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ABSTRACT

Despite the fast development of multi-agent reinforcement learning (MARL) meth-
ods, there is a lack of commonly-acknowledged baseline implementation and
evaluation platforms. As a result, an urgent need for MARL researchers is to
develop an integrated library suite, similar to the role of RLlib in single-agent RL,
that delivers reliable MARL implementation and replicable evaluation in various
bechmarks. To fill such a research gap, in this paper, we propose Multi-Agent
RLlib (MARLlib), a comprehensive MARL algorithm library that facilitates RLlib
for solving multi-agent problems. With a novel design of agent-level distributed
dataflow, MARLlib manages to unify tens of algorithms, including different types
of independent learning, centralized critic, and value decomposition methods; this
leads to a highly composable integration of MARL algorithms that are not possible
to unify before. Furthermore, MARLlib goes beyond current work by integrating
diverse environment interfaces and providing flexible parameter sharing strategies;
this allows to create versatile solutions to cooperative, competitive, and mixed
tasks with minimal code modifications for end users. A plethora of experiments are
conducted to substantiate the correctness of our implementation, based on which
we further derive new insights on the relationship between the performance and the
design of algorithmic components. With MARLlib, we expect researchers to be
able to tackle broader real-world multi-agent problems with trustworthy solutions.
Our code1 and documentation2 are released for reference.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) is a prosperous research field that has many real-
world applications and holds revolutionary potential for advanced collective intelligence [6, 37, 35].
Existing work [2, 32, 5] has shown that agents are able to learn strategies that could outperform
human experts and help guide human’s decision-making process in reverse. Significant as these
outcomes are, the algorithm implementations are always task-specific, making it hard to compare
algorithm performances, observe algorithm robustness across tasks, or use them off the shelf. Thus,
developing a commonly-acknowledged baseline implementation and a unified tool suite for MARL
research is in urgent demand.

While single-agent RL has witnessed successful unification for both algorithms (e.g. SpinningUp [1],
Tianshou [34], RLlib [19], Dopamine [7] and Stable-Baselines series [10, 12, 25]) and environments
(e.g. Gym [4]), multi-agent RL has unique challenges in building a comprehensive and high-quality
library. Firstly, there exist diverse MARL algorithm pipelines. MARL algorithms diverge in learning
targets such as working as a group and learning to cooperate, or competing with other agents and
finding a strategy that can maximize individual reward while minimizing others. Algorithms also have
different restrictions on agent parameters sharing strategies, with HATRPO agents forced to not share
parameters and MAPPO capitalizing on sharing. Different styles of central information utilization
such as mixing value functions (e.g. VDN [29]) or centralizing value function (e.g. MADDPG
[20]) introduce extra challenge on algorithm learning style unification. Existing libraries such as
EPyMARL [23] attempt to unify MARL algorithms under one framework by introducing independent
learning, centralized critic, and value decomposition categorization but still lack the effort to address

1https://github.com/ICLR2023Paper4242/MARLlib
2https://iclr2023marllib.readthedocs.io/
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Figure 1: An overview of Multi-Agent RLlib (MARLlib). MARLlib unifies environment interfaces
to decouple environments and algorithms. Beyond, it unifies independent learning, centralized critic,
and value decomposition algorithms with an agent-level distributed dataflow, and allows flexible
parameter sharing by means of policy mapping. The whole pipeline can be fully determined by
configuration files. To our best knowledge, with the widest coverage of algorithms and environments,
MARLlib is one of the most comprehensive MARL research platform.

all the problems above. The diversity of MARL algorithms is still a huge challenge for unification.
Secondly, various multi-agent environment interfaces are mutually inconsistent, as they are originally
designed to fit the task nature (e.g. asynchronous interaction is used in Hanabi, action masks are
provided as additional information in SMAC [28], local observation and global state are mixed in
MAgent [38]). The inconsistency hinders a directly unified agent-environment interaction processing
and results in the issue of coupling between algorithm implementation and task environment; an
algorithm implementation for one environment can not be directly applied to another due to interface
changes. While PettingZoo [31] builds a collection of diverse multi-agent tasks, it is inconvenient
for CTDE-based algorithm implementation as important information such as global state and action
mask is not explicitly provided. Towards the inconsistency problem, other work, such as MAPPO
benchmark [36], provides each environment with a unique runner script. Nevertheless, this solution
creates hurdles for long-term maintenance as well as uneasiness for new task extensions.

