extrapolate to sequences longer than seen during training.

SSMs as Convolution. For efficient training, given the entire sequence of the input u1,...,uN , the output
sequence y1,...,yN can also be written as the convolution of the input with the filter (Gu et al., 2021):

f=[CB,CAB,CA2B,...,CAN−1B].

That is, from an initial condition x0, we have yi =CAiBx0+(f ∗u)i+Dui, where (f ∗u) denotes a
linear convolution between f and u. If we set the initial condition x0 to be zero, then y is exactly a linear
convolution of u, with a residual connection Du. More generally, any linear time-invariant system (of
which SSMs are a special case) can be written as a convolution.

Given a 1D input sequence u∈RN of lengthN , we denote the 1D output sequence y∈RN of an SSM
parameterized by matrices A,B,C,D as

y=SSMA,B,C,D(u).

To simplify notation, we omit the reference to A,B,C,D and write y= SSM(u) if they are clear from
context. When u is multidimensional of dimension d, we stack d of these SSMs together that defines
a mapping from u∈RN×d to y∈RN×d, using the same notation y=SSM(u).

To construct the filter f from A,B,C efficiently, A is often constrained to be diagonal (Gupta et al., 2022;
Gu et al., 2022b), or diagonal plus low-rank (Gu et al., 2022a).

SSM through FFTs. Computing the convolution naively through conventional matrix operations is
expensive for long kernels, scaling asO(N2). Instead, we can use FFTs: take the FFT of f and u, multiply
them together pointwise, and then take the inverse FFT. This yields anO(N logN) algorithm.

2.2 LINEAR ATTENTION

We describe linear attention (Katharopoulos et al., 2020) and its connection to RNNs, which inspired
our model design (Section 3).

In standard attention (Vaswani et al., 2017), we have N query/key/value tokens Qi,Ki,Vi ∈ Rd for
i= 1,...,N , where N is the sequence length and d is the head dimension. For some similarity metric
Sim: Rd×Rd→R, we want to compute the output:

Oi=

∑i
j=1Sim(Qi,Kj)Vj∑i
j=1Sim(Qi,Kj)

∈Rd.

For standard softmax attention, Sim(q,k)=eq
>k (often the dot product is scaled by 1/

√
d). Linear atten-

tion makes the assumption that Sim has the form Sim(q,k)=φ(q)>φ(k), for some (nonlinear) function φ.

The output is thenOi=
φ(Qi)

>∑i
j=1φ(Kj)V

>
j

φ(Qi)>
∑i

j=1φ(Kj)
. Let Si=

∑i
j=1φ(Kj)V

>
j ∈Rd×d, zi=

∑i
j=1φ(Kj)∈Rd,

di = φ(Qi)
>zi ∈R. Then Oi = φ(Qi)

>Si

di
. This connects linear attention to RNNs: the output Oi is a

function of Si and zi, both of which are incrementally updated (as cumulative sums).
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3 HUNGRY HUNGRY HIPPOS LAYER TO MODEL DISCRETE SEQUENCES

To understand the gap between SSMs and attention on language modeling, we examine two synthetic
language modeling tasks. These tasks motivate our H3 layer to add a discrete SSM (based on shift matrix)
and multiplicative interaction to effectively model discrete sequences. We then show that the H3 layer is
expressive enough to solve these synthetic tasks, and that this understanding leads to better performance
on a real language modeling benchmark.

3.1 MOTIVATION: SYNTHETIC LANGUAGE MODELING TASKS

We describe two closely-related synthetic tasks, summarized in Table 1. Olsson et al. (2022) argues
that the ability of the attention layer to solve (variants of) these tasks accounts for the majority of the
in-context learning capability of Transformers.

Table 1: Synthetic language modeling tasks.
Task Input Output Sequence Length Vocab Size
Induction Head a b c d e ` f g h i ... x y z ` f 30 20
Associative Recall a 2 c 4 b 3 d 1 a 2 20 10

The Induction Head task tests how well a model can recall content after a special token (e.g.,` in Table 1).
At the end of the sequence, the model must recall the token that appeared immediately after the special
token earlier in the sequence. Associative Recall (Ba et al., 2016) is similar to the induction head task,
but requires the model to remember multiple key-value pairs. At the end of the sequence, the model must
recall a specific value belonging to a specific key.

Table 2: Evaluation of 2-layer models on synthetic language tasks.
Task Random S4D Gated State Spaces H3 Attention

Induction Head 5.0 35.6 6.8 100.0 100.0
Associative Recall 25.0 86.0 78.0 99.8 100.0

Table 2 (for two-layer models) shows that S4D (Gu et al., 2022b) and Gated State Spaces (Mehta et al.,
2022) both fail to model these synthetic languages, which suggests they may not have the expressivity
to model general language. We argue that these failures suggest two missing capabilities: (i) to remember
tokens that appear after a particular event (e.g., the special token in the induction head task), and (ii) to com-
pare tokens across the sequence (e.g., comparing keys to decide which value to recall). Attention has both
these capabilities: it can compare tokens by constructing the quadratic attention matrix QK>, and it can
recall tokens by direct copying (multiplying softmax(QK>) with V). In Section 3.2, we design our new
layer H3 to enable these capabilities in SSMs, narrowing the expressivity gap between SSMs and attention.

3.2 H3 LAYER

H3 uses SSMs with shift and diagonal matrices, along with multiplicative operations against projections
of the input to capture the missing capabilities identified by the synthetics.

High-level Intuition. (i) To remember tokens from the past, we want the state xi to copy from the input
ui, and then pass that information to the next state xi+1. As xi+1 relates to xiby Axi, we use a discrete
SSM with a shift matrix A (described formally below) that shifts the elements of a state vector (e.g.,
mapping [a,b,c]→ [0,a,b]). (ii) To compare tokens across the sequence, we use multiplicative interaction:
the output of an SSM, containing information from previous time steps, is multiplied with the input at
the current time steps, thus measuring similarity between tokens.

H3 is loosely inspired by linear attention (Section 2): we project the input u to get three signals Q,K,V.
Then we replace the non-linearity φ(K) with an SSM where A is a shift matrix (SSMshift), and we
replace the summation Si with a SSM with diagonal A (SSMdiag). The output, for the case of head
dimension dh=1, is:

Q�SSMdiag(SSMshift(K)�V),
where � denotes pointwise multiplication. We can view this form as stacking two SSMs with
multiplicative interaction (each is a “hungry hippo”, hence the name of our layer). A more formal
connection between linear attention, time-varying systems, and H3 can be found in Appendix B.

Remembering Key Tokens: Shift and Diagonal SSMs. The shift and diagonal SSMs are designed to
address the capability to log tokens after particular events. In the shift SSM, we constrainA∈Rm×m to be

a shift matrixAi,j=

{
1 for i−1=j

0 otherwise
. The action of this matrix on the hidden statexi is to shift each coor-

dinate down by one—thereby creating a “memory” of the previous states. For example, if B=e1, the first
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basis vector, then xi=[ui,ui−1,...,ui−m+1] contains the inputs from the previousm time steps. We learn
B andC (B can also be fixed to e1 for simplicity, in which case the output is a 1D conv. with kernel sizem).

The diagonal SSM constrains A to be diagonal and initializes it from the diagonal version of HiPPO
(S4D (Gu et al., 2022b)). This parameterization allows the model to remember state over the entire
sequence. The shift SSM can detect when a particular event occurs, and the diagonal SSM can remember
a token afterwards for the rest of the sequence.

