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Abstract

Recently, deep reinforcement learning (DRL) frameworks have shown potential for
solving NP-hard routing problems such as the traveling salesman problem (TSP)
without problem-specific expert knowledge. Although DRL can be used to solve
complex problems, DRL frameworks still struggle to compete with state-of-the-art
heuristics showing a substantial performance gap. This paper proposes a novel
hierarchical problem-solving strategy, termed learning collaborative policies (LCP),
which can effectively find the near-optimum solution using two iterative DRL
policies: the seeder and reviser. The seeder generates as diversified candidate
solutions as possible (seeds) while being dedicated to exploring over the full
combinatorial action space (i.e., sequence of assignment action). To this end, we
train the seeder’s policy using a simple yet effective entropy regularization reward
to encourage the seeder to find diverse solutions. On the other hand, the reviser
modifies each candidate solution generated by the seeder; it partitions the full
trajectory into sub-tours and simultaneously revises each sub-tour to minimize its
traveling distance. Thus, the reviser is trained to improve the candidate solution’s
quality, focusing on the reduced solution space (which is beneficial for exploitation).
Extensive experiments demonstrate that the proposed two-policies collaboration
scheme improves over single-policy DRL framework on various NP-hard routing
problems, including TSP, prize collecting TSP (PCTSP), and capacitated vehicle
routing problem (CVRP).

1 Introduction

Routing is a combinatorial optimization problem, one of the prominent fields in discrete mathematics
and computational theory. Among routing problems, the traveling salesman problem (TSP) is a
canonical example. TSP can be applied to real-world problems in various engineering fields, such as
robot routing, biology, and electrical design automation (EDA) [1, 2, 3, 4, 5] by expanding constraints
and objectives to real-world settings : coined TSP variants are expanded version of TSP. However,
TSP and its variants are NP-hard, making it challenging to design an exact solver [6].

Due to NP-hardness, solvers of TSP-like problems rely on mixed-integer linear programming (MILP)
solvers [7] and handcrafted heuristics [8, 9]. Although they often provide a remarkable performance
on target problems, the conventional approaches have several limitations. Firstly, in the case of
MILP solvers, the objective functions and constraints must be formulated into linear forms, but many
real-world routing applications, including biology and EDA, have a non-linear objective. Secondly,
handcrafted heuristics rely on expert knowledge on target problems, thus hard to solve other problems.
That is, whenever the target problem changes, the algorithm must also be re-designed.

Deep reinforcement learning (DRL)-routing frameworks [10, 11, 12] is proposed to tackle the
limitation of conventional approaches. One of the benefits of DRL is that reward of DRL can be any
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value, even from a black-box simulator; therefore, DRL can overcome the limitations of MILP on
real-world applications. Moreover, DRL frameworks can automatically design solvers relying less on
a handcrafted manner.

We note that the main objective of our research is not outperforming problem-specific solvers like
the Concorde [9], a TSP solver. Our problem-solving strategy based on DRL, however, ultimately
focuses on practical applications1 including intelligent transportation [13], biological sequence design
[14], routing on electrical device [15] and device placement [16, 17]. Therefore, this paper evaluates
the performance of DRL frameworks on TSP-like problems as a benchmark for potential applicability
to practical applications, including speed, optimality, scalability, and expand-ability to other problems.
TSP-like problems are excellent benchmarks as they have various baselines to compare with and can
easily be modeled and evaluated.

Contribution. This paper presents a novel DRL scheme, coined learning collaborative policies
(LCP), a hierarchical solving protocol with two policies: seeder and reviser. The seeder generates
various candidate solutions (seeds), each of which will be iteratively revised by the reviser to generate
fine-tuned solutions.

Having diversified candidate solutions is important, as it gives a better chance to find the best solution
among them. Thus, the seeder is dedicated to exploring the full combinatorial action space (i.e.,
sequence of assignment action) so that it can provide as diversified candidate solutions as possible. It
is important to explore over the full combinatorial action space because the solution quality highly
fluctuates depending on its composition; however, exploring over the combinatorial action space is
inherently difficult due to its inevitably many possible solutions. Therefore, this study provides an
effective exploration strategy applying an entropy maximization scheme.