To address the above challenges in one work, we build a new library called MARLlib based on
Ray[22] and RLlib. By inheriting core advantages from RLlib and providing the following four novel
features, MARLlib serves as a comprehensive platform for MARL research community.

1. Unified algorithm pipeline with a newly proposed agent-level distributed dataflow: To unify
algorithms under diverse MARL topics and enable them to share the same learning pipeline while
preserving their unique optimization logics, we construct MARLlib under the guidance of a key
observation: all multi-agent learning paradigms can be equivalently transformed to the combination
of single-agent learning processes; thus each agent maintains its own dataflow and optimizes the
policy regardless of other agents. With this philosophy, algorithms are implemented in a unified
pipeline to tackle various types of tasks, including cooperative (team-reward-only cooperation),
collaborative (individual-reward-accessible cooperation), competitive (individual competition), and
mixed (teamwork-based competition) tasks. We further categorize algorithms based on how they
utilize central information, thereby enabling module sharing and extensibility. As shown in Figure 1,
MARLlib manages to unify tens of algorithms with the proposed agent-level distributed dataflow,
validating its effectiveness.

2. Unified multi-agent environment interface: In order to fully decouple algorithms from envi-
ronments, we propose a new interface following Gym standard, with a data structure design that
is compatible with most of the existing multi-agent environments, supports asynchronous agent-
environment interaction, and provides necessary information to algorithms. To show the advantage of
our interface design, MARLlib supports ten environments (SMAC [28], MAMuJoCo [24], GRF [16],
MPE [20], LBF [23], RWARE [23], MAgent [38], Pommerman [27], MetaDrive [18], and Hanabi
[3]) picked from the zoo of multi-agent tasks because of their inter-diversity, covering various task
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Table 1: A comparison between current MARL libraries and our MARLlib. (x) stands for the number
of available algorithms. * denotes that the benchmark has a unique framework of its own.

Library Task Mode Supported
Env Algorithm Parameter

Sharing
Async

Sampling Framework

PyMARL [11] cooperative 1
Independent Learning (1)

Centralized Critic (1)
Value Decomposition (3)

full-sharing *

PyMARL2 [13] cooperative 1
Independent Learning (1)

Centralized Critic (1)
Value Decomposition (9)

full-sharing PyMARL

MARL-Algorithms [21] cooperative 1

CTDE (6)
Communication (1)

Graph (1)
Multi-task (1)

full-sharing *

EPyMARL [23] cooperative 4
Independent Learning (3)

Centralized Critic (4)
Value Decomposition (2)

full-sharing
non-sharing PyMARL

MAlib [39] self-play
2 +

PettingZoo [31]
OpenSpiel [17]

Population-based (9)
full-sharing

group-sharing
non-sharing

✓ *

MAPPO benchmark
[36] cooperative 4 Multi-agent PPO (1) full-sharing

non-sharing ✓
pytorch-a2c-

ppo-acktr-gail [15]

MARLlib

cooperative
collaborative
competitive

mixed

10 +
PettingZoo

Independent Learning (6)
Centralized Critic (7)

Value Decomposition (5)

full-sharing
group-sharing
non-sharing

✓ Ray [22]/RLlib [19]

settings in MARL, including differences of task mode, observation dimension, action space property,
agent-environment interaction style, etc.

3. Effective policy mapping: Flexible parameter sharing is the key to enabling one algorithm to
tackle different task modes. To reduce the manual effort on regulating policies assignment, MARLlib
provides three parameter sharing strategies, namely full-sharing, non-sharing, and group-sharing, by
implementing the policy mapping API of RLlib. By simply changing the configuration file, users
can switch among these strategies regardless of algorithms or scenarios. Therefore, although policy
mapping controls the correspondence between policies and agents throughout the pipeline, it is fully
decoupled from algorithms and environments, enabling further customization of sharing strategies.

4. Exhaustive performance evaluation: We run all suitable algorithms on 23 selected scenarios of
five most common and diverse environment suites under four random seeds on average, which sums up
to over one thousand experiments in total. The empirical results not only substantiate the correctness
of MARLlib, but they also serve as a useful and trustworthy reference for the MARL research
community as the comprehensiveness and fairness of comparison are guaranteed by the unified
implementation approach. In addition, hyper-parameter tables are provided to ensure reproducibility.
Based on these results, we derive key observations and analyze them in depth in Section 5.