Multiplicative Interaction for Comparison. We take the multiplicative interactions from linear
attention, but they provide another missing capability when combined with a shift matrix: comparing
tokens across the sequence. The multiplicative interactions between the output of the shift SSM and
the V projection mimics local multiplicative interactions in linear attention (depending on the size of the
hidden state). Similarly, multiplicative interactions with the Q projection and the output of the diagonal
SSM allows comparisons between tokens over the entire sequence.

H3 Layer. The overall layer is given in Algorithm 1 and shown schematically in Figure 1 (left). We use the
H3 layer to construct a model in the same style as Transformers by interleaving it with MLPs, connected
by residual connection and layer norm (i.e., pre-norm architecture (Baevski & Auli, 2018)). We will also
consider a hybrid H3-attention model (two attention layers while the rest are H3, Sections 3.3 and 5).

Algorithm 1 H3 Layer

Require: Input sequence u∈RN×d from the previous layer, weight matrices WQ,WK ,WV ,WO∈Rd×d, a shift
SSM SSMshift, a diagonal SSM SSMdiag, head dimension dh.

1: Compute Q=uWQ,K=uWK ,V=uWV ∈RN×d.
2: Pass K through the shift SSM: K=SSMshift(K)∈RN×d.
3: SplitQ,K,V intoH “heads” (Q(h),K

(h)
,V(h) forh=1,...,H), each a sequence ofN vectors of sizedh=d/H .

4: for 1≤h≤H do
5: Take the batched outer product K

(h)
(V(h))>∈RN×dh×dh (batched in the N -dimension) and pass it through

a diagonal SSM: KV(h)=SSMdiag(K
(h)

(V(h))>)∈RN×dh×dh .
6: Batch-multiply by Q: O(h)=[Q

(h)
1 KV

(h)
1 ,...,Q

(h)
N KV

(h)
N ]∈RN×dh (batched in the N -dimension).

7: end for
8: Concatenate the output O(h) of each head, and multiply by the output projection matrix WO∈Rd×d.

Efficiency We show that H3 scales as O(N logN) with sequence length N—asymptotically more
efficient than attention, which typically requiresO(N2d) time andO(N2) space2 (proof in Appendix D.2).
Proposition 1. LetN be the sequence length, d be the hidden dimension, and assume that the head dimen-
sion dh is of orderO(1). Then the H3 layer takesO(d2N+dN logN) time andO(dN) space to compute.

3.3 EXPRESSIVITY

We show that H3 can model our synthetic languages, as well as natural language on OpenWeb-
Text (Gokaslan et al., 2019). We also present a hybrid H3-attention extension that outperforms
Transformers on OpenWebText.

Mechanism for Solving Associative Recall with H3. H3 is expressive enough to solve our synthetic
language modeling tasks, as shown in Table 2. Figure 1 (middle) shows a mechanism for a single
H3 layer to solve the associative recall task for a particular key-value pair (a,3). The shift SSM and
following multiplicative interaction act as a gate on whether to let a value through to the diagonal SSM,
based on whether the previous token was key a. The diagonal SSM stores the value 3 in memory, and
continually outputs it. The final multiplicative interaction gates whether to let the diagonal SSM’s output
through—based on whether the current input token is the key a. We formally construct the weights of
an H3 layer to solve this task in Appendix D.1.

Table 3: Perplexity of SSM variants compared to Transformers on OpenWebText. All models have 12 layers, with
size around 125M, and are trained with the same hyperpameters, for 50B tokens.

H3 H3 Hybrid (2 Attn) S4D GSS GSS Hybrid (2 Attn) Transformer
21.0 19.6 24.9 24.0 19.8 20.6

Better Synthetic Language Modeling Translates to Better Natural Language Modeling. We validate
that when H3 can solve these synthetic tasks, it also improves the modeling capability on natural language

2There are several memory-efficient algorithms for attention (Rabe & Staats, 2021; Dao et al., 2022b), though
their time complexity is still quadratic in N , which is a lower-bound for attention (Keles et al., 2022).
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(e.g., on the OpenWebText dataset). As shown in Table 3, H3 comes within 0.4 perplexity points of
Transformers when trained for 50B tokens on OpenWebText, and performs much better than existing
SSM variants (S4D, GSS), by 3−3.9 points.

Extension: H3-attention Hybrid Model. A simple hybrid H3-attention language model surprisingly
outperforms Transformers on OpenWebText by 1.0 point. Our hybrid model simply retains two
self-attention layers: one in the second layer, and one in the middle (layer 2+N/2 for anN -layer model,
N even). The H3-attention hybrid also outperforms the GSS-attention hybrid (Mehta et al., 2022).

4 FLASHFFTCONV: EFFICIENTLY TRAINING SSMS

To improve the efficiency of SSMs on modern hardware, we propose FLASHFFTCONV. FLASHFFT-
CONV fuses the FFT, pointwise multiply, and inverse FFT to reduce memory reads/writes. It also uses
a block FFT algorithm to make use of specialized matrix multiply units (e.g., tensor cores on A100) for
sequence lengths up to 8K. For sequences longer than 8K, the computation no longer fits in GPU SRAM3,
so we propose a novel state-passing algorithm that splits the sequence into chunks to compute the FFT
convolution one chunk at a time. FLASHFFTCONV can speed up any SSMs (not just H3).

4.1 FUSED BLOCK FFTCONV

We deploy two techniques to speed up the FFT-based convolution for sequences shorter than 8K: kernel
fusion and block FFT. Kernel fusion addresses IO bottlenecks due to reading and writing of intermediate
results, while block FFT allows the FFT-based convolution to utilize specialized matrix multiplication
units. These techniques allow us to speed up FFTConv by 2× (Section 6) for sequences shorter than 8k.

Kernel Fusion. Naive implementations of FFTConv using standard libraries such as cuFFT are IO-bound
due to repeated reading and writing of intermediate results. The FFT convolution in an SSM with input
u and filter f has the form iFFT (FFT (u)�FFT (f)) (where � denotes pointwise multiplication).
It requires reading and writing intermediate results to GPU memory—which can dominate the runtime.
Following FLASHATTENTION (Dao et al., 2022b), we first fuse the entire FFTConv into a single kernel
and compute it in SRAM to avoid this overhead.

Block FFT. To further speed up the computation of FFT-based convolution, we exploit specialized matrix
multiplication hardware on modern GPUs (e.g., Tensor Cores on Nvidia GPUs perform fast 16× 16
matrix multiplication). We appeal to classical results that show that the FFT can be written as a series
of block-diagonal matrix multiplications interleaved with permutation. We note that such algorithms
are not new, but our setting (fused FFTConv on GPU) introduces new bottlenecks—by removing the
IO bottlenecks, compute becomes the bottleneck (note that a single FFT on GPU is usually IO bound).

Suppose that we want to perform an N -point FFT, which is equivalent to multiply by the DFT matrix
FN . Suppose that N =N1N2 for some integers N1,N2. By the Cooley-Tukey decomposition of the
DFT (Cooley & Tukey, 1965; Bailey, 1990) (also known as the four-step FFT algorithm), we can write
FN =P(IN2

⊗FN1
)P>D(IN1

⊗FN2
)P, where P denotes a fixed permutation that reshapes the input

as a N1×N2 array and then transpose it, ⊗ denotes Kroneker product, D is a N×N diagonal matrix
(called the twiddle factors) (Dao et al., 2022a), and INi

and FNi
are the identity and DFT matrix of size

Ni×Ni. As IN2
⊗FN1

and IN1
⊗FN2

are just block-diagonal matrices, we can make use of specialized
matmul units to perform these multiplications. Similarly, ifN=N1N2N3 then we can decompose the
N -point FFT into a series of (block) FFT of sizeN1,N2, andN3, interleaved by permutation.