The reviser modifies each candidate solution generated by the seeder. The reviser is dedicated to
exploiting the policy (i.e., derived knowledge about the problem) to improve the quality of the
candidate solution. The reviser partitions the full trajectory into sub-tours and revises each sub-
tour to minimize its traveling distance in a parallel manner. This scheme provides two advantages:
(a) searching over the restricted solution space can be more effective because the reward signal
corresponding to the sub-tour is less variable than that of the full trajectory when using reinforcement
learning to derive a policy, and (b) searching over sub-tours of seeds can be parallelized to expedite
the revising process.

The most significant advantage of our method is that the reviser can re-evaluate diversified but
underrated candidates from the seeder without dropping it out early. Since the seeder explores the
full trajectory, there may be a mistake in the local sub-trajectory. Thus, it is essential to correct such
mistakes locally to improve the solution quality. The proposed revising scheme parallelizes revising
process by decomposing the full solution and locally updating the decomposed solution. Thus it
allows the revisers to search over larger solution space in a single inference than conventional local
search (i.e., number of iteration of the reviser is smaller than that of conventional local search 2-opt
[18], or DRL-based 2-opt [19]), consequently reducing computing costs. Therefore, we can keep the
candidates without eliminating them early because of computing costs.

The proposed method is an architecture-agnostic method, which can be applied to various neural
architectures. The seeder and reviser can be parameterized with any neural architecture; this research
utilizes AM [12], the representative DRL model on combinatorial optimization, to parameterize the
seeder and the reviser. According to the experimental results, the LCP improves the target neural
architecture AM [12], and outperforms competitive DRL frameworks on TSP, PCTSP, and CVRP
(N = 20, 50, 100, 500, N : number of nodes) and real-world problems in TSPLIB [20]. Moreover, by
conducting extensive ablation studies, we show proposed techniques, including entropy regularization
scheme and revision scheme, clearly contribute to the performance improvement.

2 Related Works

There have been continuous advances in DRL frameworks for solving various routing problems.
DRL framework can generate solvers that do not rely on the ground-truth label of target problems: it
can be applied to un-explored problems. DRL-based approaches can be categorized into two parts;

1These works [13, 14, 15, 16, 17] are inspired by DRL frameworks [10, 12] on combinatorial optimization
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constructive heuristics and improvement heuristics. We survey these two categories and current
emerging hybrid approaches of machine learning (ML) with conventional solvers.

2.1 DRL-based Constructive Heuristics

Bello et al. [10] introduced an actor-critic algorithm with a policy parameterized by the pointer
network [21]. They proposed a constructive Markov decision process (MDP), where the action is
defined as choosing one of the un-served nodes to visit, given a partial solution; the policy is trained
to add a node to provide a complete solution sequentially. Later, DRL-based constructive heuristics
were developed to design the architecture of neural networks while preserving the constructive MDP
[10]. Khalil et al. [11] proposed a DRL framework with a graph embedding structure. Nazari
et al. [22], Duedon et al. [23] and Kool et al. [12] redesigned the pointer network [21] using the
transformer [24] and trained it with a policy gradient method [25]. The AM by Kool et al. [12]
reports substantial results on various NP-hard routing problems, including TSP, PCTSP, CVRP, and
orienteering problem (OP) in high-speed computation.

AM-variants. After the meaningful success of the AM, many studies are expanded from the AM.
Many engineering fields and industries apply AM into their domain. For example, Liao et al. [4]
proposed a routing algorithm for the circuit using AM.

Some researches focus on increasing the performances of AM on classic routing problems like
TSP by simple techniques. Kwan et al. [26] proposed the POMO, effective reinforcement learning
method for AM. They proposed a new RL baseline that can reduce the training variance of AM
using the problem-specific property of TSP and CVRP. In addition, they presented an effective
post-processing algorithm for TSP and CVRP. However, their proposed method has a limitation in
that it is problem-specific because it uses the domain properties of TSP and CVRP (e.g., their method
is limited to be applied to PCTSP.).