With the above characteristics for a new MARL benchmark, MARLlib becomes one of the most
general platforms for building, training, and evaluating MARL algorithms.

2 RELATED WORK

Building a unified platform for MARL research is meaningful yet challenging. MARL research has
witnessed the development of algorithm library starting from a single task with a limited number of
algorithms to more enriched tools and APIs, covering diverse tasks and advanced algorithms.

PyMARL [11] is the first and most well-known MARL library. All algorithms in PyMARL are built
for SMAC [28], where agents learn to cooperate for a higher team reward. However, PyMARL has
not been updated for a long time and can not catch up with the recent progress. To address this, the
extension versions of PyMARL are presented including PyMARL2 [13] and EPyMARL [23].

PyMARL2 [13] focuses on credit assignment mechanism and provide a finetuned QMIX [26] with
state-of-art-performance on SMAC. The number of available algorithms increases to ten, with more
code-level tricks incorporated.
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EPyMARL [23] is another extension for PyMARL that aims to present a comprehensive view on how
to unify cooperative MARL algorithms. It first proposed independent learning, value decomposition,
and centralized critic categorization but is restricted to cooperative algorithms. Nine algorithms are
implemented in EPyMARL. Three more cooperative environments LBF [8], RWARE [8], and MPE
[20] are incorporated to evaluate the generalization of the algorithms.

All PyMARL-based libraries follow the centralized training decentralized execution setting as
PyMARL. There also exist other MARL libraries that are built in different styles and serve their
unique purposes.

MARL-Algorithms [21] is a library that covers broader topics compared to PyMARL including
learning better credit assignment, communication-based learning, graph-based learning, and multi-
task curriculum learning. Each topic has at least one algorithm, with nine implemented algorithms in
total. The testing bed is limited to SMAC.

MAPPO benchmark [36] is the official code base of MAPPO [36]. It focuses on cooperative MARL
and covers four environments. It aims at building a strong baseline and only contains MAPPO.

MAlib [39] is a recent library for population-based MARL which combines game-theory and MARL
algorithm to solve multi-agent tasks in the scope of meta-game.

Existing libraries and benchmarks provide good platforms for developing and comparing MARL
algorithms in different environments. However, there are essential limitations to the current work.
Firstly, these work is limited in task coverage. As shown in Table 1, most existing work only supports
one task mode. Moreover, the number of supported environments is insufficient for researching
general MARL. Secondly, existing work pays little attention to how algorithms are organized but
only focuses on implementing existing work. This results in poor extensibility and a bloated code
structure. Our MARLlib, a comprehensive and unified library based on Ray and RLlib, effectively
solves the dilemma by providing better algorithm unification and categorization, implementing more
algorithms both in quantity and in diversity, covering four task modes, supporting ten environment
suites, allowing flexible parameter sharing, and being friendly to different training demands.

3 MARLLIB ARCHITECTURE

In this section, we mainly explain how MARLlib addresses the two major challenges, namely the
diversity of MARL algorithms and inconsistency of environment interfaces, with a newly proposed
agent-level distributed dataflow, a unified agent-environment interface, and effective policy mapping.

3.1 AGENT-LEVEL DISTRIBUTED DATAFLOW FOR ALGORITHM UNIFICATION

A common framework to solve multi-agent problems is Centralized Training Decentralized Execution
(CTDE), where agents maintain their own policies for independent execution and optimization, and
centralized information can be utilized to coordinate agents’ update directions during the training
phase. Under this framework, existing libraries split the whole learning pipeline into two stages:
data sampling and model optimization. In the model optimization stage, all data sampled in the
data sampling stage are available to make the training centralized. However, in this way, choosing
proper data and using these data to optimize the model are coupled in the same stage. As a result,
extending an algorithm to fit other task modes (e.g. both cooperative and competitive) becomes more
challenging and requires redesigning the whole learning pipeline.