The block FFT algorithm incursO(NrlogN/logr) FLOPs for a sequence lengthN , ifN can be written
as rp for two integers r,p. This incurs more FLOPs than standard FFT (O(N logN)), but can run faster
when we using specialized matrix multiplication hardware.

4.2 STATE-PASSING

However, the fused kernel cannot run if the sequence is too long to fit into GPU SRAM (longer than 8K on
A100). We show how to exploit the particular form of the FFT in SSM to speed it up for long sequences.

The recurrent nature of SSMs allows us to split the FFTConv of a length-N sequence into chunks of
sizeN ′ each (N ′ is the longest FFT we can fit into SRAM), assumingN is a multiple ofN ′). We use
FFTConv to compute each chunk and use a recurrence to connect the chunks. In particular, we split the
inputs u intoC=N/N ′ chunks u(c)∈RN ′

for c=1,...,C. Similarly, split the states x into x(c)∈RN ′×m

and the output y into y(c)∈RN ′
for i=1,...,C. We will only need the end-state x(c)N ′ of each chunk c.

3SRAM, or on-chip memory, is much faster than off-chip GPU memory, but usually much smaller, on the order
of around 100KB for each streaming processor.
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Let f=[CB,CAB,CA2B,...,CAN ′−1B] be the SSM filter. Recall from Section 2 that for each chunk
c, y(c)i = CAiBx

(c−1)
N ′ +(f ∗u(c))i+Du

(c)
i , since x(c−1)N ′ , the end-state of the previous chunk (c−1)

is the initial condition for the current chunk c. In vector notation, y(c) =Mxyx
(c−1)
N ′ +f ∗u(c)+Du(c)

for some matrix Mxy ∈ RN ′×m. Additionally we need to update the end-state of each chunk with
xcN ′ =AN ′

x
(c−1)
N ′ +Muxu

(c) for some matrix Mm×N ′

ux (derivation in Appendix C.2). In essence, we can
compute the output for each chunk with FFT-based convolution as long as we remember the end-state of
the previous chunk, and the end-state of each chunk can be updated recurrently. This yields a state-passing
algorithm for long sequences, where we only compute FFT of lengthN ′, and update some hidden state
each iteration.

Let BLOCKFFTCONV refer to our fused block FFTConv kernel. Then, the state-passing algorithm
for 1D input is given by Algorithm 2. For inputs of dimension d where we stack d SSMs, we simply
batch Algorithm 2 along the d-dimension.

Algorithm 2 State Passing Algorithm

Require: Input u∈RN , SSM parameterized by matrices A∈Rm×m, B∈Rm×1, C∈R1×m, D∈R1×1, chunk
size N ′ where N is a multiple of N ′.

1: Precompute AN′
∈Rm×m, Mux=[AN′−1B,...,B]∈Rm×N′

, Mxy=[C,CA,...,CAN′−1]∈RN′×m.
2: Split the inputs u1:N into C=N/N ′ chunks u(c)

1:N′ for c=1,...,C.
3: Let the initial state be x(0)

N′ =0∈Rm.
4: for 1≤c≤C do
5: Compute y(c)=Mxyx

(c−1)

N′ + BLOCKFFTCONV(f , uj) +Du(c)∈RN′
.

6: Update state: x(c)

N′ =AN′
x
(c−1)

N′ +Muxu
(c).

7: end for
8: Return y=[y(1)...y(C)].

We prove that Algorithm 2 yields the same output as if one has computed the SSM using a large FFT
of sizeN (proof in Appendix D.3):

Proposition 2. For input u∈RN and matrices A,B,C,D, the output y∈RN returned by Algorithm 2
is the same as the output defined by the SSM parameterized by A,B,C,D.

5 H3 EVALUATION

To understand how well capturing the synthetics in Section 3.1 translates to language modeling, we train
two hybrid hybrid H3-attention language models at sizes 125M and 355M and evaluate their performance
against Transformers. The hybrid models match or exceed the quality of Transformers in perplexity and
zero/few-shot learning. We also validate that H3 models retain strong performance on non-text sequence
modeling.

5.1 LANGUAGE MODELING

We compare hybrid H3-attention language models against Transformer-based language models. We
evaluate language modeling performance using perplexity, zero-shot learning, and few-shot learning
performance. Hybrid H3 models outperform Transformers, which suggests that closing the gap between
SSMs and attention on the synthetic languages translates to real language modeling capabilities. We also
report the generation speed of hybrid H3 models compared to Transformers; since SSMs are recurrent
models, they can generate tokens 1.6× faster than Transformers. Appendix F shows performance of
pure H3 language models on these same evaluation metrics.

Table 4: Perplexity (lower is better) of models on the Pile, OpenWebText and WikiText-103. GPT-Neo and hybrid
H3 are trained on the Pile, while GPT2 is trained on WebText. All models use the same GPT2 tokenizer. We include
perplexity of larger models (1B+) for context.

Model Pile OpenWebText WikiText103
GPT-2 small (125M) 19.0 23.0 29.9

GPT-Neo-125M 11.3 22.8 26.3
Hybrid H3-125M 10.0 20.9 23.7

GPT-2 medium (355M) 13.9 17.3 21.8
Hybrid H3-355M 8.3 15.9 16.9
GPT-2 XL (1.5B) 12.3 13.2 17.0
GPT-Neo-1.3B 7.4 13.2 13.3

7



Under review as a conference paper at ICLR 2023

Table 5: Zero-shot acc. on SuperGLUE with logit scoring. Best results in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 39.4 52.0 48.7 37.4 58.9 44.9 59.6 60.0 50.1
GPT-Neo-125M 36.5 53.6 53.1 41.1 59.9 39.6 62.2 60.0 50.8

Hybrid H3-125M 39.4 51.4 59.2 48.2 51.4 55.0 59.6 67.0 53.9
GPT-2 medium (355M) 50.0 52.0 51.3 28.6 59.5 53.3 61.0 65.0 52.6

OPT-350M 53.5 50.8 53.4 35.7 58.9 51.4 60.9 60.0 53.1
Hybrid H3-355M 37.5 51.7 55.2 41.1 59.5 62.3 61.5 69.0 54.7

Table 6: 3-shot acc. on SuperGLUE with logit scoring. Best results in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 36.5 50.2 47.3 44.6 57.9 44.9 41.9 60.0 47.9
GPT-Neo-125M 38.5 50.0 53.1 17.9 56.3 39.6 62.1 60.0 47.2

Hybrid H3-125M 43.3 49.1 58.1 51.8 48.9 55.0 56.1 67.0 53.7
GPT-2 medium (355M) 36.5 50.5 48.0 8.9 43.5 53.3 58.8 65.0 45.6

OPT-350M 37.5 50.0 45.8 44.6 49.8 51.4 61.7 60.0 50.1
Hybrid H3-355M 42.3 47.5 50.5 28.6 59.7 62.3 60.5 69.0 52.6

Setup We train hybrid models at sizes 125M and 355M on the PILE (Gao et al., 2020) for 300B tokens,
on a single node with 16×A100-40GB GPUs. We compare against checkpoints of equivalent sizes from
Open-AI (Radford et al., 2019) and GPT-Neo4 (Black et al., 2021), from HuggingFace (Wolf et al., 2020).

Perplexity Table 4 shows perplexity on the Pile (Gao et al., 2020), OpenWebText (Gokaslan et al.,
2019), and WikiText-103 (Merity et al., 2016). On the Pile, our 125M hybrid model outperforms
GPT-Neo, which was also trained on the Pile. Our 125M and 355M models also outperform GPT-Neo
and GPT-2 on zero-shot PPL transfer on OpenWebText and WikiText103.