Xin et al. [27] proposed AM-style DRL-model, MDAM, for NP-hard routing problems. Their method
learns multiple AM decoders and derives various solutions through the multiple decoders. The goal
of increasing the solution diversity is similar to our research. However, our study is different where it
increases the entropy of a single decoder and improves the mistakes of various solutions through a
reviser.

2.2 DRL-based Improvement Heuristics

Unlike the constructive MDP, DRL-based improvement heuristics are designed to improve the
completed solution iteratively. Most researches on DRL-based improvement heuristics are inspired
by classical local search algorithms such as 2-opt [18] and the large neighborhood search (LNS) [28].

Chen et al. [29] proposed a DRL-based local search framework, termed NeuRewriter, that shows
a promising performance on CVRP and job scheduling problems. Wu et al. [30], and Costa et al.
[31] proposed a DRL-based TSP solver by learning the 2-opt. Their method improves the randomly
generated solutions, unlike the method of Chen et al. [29] rewrites a solution given by a conventional
heuristic solver. Hottung & Tierney [32] proposed a novel search method of VRP that destroys and
repairs a solution repeatably inspired LNS. Their method gives promising performances on CVRP.

Improvement heuristic approaches generally show better performance than constructive heuristics but
are usually slower than constructive heuristics. In the case of TSP, the number of neural network’s
inferences of constructive heuristics is the same as the number of cities to visit. However, the number
of inferences of the improvement heuristics is generally much larger.

2.3 Hybrid Approaches with Conventional Solvers

There are several studies on hybrid approaches with conventional solvers having promising perfor-
mance recently. Lu et al. [33] proposed a hybrid method, where the policy is learned to control
improvement operators (handcrafted heuristic). Significantly, they outperforms the LKH3, which is
widely considered as mountain to climb in machine learning (ML) communities. Joshi et al. [34]
combined graph neural network (GNN) model with the beam search algorithm. They trained the
GNN with supervised learning for generating a hit map of candidate nodes. Then trained GNN
reduces a searching space for improvement heuristics. Similarly, Fu et al. [35] combined supervised
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Figure 1: Illustration of seeder-reviser collaboration for TSP.

GNN model with Monte Carlo tree search (MCTS) and Kool et al. [36] combined supervised GNN
model with dynamic programming. Their method achieves significant performances, showing ML
method can effectively collaborate with conventional operational research (OR) methods.

The research scope of hybrid approaches and DRL-based methods is different. Hybrid approaches
can overcome classical solvers in target tasks by collaborating with the classical solvers. However,
hybrid approaches have inherited limitations from classical solvers that are poor expandability to
other tasks. The DRL-based method can be applied to various real-world tasks without a classic
solver; we can also utilize DRL-based to unexplored-ed tasks. This paper investigates the DRL-based
NP-hard routing method without the help of classical solvers.

3 Formulation of Routing Problems

This section explains the Markov decision process (MDP) formulation for the given 2D Euclidean
TSP as a representative example. The formulation of MDP for other problems is described in
Appendix A.1.

The main objective of TSP is to find the shortest path of the Hamiltonian cycle. The TSP graph can
be represented as a sequence of N nodes in 2D Euclidean space, s = {xi}Ni=1, where xi ∈ R2. Then,
the solution of TSP can be represented as the permutation π of input sequences:

π =

t=N⋃
t=1

{πt}, πt ∈ {1, ..., N}, πt1 ̸= πt2 if t1 ̸= t2

The objective is minimizing the tour length L(π|s) =
∑N−1

t=1 ||xπt+1 − xπt ||2 + ||xπN
− xπ1 ||2.

Then, we formulate the constructive Markov decision process (MDP) of TSP.

State. State of MDP is represented as a partial solution of TSP or a sequence of previously selected
actions: π1:t−1.