MARLlib addresses this issue by equivalently decomposing the original grouped dataflow into agent-
level distributed dataflow. Essentially, it takes every agent in multi-agent training as an independent
unit during sample collection and optimization, but shares centralized information among agents
during the postprocessing phase (postprocessing is a RLlib API for processing sampled
data before model optimization; we enrich it to accommodate diverse algorithms) to ensure the equiv-
alence. In postprocessing, agents share observed data (data sampled from the environment) and
predicted data (actions taken by their policies or Q values) with others. All agents maintain individual
data buffers, which store their experiences and necessary information shared by other agents. After
entering the learning stage, no information sharing is needed among agents and they can optimize
themselves independently. In this way, we distribute originally combined dataflow to agents and fully
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Figure 2: Agent-level distributed dataflow of MARLlib. Observed data refer to data sampled from
environments, such as rewards or global states. Predicted data refer to data generated by agents, such
as Q values or chosen actions. postprocessing refers to the data sharing process. Each agent
maintains its own learning pipeline where collected data are used to optimize the policy of agent
itself. Therefore, the dataflow is agent-level distributed. There are three types of dataflow, namely
independent learning, centralized critic, and value decomposition [23], which are separated according
to their central information utilization style. Independent learning algorithms (e.g. IQL [30]) are
inherently distributed dataflow from the single-agent perspective and the information-sharing process
is skipped, as shown in (a). For centralized critic algorithms (e.g. MAPPO [36]), central information,
including both observed data and predicted data, is collected and shared in the postprocessing
function before entering the training stage to ensure the distributed dataflow, as shown in (b). In value
decomposition category (e.g. FACMAC [24]), predicted data from all agents must be shared, whereas
the observed data is optional, depending on the algorithm’s mixing function. The corresponding
dataflow is shown in (c).

decouple data sharing and optimization, thereby allowing the same implementation to solve multiple
modes of tasks.

Moreover, while all CTDE-based algorithms share similar agent-level dataflow in general, they still
have unique data processing logic. Inspired by EPyMARL [23], we further classify algorithms
into independent learning, centralized critic, and value decomposition categories to enable module
sharing and extensibility. Independent learning algorithms let agents learn independently; centralized
critic algorithms optimize the critic with shared information, which then guides the optimization
of decentralized actors; value decomposition algorithms learn a joint value function as well as its
decomposition into individual value functions, which agents then employ to select actions during
execution. According to their algorithmic properties, we implement suitable data sharing strategies in
postprocessing phase, as illustrated in Figure 2.

Therefore, preserving the unique properties of all algorithms, the agent-level distributed dataflow
unifies diverse learning paradigms. Our implementation approach shows its value in unifying
algorithms following CTDE in a single pipeline, which is capable of handling all task modes and
achieving similar performance to the original implementation.

3.2 A UNIVERSAL INTERFACE FOR AGENT-ENVIRONMENT INTERACTION

In RL, Gym interface, obs, reward, done, info, is universally used. However, this stan-
dardized interface cannot be trivially extended to MARL. In MARL, multiple agents coexist, each
having its own experience data. Extra information is sometimes available, such as action mask and
global state. Depending on the task mode, the reward may be a scalar or a dictionary. Moreover, the
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Figure 3: Agent-environment interaction style comparison between Gym (standard RL), mostly
used multi-agent library PyMARL, and MARLlib. MARLlib unifies diverse environment interfaces
with a newly proposed Gym-style interface obs, reward, done, info and supports both
synchronous and asynchronous sampling. done is a shared signal about termination, and the others
are dictionaries containing agents-specific data indexed by agent id. In this figure, we organize the
data by agent for better illustration.

agents may not interact with the environments synchronously, posing another challenge. Towards
these issues, MARLlib unifies the multi-agent interface from two aspects.

Firstly, MARLlib unifies the interface data structure. MARLlib proposes a new interface following
Gym standard, obs, reward, done, info, that is compatible with diverse multi-agent task
settings in practice, covering both data structure and task modes. As illustrated in Figure 3c, in MAR-
Llib, the observation returned from the environment is a dictionary with three keys: observation,
action_mask, global_state. This design satisfies most circumstances and is compatible
with RLlib’s data processing logic. Other observation-related information is included in info.
reward is a dictionary with agent id as the key. To accommodate cooperative tasks, scalar team
reward is transformed into dictionary structure by copying it for agent number times. done is a
dictionary containing a single key "__all__", which is true only when all agents are terminated.

Secondly, MARLlib supports both synchronous and asynchronous agent-environment interaction. Ex-
isting MARL libraries before MARLlib, such as PyMARL (Figure 3b), do not support asynchronous
sampling and mainly focus on synchronous cases. However, asynchronous agent-environment in-
teraction is common in multi-agent tasks like Go and Hanabi. MARLlib supports synchronous
and asynchronous agent-environment interaction, thanks to Ray/RLlib’s flexible data collection
mechanism: the data are collected and stored with agent id. Only when we receive the terminal signal
done will all data be returned for subsequent usage. This sampling process is illustrated in Figure 3c.