Zero- and Few-shot Performance We compare the zero- and few-shot performance of hybrid
H3 language models against OPT (Zhang et al., 2022), GPT-Neo, and GPT-2 models, where public
checkpoints are available. We report performance with rank classification on the logits of the possible
choices (see Appendix F.2 for raw generation). Table 5 reports zero-shot performance on the SuperGLUE
benchmark, and Table 6 reports the 3-shot performance. Following the perplexity results, the hybrid
language models outperform or match the best the Transformer baseline on more than half the tasks.

Table 7: Inference throughput A100, 125M models. Batch size 4, generating sequences of length 1024.
Model Tokens/s

GPT-2 Small (125M) 280
Hybrid H3-125M 440

Language Modeling Inference Finally, since SSMs are recurrent models, they admit faster text
generation than Transformers. Table 7 shows inference throughput of a 125M-parameter hybrid model
compared to a Transformer. The hybrid model has 1.6× higher throughput.

5.2 NON-TEXT SEQUENCE MODELING

We show that H3 outperforms Transformers on two non-text sequence modeling tasks: raw speech
classification and seizure classification over raw EEG signals. H3 sets state-of-the-art performance on
seizure classification and matches S4 on speech classification—which suggests that H3, or one of its
hybrids, may be a strong candidate for a multimodal foundation model. Appendix E gives experimental
details, and Appendix F gives an additional experiment on brain fMRI data.

Table 8: Performance (AUROC) on 60s seizure classification from raw EEG (sequence length 12000).
H3 Transformer Dense-CNN CNN-LSTM LSTM 1D-CNN

83.2 x 78.0 68.6 69.3 69.7

Seizure Classification from EEG We evaluate binary seizure classification of 60-sec EEG clips,
sampled at 200Hz, with 19 electrodes: x∈R12,000×19 and y ∈{0,1} on the TUSZ v1.5.2 (Shah et al.,
2018) corpus. Transformers cannot process the long sequence length of EEG signals without running
out of GPU memory, whereas H3 can—and sets state-of-the-art performance.

Table 9: SC 10-class classification on raw audio (sequence length 16000).
H3 S4 WaveGan-D Transformer Performer CKConv

97.04 97.50 96.25 x 30.77 71.66

4There is no pretrained GPT-Neo at the 350M size.
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Table 10: Speedup on the LRA benchmark.
Models Speedup

Transformer 1×
FlashAttention (Dao et al., 2022b) 2.4×

Block-sparse FlashAttention (Dao et al., 2022b) 2.8×
S4 (Gu et al., 2022c) 2.9×

S4 with FLASHFFTCONV 5.8×
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Figure 2: We compare the speed of different algorithms to perform FFT-based convolution, along with FlashAtten-
tion (Dao et al., 2022b) (the fastest attention implementation we know of). We use batch size 8, hidden dimension 1024,
and varying sequence length from 256 to 32k, and measure on an A100-SMX4-40GB GPU. We see that kernel fusion
gives up to 3.4× speedup over naive FFTConv for short sequences (up to 512), block FFT gives up to 2× speedup for
medium length sequences (1k - 8k), and state-passing allows 2.3× faster FFTConv for long sequences (16k and above).

Raw Speech Classification The SC10 speech commands task (Warden, 2018) contains raw audio
signals one second in length, sampled at 16kHz. Similarly to EEG signals, Transformers cannot process the
long sequence length. Table 9 shows that H3 comes within half a point of S4, the state-of-the-art method.

6 FLASHFFTCONV EVALUATION

We evaluate how well FLASHFFTCONV speeds up SSMs. FLASHFFTCONV sets state-of-the-art
performance on the long range arena benchmark (Tay et al., 2020) using S4 (Gu et al., 2022a). We report
performance of training H3 module with FLASHFFTCONV compared to attention at various sequence
lengths, from 256 to 32K and demonstrate nearly linear scaling.

Long Range Arena The Long Range Arena (LRA) benchmark (Tay et al., 2020) is a benchmark for
long-range sequence modeling. The state-of-the-art approach, S4 (Gu et al., 2022c), is an SSM. Table 10
shows that FLASHFFTCONV accelerates S4 by 2×, outperforming Transformers by 5.8×.

Benchmark H3 Against Attention We benchmark the time to run the forward and backward pass of H3
with FLASHFFTCONV against attention. FLASHFFTCONV maintains nearly linear scaling, even to very
long sequence lengths. Fig. 2 shows overall 2-3× speedup over FFTConv with cuFFT using our techniques
(block FFT, state-passing). Simple kernel fusion (even without block FFT) can yield speedup over cuFFT
for short sequences, since memory reads/writes are the bottleneck for short sequences. For long sequences,
SSMs using state passing can be dozens of times faster than even the fastest attention implementation.

7 CONCLUSION

Our main goal is to understand and narrow the gap between attention and SSMs in language modeling
in terms of modeling capabilities and hardware efficiency. Our exploration based on synthetic language
tasks motivated us to design the H3 layer, which is surprisingly competitive with attention. Our
BLOCKFFTCONV algorithm exploits matrix multiplication units and the dual recurrent–convolution
view of SSMs to substantially speed up SSMs, reducing the hardware barrier between attention and
SSMs. We are excited about several future directions. Our H3 layer is a simple combination of two SSMs,
and more sophisticated designs could be more expressive. Our encouraging results on small/medium
language models suggests that scaling SSMs to larger sizes is a promising avenue. Since simply adding
two attention layers to H3 models already outperforms both the pure H3 model and Transformers, we
are optimistic about combining the complementary strengths of SSMs and attention in the future.
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Reproducibility Statement. To facilitate the reproducibility of our algorithms and results, (i) we
include a link to downloadable source code in supplementary materials, (ii) for our theoretical statements
and results, we include clear explanations of any assumptions and a complete proof of the claims
in Appendix D; for any datasets used in the experiments, a complete description of the data processing
steps is in Appendix E. We will also release model checkpoints for all our models.

Ethics Statement. Our work seeks to understand the fundamental capabilities and limitations of
newly-emerging model architectures. As the amount of data and model size grows, we also week to
understand how to make training these models more efficient—and run inference more efficiently. This
potentially connects to energy savings during model development and deployment. We also note that
the relative underutilization of tensor cores in the FFT convolutions of state space models (even with
our block FFT) suggests that consumer GPUs may be able to train models at a cheaper price point.

However, as with any language model training, developing new techniques may impact a wide range
of applications, each with potential benefits and harms. For example, making language model training
cheaper and making inference more efficient make it cheaper to spread disinformation. Similarly,
improving the efficiency of model training may not reduce the overall environmental footprint of training,
since the same resources may be used to train more models, or train the same models for longer. While
our work makes partial progress on the fronts of efficiency and understanding, it does not explicitly
address the issues of fairness and bias in language models.
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A RELATED WORK

State space models have shown promise in modeling sequential data, including time series data (Gu
et al., 2022a), audio (Goel et al., 2022), and visual data (Nguyen et al., 2022). Our model builds off
work on simplifying and parameterizing diagonal versions of S4 (Gu et al., 2022b; Gupta et al., 2022;
Gu et al., 2022c). Gated state spaces (Mehta et al., 2022) also aim to adapt SSMs to language modeling,
but our results suggest that the GSS model does not perform as well as H3 (or even as well as earlier
SSMs like S4D). The idea to combine SSMs with attention in hybrid models is not new; Mehta et al.
(2022) also showed that interleaving attention with their GSS layer can improve performance, which
we also validate on our OpenWebText experiments. These positive results suggest that attention and
SSMs are complementary, and that hybrid models may be a promising direction for future work.