Action. Action is defined as selecting one of un-served tasks. Therefore, action is represented as πt

where the πt ∈ {{1, ..., N} \ {π1:t−1}}.

Cumulative Reward. We define cumulative reward for solution (a sequence of assignments) from
problem instance s as negative of tourlength: −L(π|s).
Constructive Policy. Finally we define constructive policy p(π|s) that generates a solution π from
TSP graph s. The constructive policy p(π|s) is decomposed as:

p(π|s) =
t=N∏
t=1

pθ(πt|π1:t−1, s)

Where pθ(πt|π1:t−1, s) is a single-step assignment policy parameterized by parameter θ.

4 Learning Collaborative Policies

This section describes a novel hierarchical problem-solving strategy, termed learning collaborative
policies (LCP), which can effectively find the near-optimum solution using two hierarchical steps,
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Figure 2: Illustration of the seeding process. The diversity of seeds is approximated as the sum of
scaled entropy of segment policy. The scheduler wt is for giving more weight when t is in early step
t1 than t2. In the early step t1, selecting a, rather than b is critical for the overall solution. In the latter
step t2, even though the probability of selecting node c and d is equal (i.e., has a high entropy), they
may give similar solutions.

seeding process and revising process (see Figure 1 for detail). In the seeding process, the seeder
policy pS generates M number of diversified candidate solutions. In the revising process, the reviser
policy pR re-writes each candidate solution I times to minimize the tour length of the candidate. The
final solution is then selected as the best solution among M revised (updated) candidate solutions.
See pseudo-code in Appendix A.4 for a detailed technical explanation.

4.1 Seeding Process

The seeder generates as diversified candidate solutions as possible while being dedicated to exploring
the full combinatorial action space. To this end, the seeder is trained to solve the following problems.

Solution space. Solution space of seeder is a set of full trajectory solutions : {π(1), ...,π(M)}. The
M is the number of candidate solutions from the seeder: termed sample width.

Policy structure. Seeder is a constructive policy, as defined in section 3 as follows:

pS(π|s) =
t=N∏
t=1

pθS (πt|π1:t−1, s)

The segment policy pθS (πt|π1:t−1, s), parameterized by θS , is derived form AM [12].

Entropy Reward. To force the seeder policy pS to sample diverse solutions, we trained pS such that
the entropy H of pS to be maximized. To this end, we use the reward RS defined as:

RS = H

(
π ∼

t=N∏
t=1

pθS (πt|π1:t−1, s)

)
≈

N∑
t=1

wtH (πt ∼ pθS (πt|π1:t−1, s)) (1)

The entropy of constructive policy is appropriate for measuring solution diversity. However, comput-
ing the entropy of constructive policy is intractable because search space is too large: N !. Therefore,
we approximate it as a weighted sum of the entropy of segment policies pθS (πt|π1:t−1, s) evaluated
at different time step.

We use a linear scheduler (time-varying weights) wt =
N−t
Nw

to boost exploration at the earlier stage
of composing a solution; higher randomness imposed by the higher weight wt at the early stage
tends to generate more diversified full trajectories later. The Nw is the normalizing factor, which is a
hyperparameter.

Training scheme. To train the seeder, we use the REINFORCE [25] algorithm with rollout baseline
b introduced by Kool et al. [12]. Then the gradient of each objective function is expressed as follows:

∇J(θS |s) = Eπ∼pS [(L(π|s)− αRS(pS1:N ,π)− b(s))∇log(pS)] (2)
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Figure 3: Training progress of the reviser. From randomly generated TSP, sub-problems are decom-
posed. Then reviser infers to make constructive action referring starting and destination node and
previous selected actions. The reward is a negative length of the partial tour generated from the
reviser.

Note that the α is hyperparameter for RS and pS1:N is the sequence of segment polices
{pθS (πt|π1:t−1, s)}Nt=1. We use the ADAM [37] optimizer to obtain the optimal parameter θ∗

that minimizes the objective function.