3.3 EFFECTIVE POLICY MAPPING

In multi-agent scenarios, a proper parameter sharing strategy can improve the algorithm’s performance.
Important as it is, most existing work support insufficient sharing modes and the implementation
is repetitious — MAPPO benchmark rewrites everything for shared and separated settings, while
EPyMARL repeats model structures to support both. In MARLlib, we support full-sharing (all
agents share parameters), non-sharing (no agents share parameters), and group-sharing (agents
within the same group share parameters) of parameters by implementing the policy mapping API
of RLlib. Intuitively, it maps the virtual policies of agents to physical policies that are actually
maintained, used, and optimized. Agents mapped to the same physical policy share parameters. As
policy mapping is transparent to agents, they actually sample data and do optimization with the
physical policies. Therefore, different types of parameter sharing can take place without affecting
algorithm implementation. In practice, we only need to maintain a policy mapping dictionary for
every environment with all the relevant information to support multiple sharing modes. A more
customized parameter sharing strategy can be realized by revising the policy mapping API to suit the
needs.

4 MARLLIB CONFIGURATION & USAGE

MARLlib allows users to regulate the whole training pipeline by customizing configuration files,
which is clean for usage and convenient for the experimental report. For a complete MARL pipeline,
configurations of four different aspects are supported, including task configuration, algorithm con-
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Figure 4: Functionalities and locations of configuration files in MARLlib. With these configuration
files, MARLlib allows customization of environments, algorithms, models, and basic RLlib settings.
When launching a training, only high-level choices of algorithms and tasks need to be specified,
thereby avoiding long training commands and enabling easy experimental report.

figuration, agent model configuration, and basic training settings for Ray and RLlib. The contents
and locations of them are shown in Figure 4. Task configuration maintains the key parameters of the
task scenario when generating from the environment engine. For instance, the level of the enemy in
SMAC can be decided by users. Algorithm configuration is in charge of the hyper-parameters of the
algorithm’s learning procedure. In addition, tricks can be turned on or off by simply changing the
corresponding key values. As MARLlib aims at building a general benchmark, tricks that are only
applicable for one task but not for others are not incorporated, which guarantees that MARLlib’s al-
gorithm configuration is valid for diverse multi-agent tasks. Agent model configuration is responsible
for constructing the agent learning unit: a neural network. Basic training settings for Ray and RLlib
control the computation resource allocation. By configuring the four aspects, the whole pipeline is
determined, and the training can be launched by simply running the entrance script main.py. After
the training begins, all configurations will be recorded. Referring to the record file can help reproduce
the same performance and conduct a fair experiment.

5 BENCHMARKING RESULTS AND ANALYSIS

In this section, we evaluate 17 algorithms on 23 tasks of five MARL testing beds including SMAC
[28], MPE [20], GRF [16], MAMuJoCo [24], and MAgent [38], which are chosen for their popularity
in MARL research and their diversity in task modes, observation shape, additional information, action
space, sparse or dense reward, and homogeneous or heterogeneous agent types. We report the mean
reward of experiments under four random seeds, which sums up to over one thousand experiments in
total. Experiments results are shown in Table 2 and Figure 5. Based on these results, we substantiate
the quality of implementation and provide insightful analysis.

5.1 QUALITY OF IMPLEMENTATION

To show the correctness of MARLlib, we compare the performances of MARLlib implementation on
SMAC to those reported by EPyMARL with the important hyper-parameters kept the same. Results
of EPyMARL consume 40 million steps on on-policy algorithms and four million on off-policy
algorithms. MARLlib only consumes half of them respectively, as we find it enough for training to
converge. Even with fewer training steps, we match most of the performances reported by EPyMARL,
as shown in Table 2. For all performance pairs available to compare, MARLlib attains similar results
on 63% of them (the reward difference is less than 1.0), achieves superior results on 25% of them,
and appears inferior on the rest 12%. Since every algorithm exhibits expected performances and for
generality and stability, we do not rely on task-specific tricks. These experimental results substantiate
the correctness of implementation. In this table, we also report for the first time the performances
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Table 2: Algorithm performances (in reward) for cooperative tasks. Both discrete control tasks (MPE,
SMAC, GRF) and continuous control tasks (MAMuJoCo) are covered. Among four environment
suites, SMAC has two rows for each scenario. The first row is the performances reported by
EPyMARL, and the second row is performances with MARLlib. For other environments, only
MARLlib performances are included. - represents no data reported. Dark cells indicate the top two
performances in each scenario.