Large language foundation models (Bommasani et al., 2021) have demonstrated the power of scaling
attention-based networks to billions of parameters and training them on trillions of tokens (Hoffmann
et al., 2022). Understanding the mechanistic basis (Elhage et al., 2021) behind these models may yield
insights into better design choices for future models. These and similar explorations have informed the
design of H3 and our selection of synthetic languages. A number of recent works have also explored
how to address the shortcomings of attention by approximating the attention computation (Wang et al.,
2020; Katharopoulos et al., 2020; Choromanski et al., 2020; Tay et al., 2020; Kitaev et al., 2020; Daras
et al., 2020). We believe these efforts are complementary to SSMs, and we are excited to see how they
can be combined in future work.

Linear attention (Katharopoulos et al., 2020) and classical sequence models like RNNs serve as
inspiration for H3. Appendix B draws a direct connection between linear attention and LTI systems.
The multiplicative interactions in H3 are reminiscent of gating mechanisms in LSTMs (Hochreiter &
Schmidhuber, 1996) and GRUs (Cho et al., 2014), which suggests that architectural lessons from these
sequence models may be useful for adapting SSMs to language modeling.

FFT algorithms are used in a wide variety of applications, including signal processing (Oppenheim,
1978), control theory (Brogan, 1974), and more. Various algorithms for computing the FFT have existed
for decades (Oppenheim et al., 2001). We hope our work on appealing to these classic algorithms to
accelerate new applications such as learned SSMs will inspire future algorithmic exploration, even if
hardware is not designed for them (Hooker, 2021).

B LINEAR ATTENTION AND TIME-VARYING SYSTEMS

We draw some connections from linear attention to LTI systems and SSMs.

We first present linear attention as a linear time-varying system, and show how converting it to a linear
time-invariant system matches H3. our H3 layer.

Linear time-varying system and linear attention In general, a layer in a sequence model takes in
a sequence and outputs a sequence. Many of these take the form of a linear time-varying system (thanks
to the Picard-Lindelof theorem, nonlinear systems can be approximated by a series of linear system):

xi=Aixi−1+Biui,

yi=Cixi+Diui.

This has the same form as SSMs (Section 2), except that the matrices can depend on the timestep.

Recall the form of linear attention from Section 2. For the purpose of approximation, we ignore the denomi-
nator in linear attention Section 2 (i.e., assuming di=1). We see thatSi is just a cumulative sum, satisfying
the recurrence Si+1 =Si+φ(Ki+1)V Ti+1. Similarly,Oi satisfies the recurrenceOi+1 =φ(Qi+1)TSi+1.
This is a linear time-varying system of the form xi+1 =Axi+Bui+1 and yi+1 =Ci+1xi+1 (with A=I ,
B=I , ui=φ(Ki)V

T
i ,Ci=φ(Qi)

T ). That is, A and B are constant, butC is time-variant.

To convert this into a linear time-invariant version, we treat the time-variant Ci as a post-processing step.
We instead of a fixed C for the LTI. This yields an LTI:

xi+1 =Axi+Bφ(Ki)V
T
i ,

yi+1 =Cxi,

for some matrices A,B,C that are learned. We then apply post-processing by multiply yi+1 with φ(Qi)
T .

Replacing φ(Ki) with a shift SSM yields an analogue to H3.

C METHOD DETAILS

Since we have described the forward pass in Section 3, we describe here the backward pass in details.
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C.1 BACKWARD PASS

We show how to compute the backward pass in a fused kernel.

Let y=f ∗u+Du. In our case, we have f and u have the same length, so they are symmetric as far as
the convolution is concerned.

Suppose we are given dy = ∂l
∂y (where l is some loss function). We wish to compute du, df , and dD

(which are ∂l
∂u , ∂l∂f , and ∂l

∂D , respectively).

The most challenging part is computing the gradient through the convolution operator - but we’ll see that we
can re-use our FFT infrastructure for it. The rest of the operations are straightforward; we have dD=dyuT .

Gradient of the Convolution Here, we’ll discuss how to compute df by integrating w.r.t. the
convolution operator ∗. As an immediate consequence, we’ll be able to compute du as well.

Since f and u are the same lengthL, f ∗u and u∗f have the same result. Thus, we’ll start from u∗f here.

For some notation, letO=u∗f . Then, dO=dy. Recall thatO[i]=
∑i−1
j=0u[i−j]f [j].

We’ll start by extending u and f with zeros, to give them length 2L. Let u′=[u[0],u[1],...,u[L−1],0,...,0],
and f ′ extended similarly. LetO′=u′∗f ′, andO=O′[:N ]. Assume that we have all the values of dO′
(we only have them for the first half, but we’ll see that it doesn’t matter in the end).

Let’s construct a Toeplitz matrixHu′ such that u′∗f ′=Hu′f ′:

Hu′ =


u′[0] 0 ... 0
u′[1] u′[0] ... 0

...
...

. . .
...

u′[2L−1] u′[2L−2] ... u′[0]


Since, we have u′[i]=f ′[i]=0 for i≥L, we can actually fill in the zeros of the above matrix as well:

Hu′ =


u′[0] u′[2L−1] ... u′[1]
u′[1] u′[0] ... u′[2]

...
...

. . .
...

u′[2L−1] u′[2L−2] ... u′[0]


Then, we can use the matrix multiplication chain rule to find that:

df ′=HT
u′dO′=


u′[0] u′[1] ... u′[2L−1]

u′[2L−1] u′[0] ... u′[2L−2]
...

...
. . .

...
u′[1] u′[2] ... u′[0]



=


u′[0] u′[−(2L−1)] ... u′[−1]
u′[−1] u′[0] ... u′[−2]

...
...

. . .
...

u′[−(2L−1)] u′[−(2L−2)] ... u′[0]

,
where we use u′[−i] to mean u′[2L− i]. Notice that this matrix has the same format as Hu′! Let
u′∗=[u′[0],u′[−1],...,u′[−(2N−1)]]. Then:

df ′=(u′∗∗dO′).
So how do we compute u′∗ efficiently? Naively, we might incur some nasty memory access issues. But
a nice property about the DFT saves us!

LetU [i] be the i-th element of the DFT of a signal u. Note thatU [i] is complex. We have:
U∗[i]=U [−i],

where here the ∗ represents the complex conjugate. We can use this property to compute df ′ efficiently:
df ′=u′∗∗dO′= iFFT (FFT ∗(u′)FFT (dO′))⇒df=df ′[:N ]= iFFT (FFT ∗(u′)FFT (dy′))[:N ],

where FFT ∗ denotes taking the complex conjugate of the FFT, and dy′ denotes dy, padded with zeros.

Computing du We can use this same trick to compute du, except we need to add in the contribution
from the original Du term. We end up with:

du=du′[:N ]+Ddy= iFFT (FFT ∗(f ′)FFT (dy′))[:N ]+Ddy.
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C.2 STATE-PASSING MATRICES

We show how to derive Mux for the state update in our state-passing algorithm.

We wish to construct a matrix vMux ∈ Rm×N ′
such that Muxu =

∑N ′

i=1 A
N ′−1Bui. Note that

AiB ∈ Rd×1 is a column vector. We can simply stack these column vectors to form a matrix:
Mux=[AN ′−1B,AN ′−2B,...,B].

D PROOFS

We show a parameterization of H3 that solves the associative recall task. We prove Proposition 1
and Proposition 2.

D.1 H3 EXPRESSIVITY

This section formally describes a parameterization of H3 that solves the associative recall task.

D.1.1 EXAMPLE LANGUAGE Λ

Consider a simple language with 4 keys and 4 values. For concreteness, we will use the keys
{k1,k2,k3,k4} = LK and the values {v1,v2,v3,v4} = LV , i.e. our language L = LK ∪LV . Given a
sequence of key-value pairs with one key at the end, we want a model to generate the value associated
with the key at the end. Assume that the key at the end appeared in the sequence.

More formally, letN+1 be the length of the sequence,N even. The language Λ consists of sequences
x ∈ LN+1. Each sequence has an associated mapping fx : LK → LV . For each sequence, the odd
indices are randomly sampled from LK , for x1, x3, ... , xN−1. The even indices are defined by fx:
x2∗i = fx(x2∗i−1), for 1≤ i≤N/2. The last item in the sequence xN+1, is randomly drawn from the
keys that have appeared in x already, i.e. xN+1∈∪{x1,x3,...,xN−1}. The goal of this language modeling
task is to produce fx(xN+1) at the end of the sequence.

D.1.2 H3 MODEL TO SOLVE Λ

We describe a toy H3 model that can solve Λ.

Consider a model consisting of an embedding layer, an H3 model, and an output projection with softmax.
Recall that d is the dimension of the H3 model, m is the dimension of its hidden states, and H is the
number of heads. Let d=8,m=2,H=4. Let the embedding layer map each key ki to the ei basis vector,
and map each value vi to the e4+i basis vector.

Let Bshift and Cshift denote the parameters of the shift SSM, and Adiag, Bdiag, and Cdiag denote the
parameters of the diagonal SSM (let D be zero for both). Let Bshift=Bdiag=Cdiag=e1. Let Cshift

= [01]. Let Adiag be a diagonal matrix with 1s along its diagonal for each H3.

Remark. The action of a diagonal SSM parameterized by Adiag, Bdiag, and Cdiag is to act as a
cumulative sum over all its input. The action of shift SSM parameterized by Bshift and Cshift is to shift
its input by one time step.

Recall that the H3 layer maps its input toQ,K, and V by applying uWQ, uWK , and uWV . Let WQ

and WK be the following:

WQ=WK =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Recall that Q and K are split into H heads (Q(i),K(i) for i ∈ {1,2,3,4}), each of which is sent to an
independent H3.

Remark. The action of WQ and WK are to “assign” each key to a different H3 head, i.e., Q(i)
t is only

non-zero when xt = ki. Similarly, K
(i)

t is only non-zero when xt−1 = ki (since Kt =Kt−1 due to the
time delay of the shift SSM).
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Let WV be the following:

WV =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Remark. The action of this matrix is to encode the input value (as “binary”), and send it to all H3 heads.
E.g., V(1)

t =V
(2)
t =V

(3)
t =V

(4)
t for all i, and V

(i)
t =[0,0]⇔xt=v1, V(i)

t =[0,1]⇔xt=v2, etc.

We claim that for xN+1 =ki, O
(i)
N+1 will be a multiple of the binary encoding of fx(ki), and all the other

heads of the output O(j)
N+1,1≤j≤4,j 6= i, will be zero. Let the output projection WO be such that, with

a non-linearity afterwards, it inverts the binary encoding to produce the embedding of the desired output
fx(ki). We will assume such a projection exists, proof left to the reader.
Proposition 3. The model described above solves the associative recall problem for the language Λ.

Proof. Proof sketch. WLOG, let xN+1 = ki. Then Q(i) = [1,1], but Q(j) = [0,0] for j 6= i. Thus,
O(j) =[0,0] for j 6= i due to the multiplicative interaction.

Since Q(i) = [1,1], O(i) is the output of the diag SSMs in the H3 head corresponding to ki (recall that
each head has two independent shift SSMs and two independent diag SSMs). The output of the diag
SSMs are the cumulative sum of all the inputs they have seen in the sequence.

For one of the diag SSMs to see a non-zero input, its preceding shift SSM must have a non-zero output.
The only times t this can happen in the sequence are when xt−1 =ki. But then xt = fx(ki). Thus, the
input to the diag SSMs are precisely the binary encoding of fx(ki). Then the output O(i) is a multiple
of the binary encoding of fx(ki), WO decodes this output to the embedding of fx(ki).

D.2 H3 COMPLEXITY

We prove Proposition 1, which states that the H3 layer takesO(d2N+dN logN) time andO(dN) space
for sequence lengthN and hidden dimension d.

Proof. We first analyze the time complexity. Consider the matrix multiplies in H3, where the input
u∈RN×d is multiplied by three weight matrices of size d×d. These take timeO(d2N). The output O is
also multiplied with an output projection weight matrix of size d×d, also taking timeO(d2N). Therefore
the matrix multiplies take timeO(d2N).

Now consider the two SSMs in H3. The first SSM involves a convolution of K ∈ RN×d (in the
N -dimension) with a kernel of sizeN×d. This reduces to an FFT, a pointwise multiply, and an inverse
FFT (in the N -dimension). This takes time O(dN logN). The second SSM involves H convolutions,
inputs of sizeN×dh×dh, along theN -dimension. This takes time:

O(Hd2hN logN)=O(ddhN logN)=O(dN logN),
where we use the fact that dh = d/H and that dh = O(1). Therefore the two SSMs take total time
O(dN logN). As a result, the H3 layer takes time:

O(d2N+dN logN).

Now we analyze the space complexity. The matrix multiplies all take spaceO(dN). The FFTs, pointwise
multiplies, and inverse FFTs of the two SSMs takesO(dN) space andO(Hd2hN)=O(ddhN)=O(dN)
space. Therefore the overall space complexity isO(dN).

D.3 STATE PASSING CORRECTNESS

We prove Proposition 2. We assume that the BLOCKFFTCONV algorithm is correct, i.e., the output
y=BLOCKFFTCONV(f,u) is equal to the output of an SSM with convolution kernel f and input u.

Proof. Proof by induction onC.
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Base case: C=1. WTS y=[y(1)], Mxxx
(0)
N ′ +Muxu

(1) =xN .

In this case, note thatN=N ′. Theny(1) =Mxyx
(0)
N ′ +BLOCKFFTCONV(f,u1)=BLOCKFFTCONV(f,u1).

But u=u1, so y=y(1) =[y(1)].

Additionally, by the recursive definition of a state space,

xN =AN−1x0+

N∑
i=1

AN−iBui

=AN ′−1x0+

N ′∑
i=1

AN ′−iBu
(1)
i

=Mxyx
(0)
N ′ +[AN ′−1B,AN ′−2B,...,B]u(1).

=Mxyx
(0)
N ′ +Muxu

(1).

Inductive step: C>1. Assume that [y(1),...,y(C−1)]=y[:N ′(C−1)], and x(C−1)N ′ =x(C−1)N ′ . WTS
that y(C) =y[N ′(C−1) :N ′C], and Mxxx

(C−1)
N ′ +Muxu

(C) =xN . Let t denoteN ′(C−1).

For i>(C−1)N ′, we have:
yi=CAi−tBxt+(f ∗[ut,ut+1,...,ut+N ′−1])i−t+Dui

=CAi−tBxt+(f ∗u(C))i−t+Dui

=CAi−tBxt+BLOCKFFTCONV(f,u(C))i−N ′

=(Mxyxt+BLOCKFFTCONV(f,u(C)))i−N ′

=(Mxyx
(C−1)
N ′ +BLOCKFFTCONV(f,u(C)))i−N ′

=y
(C)
i−N ′ .

Thus, y(C) =y[N ′(C−1) :N ′C].

Similarly,

xN =AN ′−1x(C−1)N ′ +

N ′∑
i=1

AN ′−iBui+t

=AN ′−1x
(C−1)
N ′ +

N ′∑
i=1

AN ′−iBu
(C)
i

=Mxxx
(C−1)
N ′ +[AN ′−1B,AN ′−2B,...,B]u(C)

=Mxxx
(C−1)
N ′ +Muxu

(C).