Env Scenario Independent Learning Centralized Critic Value Decomposition
IQL IPG IA2C ITRPO IPPO MAA2C COMA MATRPO MAPPO VDN QMIX VDA2C VDPPO

SM
A

C

2s_vs_1sc 16.72 - 20.24 - 20.24 20.20 11.04 - 20.25 18.04 19.01 - -
16.09 20.07 20.07 20.16 20.18 20.09 10.32 20.23 20.21 16.3 17.25 15.61 20.24

3s5z 16.44 - 18.56 - 13.36 19.95 18.90 - 19.91 19.57 19.66 - -
16.73 10.78 13.49 10.04 14.3 15.21 9.78 12.1 19.52 19.38 19.32 8.58 13.15

MMM2 13.69 - 10.70 - 11.37 10.37 6.95 - 17.78 18.49 18.40 - -
12.08 9.21 10.17 8.04 10.37 16.08 6.7 7.62 16.86 19.31 18.34 2.72 9.31

3s_vs_5z 21.15 - 4.42 - 19.36 6.68 3.23 - 18.17 19.03 16.04 - -
16.78 5.6 10.79 3.39 7.95 12.14 4.79 13.32 17.24 18.55 19.84 9.6 14.61

M
PE

simple_spread -197.61 -63.83 -63.16 -78.16 -65.74 -63.37 -71.64 -77.63 -66.26 -190.5 -189.27 -190.66 -213.99
simple_speaker_listener -44.07 -261.65 -29.06 -50.17 -38.29 -27.76 -67.6 -44.01 -34.41 -35.26 -25.68 -54.37 -64.61

simple_reference -75.36 -36.3 -35.95 -57.79 -50.92 -35.05 -56.5 -47.71 -37.89 -70.56 -31.53 -69.35 -73.82

G
R

F pass_and_shoot -0.17 0.6 -0.03 0.6 0.5 -0.02 -0.01 0.48 0.74 -0.06 -0.24 0.05 0.01
run_pass_and_shoot -0.15 0.07 -0.07 -0.05 -0.07 -0.05 -0.03 -0.02 -0.03 -0.24 -0.11 -0.09 -0.13
3_vs_1_with_keeper 0.02 0.33 0.01 0.37 0.05 0 0.03 0.13 0.45 -0.08 -0.06 0 0

IPG IA2C IDDPG ITRPO IPPO MAA2C MADDPG MAPPO HAPPO FACMAC VDA2C VDPPO

M
A

M
uJ

oC
o 2AgentAnt 143.22 -268.02 44.60 527.10 -153.46 730.8 18.53 -57.02 330.12 -1224.6 449.19 -98.74

2AgentHalfCheetah -133.06 -457.11 -197.85 1652.49 -644.89 -493.3 -313.95 -357.78 153.2 -433.61 -423 -644.53
2AgentWalker 50.67 114.1 95.76 272.41 8.71 103.65 153.93 -4.12 164.45 -7.88 125.49 -3.76

4AgentAnt 584.75 49.36 -971.28 750.96 -127.43 -1005.30 -419.93 149.1 151.85 -457.68 -338.21 -164.72
6AgentHalfCheetah -140.96 -302.99 -196.46 1492.24 -653.78 -257.76 -207.49 -529.43 442.48 -151.95 -588.66 -544.29

of five algorithms on SMAC and MPE, twelve on GRF, and ten on MAMuJoCo for community
reference. All the experiments are reproducible, as we provide learning curves and complete training
configurations in our code repository3.

5.2 PERFORMANCE INHERITANCE OF SINGLE-AGENT RL

Empirically, we find that developing MARL algorithms based on a strong RL algorithm is a wise
choice. For instance, PPO is primarily used in single-agent RL because of its better empirical
performance than vanilla PG and A2C. This superiority affects the performance of their multi-agent
counterparts — MAPPO and VDPPO surpass MAA2C and VDA2C in most scenarios. Another
piece of evidence that corroborates this conclusion is the robustness of value iteration methods. Value
iteration-based algorithms are less hyperparameter-sensitive than policy-gradient methods and more
sample efficient. The multi-agent version of Q learning like IQL, VDN, and QMIX also inherits this
advantage and shows robust performance in most scenarios like SMAC and MPE.