E EXPERIMENTAL DETAILS

E.1 MODEL ARCHITECTURE

For our 125M models, we use 12 layers, with hidden dimension 1024, and MLP dimension 4096. For
our 355M models, we use 24 layers, with the same hidden dimension and MLP dimension. For the hybrid
models, we use 16 attention heads for the attention layers. The 125M hybrid model has an attention layer
at layers 1 and 7, and the 355M hybrid model has attention layers at layers 1 and 13. For both our hybrid
models and our H3 models, we use SSM state size 64. Our hybrid model uses head dimension 1 for H3,
while our pure H3 model uses head dimension 8. We run models with mixed-precision training, with
bf16 for the MLP’s and attention. When training language models, we use fp32 for the FFTConv.

E.2 OPENWEBTEXT TRAINING

For the 125M models trained on OpenWebText, we follow the training recipe of the Megatron-LM repo.

We use an effective batch size of 512, and use gradient accumulation to fit into available GPU memory.
We use the AdamW optimizer, with learning rate 6e-4 for GPT-2 small and 1.5e-4 for GPT-2 medium, and
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weight decay of 0.1. All models are trained with the same hyperparameters for 100K steps. We run all im-
plementations with mixed-precision training (PyTorch AMP). We train models with sequence length 1024.

We use the Openwebtext dataset, with the GPT-2 BPE tokenizer. We randomly select 0.5% of the dataset
as the validation set, with the rest being used as training set. This random selection of validation set is
done once, and all models are evaluated on the same validation set.

E.3 THE PILE TRAINING

For the 125M and 355M models trained on the PILE, we follow the training recipe of GPT-3. We use
batch size 256, with sequence length 2048. We train our models for 600K steps. We use residual dropout
0.0 and embedding dropout 0.1. We use the AdamW optimizer, with learning rate 6e-4 for the 125M
model and 3e-4 for the 355M model, and a weight decay of 0.1. We use a linear schedule with 8000
warmup steps warmup. We suspect that there exist better hyperparameters for H3 language models, but
we did not have the resources to tune them.

For the PILE dataset, we again use the GPT-2 BPE tokenizer. We randomly select 0.5% of the dataset
as the validation set, with the rest being used as training set. This random selection of validation set is
done once, and all models are evaluated on the same validation set.

E.4 SYNTHETICS

We evaluate synthetics with two-layer versions of our GPT models. We train models with inner dimension
32, and MLP dimension 128. For all the synthetics, we use a learning rate of 5e-4 and a weight decay
of 0.1. We sample 5000 training examples and 500 test examples from the same distribution, and we
train for 200 epochs. Again, we use embedding dropout of 0.1 and residual dropout of 0.0.

E.5 SUPERGLUE

We follow the prompts used in the GPT-3 paper (Brown et al., 2020). For rank classification on the binary
classification tasks, we use yes/no for WSC, WIC, MultiRC, and BoolQ, and we use true/false for RTE.
For CB, we use true/false/neither as the three choices. For COPA and ReCoRD, we use the continuations
provided by the task.

E.6 SEIZURE CLASSIFICATION FROM EEG

Seizures, which are characterized by uncontrolled brain activity, are some of the most common
neurological disorders (Fisher et al., 2014). Chronic seizures, or epilepsy, cause a range of psychiatric
and psycho-social disorders and impact the lives of roughly one percent of the global population (Kerr,
2012). The first step to treating epilepsy is manual analysis of scalp EEG by board-certified neurologists.
However, the vast amount of EEG data produced by each patient (which can be up to days of data) makes
manual EEG analysis a costly and time-consuming process.

To mitigate the costs associated with EEG monitoring, recent deep learning techniques have began to
show promise in flagging abnormal EEG segments for potential seizure events (Siddiqui et al., 2020).
A challenge with classifying EEG data is the trade-off between increasing input sequence length, where
more context has been shown to improve seizure classification performance Saab et al. (2020), with the
increased difficulty of training deep learning models on long sequences (e.g., an EEG signal sampled at
200Hz produces 12,000 time steps per minute). As a result, many techniques involve domain-specialized
models and pre-processing steps, such as FFT transforms and graphical representations Tang et al. (2021).

We use the largest publicly available EEG corpus, TUSZ v1.5.2 (Shah et al., 2018), which includes 5,612
EEG signals from 636 patients, with 3,050 annotated seizures. Signals are segmented into 60-second
clips, and split into train/val/test by patient. The train set contains 39765 clips, the val set contains 4351
clips, and the test set contains 10001 clips.

F ADDITIONAL EXPERIMENTS

F.1 H3 LANGUAGE MODEL

Table 11: Zero-shot performance on SuperGLUE with rank classification. Best results for each model size in bold.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 39.4 52.0 48.7 37.4 58.9 44.9 59.6 60.0 50.1
GPT-Neo-125M 36.5 53.6 53.1 41.1 59.9 39.6 62.2 60.0 50.8

H3-125M 61.5 50.0 53.1 41.1 4.6 15.8 46.4 51.0 40.4
Hybrid H3-125M 39.4 51.4 59.2 48.2 51.4 55.0 59.6 67.0 53.9
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Table 12: 3-shot performance on SuperGLUE with rank classification. Best results for each size in bold, second
best underline.

Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average
OPT-125M 36.5 50.2 47.3 44.6 57.9 44.9 41.9 60.0 47.9

GPT-Neo-125M 38.5 50.0 53.1 17.9 56.3 39.6 62.1 60.0 47.2
H3-125M 63.5 50.0 52.3 48.2 32.6 15.8 37.8 51.0 43.9

Hybrid H3-125M 43.3 49.1 58.1 51.8 48.9 55.0 56.1 67.0 53.7

We report the results of a pure H3 language model on NLP evaluations. We train a 125M model on the PILE
for 300B tokens. Tables 11 and 12 show zero-shot and few-shot performance on SuperGLUE, respectively.

F.2 GENERATION PERFORMANCE

Table 13: Zero-shot performance on SuperGLUE. Best results for each size in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 36.5 48.4 49.8 8.9 39.1 44.9 45.9 60.0 41.7
GPT-Neo-125M 27.9 11.3 45.8 8.9 19.1 39.6 56.4 60.0 33.6

Hybrid H3-125M 0.0 0.0 47.3 8.9 4.4 55.0 47.6 67.0 28.8
GPT-2 medium (355M) 50.0 50.2 16.2 21.4 10.5 53.3 38.4 65.0 38.1

OPT-350M 41.3 34.8 49.5 16.1 23.6 51.4 39.7 60.0 39.6
Hybrid H3-355M 22.1 21.5 47.3 8.9 17.1 62.3 44.4 69.0 36.6

Table 14: 3-shot performance on SuperGLUE with generation. Best results for each size in bold, second best underline.
Model WSC WIC RTE CB MultiRC ReCoRD BoolQ COPA Average

OPT-125M 36.5 49.1 47.3 33.9 35.5 44.8 38.5 60.0 43.2
GPT-Neo-125M 38.5 50.0 53.1 42.9 22.5 39.7 61.2 68.0 47.0

H3-125M 0.0 0.0 47.3 8.9 0.0 15.4 37.8 53.0 20.3
Hybrid H3-125M 43.3 49.1 58.1 41.1 40.3 55.2 49.5 67.0 50.5

GPT-2 medium (355M) 36.5 50.5 47.3 28.6 35.3 53.1 37.8 63.0 44.0
OPT-350M 37.5 50.0 46.2 41.1 40.6 51.3 39.4 59.0 45.6

Hybrid H3-355M 42.3 47.5 50.5 37.5 57.5 61.4 45.4 73.0 51.9

We report results on SuperGLUE for generation. Instead of taking rank classification, we instead let the
model generate a response, and we search for the gold label (i.e., “yes” or “no” for the yes/no questions)
in the output. Tables 13 and 14 report the results. The trends for few-shot learning match with the logit
results, but the hybrid and H3 models perform very poorly in zero-shot performance on some tasks.
In these cases, the models tend to generate long text responses that are not relevant to the answer. The
few-shot learning examples help the models generate answers in a parsable format.

F.3 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA

Functional Magnetic Resonance Imaging (fMRI) data are typically represented in four dimensions,
indicating the measured blood-oxygen-level-dependent (BOLD) signal in temporal sequences
S={V1,...,Vt} of 3-dimensional volumes V ∈Rx×y×z , each indicating the BOLD signal for all spatial
locations of the brain (as defined by three spatial dimensions x, y, and z). A key challenge for the analysis
of fMRI data is the high dimensionality and low sample size of its datasets, which typically contain many
hundred thousand dimensions (i.e., voxels) for each of several hundred volumes V in each of tens to
hundreds of sequences S. In this setting, where the number of features exceed the number of samples,
standard machine learning approaches are prone to overfitting.

In spite of the low sample size of individual datasets, neuroimaging research can be considered as
recently entering a big data era because researchers more frequently share their collected datasets
publicly (Markiewicz et al., 2021). The availability of these data open up the opportunity for pre-training
in neuroimaging at scale, as recently demonstrated by Thomas et al. (2022), enabling models to utilize
the knowledge that can be learned from public functional neuroimaging data for the analysis of individual
datasets. Specifically, Thomas et al. (2022) evaluate the performance of several self-supervised learning
frameworks for functional neuroimaging data by first pre-training models on a broad fMRI dataset
spanning 11,980 fMRI runs from 1,726 individuals across 34 datasets and subsequently adapting the
pre-trained models to two downstream mental state decoding datasets (namely, the HCP (Van Essen et al.,
2013) and MDTB (King et al., 2019) datasets). In mental state decoding, predictive models are tasked
with identifying (i.e., decoding) some set of mental states (e.g., answering questions about a prose story
or math problem) from measured brain activity. The authors find that a GPT-based model, pre-trained
in a causal learning framework, performs best in decoding the 20 (HCP) and 26 (MDTB) mental states
of the two downstream datasets.

To evaluate the performance of H3 on fMRI data, we replicate this analysis, using the up- and downstream
fMRI datasets that were published by Thomas et al. (2022), treating H3 as a drop-in replacement for
the GPT model. To alleviate the high dimensionality challenge of fMRI data, and due to the generally
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high spatial correlation of brain activity, the original authors have reduced the volumetric time series S to
a set Θ∈θ1,...,θn of n=1,024 functionally-independent brain networks θ (as defined by the dictionaries
of functional modes (DiFuMo) brain atlas (Dadi et al., 2020)), each describing the BOLD signal for some
subset of voxels vx,y,z∈V , such that the resulting sequencesX∈Rt×n describe the activity pattern of
each brain network n for time points t.

In line with Thomas et al. (2022), we first pre-train models f(·) to predict the distribution of brain activity
for the next time point j of an input sequenceX , using a mean absolute error (Lrec) training objective
given the model’s output X̂ ∈ Rt×n: Lrec = 1

n

∑n
i=1 |Xj,i − X̂j,i|; X̂t,n = bn +

∑
n f(EX)t,ewe,n;

EXt,e=ETR+Epos+be+
∑
nXt,nwn,e. Here,ETR∈Re andEpos∈Re represent learnable embeddings

for each possible time point and position of an input sequence (for details, see Thomas et al. (2022)).
As the sampling frequency of fMRI is variable, the same position of an input sequence can correspond to
different time points. Note that f(·) processes the input in a lower-dimensional embedding representation
EX ∈Rt×e (with e=768 dimensions).

We evaluate two model architectures for f(·), namely, the GPT variant used in Thomas et al. (2022),
with 4 hidden layers and 12 attention heads, and a corresponding H3 variant with 4 hidden layers (with
H = 64 and m= 1; see section 3). For both models, the sequence of hidden-states outputs of the last
model layer are used to determine X̂ .

Just as Thomas et al. (2022), we randomly divide the upstream data into distinct training and validation
datasets by randomly designating 5% of the fMRI runs of each of the 34 upstream datasets as validation
data (at a minimum of 2 runs per dataset) and using the rest of the runs for training. During upstream
learning, we then randomly sample sequences of 10 to 100 time points from the fMRI runs and train
models with the ADAM optimizer (with β1 = 0.9, β2 = 0.999, and ε = 1e−8 ) for 5,000 steps at a
mini-batch size of 512, and a learning rate of 5e−4. We apply a linear learning rate decay schedule
(with a warm-up phase of 1% of the total number of training steps), gradient norm clipping at 1.0, and
L2-regularisation (weighted by 0.1). We also apply dropout at a rate of 0.1 for the GPT-based model
(based on Thomas et al. (2022)) and evaluate three dropout rates for H3: 0.1, 0.2, and 0.3.

Figure 3: Upstream mean absolute error (Lrec) in training and evaluation datasets over the course of model training.

We find that the H3 variant trained with 0.2 dropout performs on par with the GPT model, in terms of mean
absolute error (Fig. 3), and therefore continue all further analyses with this model variant. We also find that
both models exhibit almost identifyLrec error distributions throughout the brain, with relatively higher
errors in the posterior parietal, occipital, and cingulate cortices as well parts of the limbic system (Fig. 4).

To adapt the pre-trained models to mental state decoding, we add a learnable classification embedding
Ecls ∈Rn to the end of input sequences X and forward the model’s prediction f(EX) to a decoding
head p(·), composed of a dense hidden layer with e model units (one for each embedding dimension,
with tanh activation) as well as a softmax output layer with one model unit i for each considered mental
state in the data. Accordingly, we adapt models by optimizing a standard cross entropy loss objective:
Lcls=−

∑
iyilog p(f(EX))i, where yi indicates a binary variable that is 1 if i is the correct mental state

and 0 otherwise.

During downstream adaptation, we begin training with the respective pre-trained model parameters and
then allow all parameters to change freely. Similar to Thomas et al. (2022), we randomly split each of the
two downstream datasets into distinct training and test datasets, each comprising 40 (HCP) or 10 (MDTB)
distinct individuals. We adapt models for 750 steps at a mini-batch size of 256 and a learning rate of 5e−5

(otherwise using the same learning parameters as for upstream training). Importantly, we repeat each down-
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Figure 4: Mean absolute error (Lrec) of the final pre-trained models for each voxel of the brain projected onto the
inflated cortical surface of the FsAverage template (Fischl, 2012).

stream training run 20 times using different random seeds, leading to different random splits of the data and
variability in other non-deterministic training factors (such as random initialization and data shuffling).

As for the upstream data, the H3 and GPT-based models generally perform on par in their mental state
decoding performances in the two left-out test datasets (Table 15).

Table 15: Downstream adaptation performance of models pre-trained on fMRI data, averaged over 20 training runs
with varying random seeds. F1-scores are macro-averaged.

Dataset Model Acc. (±95%CI) F1 (±95%CI)
HCP GPT 88.44 (±0.39) 87.24 (±0.39)

H3 88.75 (±0.33) 87.16 (±0.37)
MDTB GPT 89.47 (±0.44) 88.74 (±0.54)

H3 88.25 (±0.45) 85.76 (±0.61)
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