5.3 THE EFFECTIVENESS OF MARL ALGORITHMS

From Table 2, we find algorithms of different categorization show superiority on specific tasks that
share similar task patterns.

Independent learning is effective when the central information is not necessary. While coordination
among agents is essential for MARL algorithms and independent learning is theoretically subop-
timal, existing work [9] has pointed out that independent learning can surpass other algorithms.
In Table 2, we find that independent learning algorithms are better than their centralized critic
counterparts in scenarios like simple_spread and pass_and_shoot, where agents are ex-
pected to behave similarly and central information is not necessary for policy optimization. By the
same logic, without a global view, independent learning fails to solve coordination tasks such as
simple_speaker_listener and simple_reference.

Centralized critic is better at learning diverse yet coordinated behaviors. In a multi-agent task, agents
can take different roles, and their behaviors are expected to be role-specific [14, 33]. Centralized
critic suits these tasks since local observations and global information are both well utilized. A
good example is MAPPO, a representative algorithm of centralized critic that performs well on
most cooperative tasks in SMAC, MPE, and GRF. HAPPO is the heterogenous version of MAPPO
that achieve robust performance in MAMuJoCo. MAPPO and HAPPO are strong baselines for
cooperative tasks where agents have diverse behaviors.

3https://github.com/ICLR2023Paper4242/MARLlib/tree/main/results
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f) simple_tage) simple_crypto g) simple_adversary h) simple_push

a) battlefield b) battle c) adversarial_pursuit d) tiger_deer

Figure 5: Reward curves of eight mixed scenarios (agents compete in group) in MAgent (a-d)
and MPE (e-h). Different styles of curves stand for different agent groups. The reward curves of
competing groups show a dynamic balance during the learning procedure, while the balance point
depends on both algorithms and tasks.

Value decomposition dominates the popular cooperative benchmarks, except for two cases. The first
case is continuous control. Well-known value decomposition algorithms like VDN and QMIX are
unsuitable for continuous control tasks, and VDA2C and VDPPO are inferior compared to other
algorithms. The second case is a long-term planning problem with a sparse reward function like in
GRF. Empirically, the performances of value decomposition methods are significantly worse than
algorithms of other categories, such as ITRPO and MAPPO. We identify two primary reasons: 1)
value iteration used by VDN and QMIX prefers a dense reward function; 2) the mixer can hardly
decompose a Q function close to zero. Except for these two cases, value decomposition algorithms
achieve robust performance with the best sample efficiency.

5.4 ALGORITHM EVALUATION IN MIXED SCENARIOS

Benchmarking algorithms in mixed tasks is challenging. Agents in mixed tasks behave both coopera-
tively (with teammates) and competitively (to their opponents). It is hard to justify which algorithm
is better based on the reward gained as the policies are always in dynamic balance: when one policy
is better optimized, the performances of its opponents’ policies are degraded.

Under mixed task mode, algorithms can be evaluated by the summed reward of all different policies.
One policy optimization forces competitive policies to get a higher reward. Therefore, the higher the
summed reward, the better the algorithms (Figure 5[a-d]). However, there are exceptions (Figure 5[e-
h]). The summed reward is a constant value or around a constant value and policies quickly reach
equilibrium with mirrored learning curves between competitive policies as a significant pattern. A fair
and general criterion to evaluate algorithms on constant-sum tasks is still an active research direction.

6 CONCLUSION

In this paper, we introduced MARLlib, an integrated library that covers broad algorithms and tasks
in the MARL research. MARLlib unifies diverse learning paradigms and multi-agent environment
interfaces with newly proposed agent-level distributed dataflow, interface unification, and flexible
parameter sharing strategies. Thousands of experiments are conducted to validate the correctness
of our implementation. To summarize, MARLlib serves as a comprehensive and solid library suite
for MARL algorithm training, evaluation, and comparison. We believe MARLlib can benefit large-
scale multi-agent applications in the long term. Moreover, it can also benefit the MARL research
community by serving as an educational portal for new researchers. At last, we strongly recommend
readers to read at our code and documentation where more details are served.
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