4.2 Revision Process

In the revision process, given a candidate solution, the reviser decomposes the candidate solution
into K segments and simultaneously finds the optimum routing sequence for each segment of each
candidate solution. The reviser repeats this revising process I times to find the best-updated candidate
solution. To be specific, the reviser sequentially updates candidate solutions (I times) by repeatably
decomposing the full trajectories computed from the previous iteration into segments and revising the
segments to produce M updated full trajectory solutions. To sum up, reviser solves M ×K segments
in parallel (M : number of candidate solutions, K: number of the segment in each candidate solution),
I times in series.

The proposed scheme has advantages over conventional local search methods or DRL-based im-
provement heuristics. It searches larger solution spaces in a single inference; therefore, it reduces
iteration I . For example, 2-opt and DRL-2opt [19] search O(N2) solution space (if it is parallelizable,
O(MN2)), while the reviser searches O(MK × l!) which is much larger (when the number of nodes
of the segment l is big enough) in a single inference. Hence we can reduce the number of iterations I
significantly compared to 2-opt, or DRL-2opt [19], thus expediting the speed of the solution search
(see Appendix E).

Solution space. Solution space of reviser is a partial segment of full trajectory solution represented
as πk+1:k+l. The k is starting index, and l is the number of nodes of the segment. For details of
assigning segment including k and l, see Appendix A.3.

Policy structure. Reviser is a constructive policy as follows:

pR(πk+1:k+l|s) =
t=l∏
t=1

pθR(πk+t|πk:k+t−1, πk+l+1, s)

The segment policy pθR , parameterized by θR, is in the similar form with that of AM [12]. Each πk

and πk+l+1 indicate the starting point and the destination point of the partial segment, respectively
(see red-points in Figure 3).

We modify the context embedding vector h(N)
(c) = [h̄(N), h

(N)
πt−1 , h

(N)
π1 ] of AM, which is designed for

solving TSP. Hence, h is a high dimensional embedding vector from the transformer-based encoder,
and N is the number of multi-head attention layers. h̄(N) is the mean of the entire embedding,
h
(N)
πt−1 is the embedding of previously selected nodes, and h

(N)
π1 is the embedding of the first node.

However, since the destination of reviser is πk+l+1, not the first node π1 , we change the embedding
of the first node h

(N)
π1 to be the embedding of the last node h

(N)
πk+l+1 for the context embedding as

h
(N)
(c) = [h̄(N), h

(N)
πk+t−1 , h

(N)
πk+l+1 ].

Revision Reward: negative of partial tour length LR(πk+1:k+l|s) =
∑l+1

t=1 ||xπk+t
− xπk+t−1

||2.
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Training scheme. The training process is mostly the same as described in section 4.1, except that we
have modified the length term L to LR, and set α = 0 to remove entropy reward RS for training the
reviser. Note that the seeder and reviser are trained separately.

5 Experiments

This section reports the experimental results2 of the LCP scheme on TSP, PCTSP, and CVRP
(N = 20, 50, 100, 500, N : number of nodes). Also, we report several ablation studies in section 5.3
and Appendix B-F. We evaluate performance on real-world TSPs in the TSPLIB in Appendix G.

Training Hyperparamters. Throughout the entire training process of the seeder and reviser, we
have exactly the same hyperparameters as Kool et al. [12], except that the training batch size of our
seeder is 1024. To train the seeder’s policy, we set α = 0.5 (2) and Nw =

∑N
i=1 i for linear weight

wt =
N−t
Nw

for entropy scheduling.

Details in the experimental setting, including hyperparameters, dataset configuration, and run time
evaluation, are described in Appendix A.5.

5.1 Target Problems and Baselines

We evaluate the performance of LCP in solving the three routing problems: TSP, PCTSP, and CVRP.
We provide a brief explanation of them. The detailed descriptions for these problems are in Appendix
A.1.

Travelling salesman problem (TSP). TSP is a problem to find the shortest Hamiltonian cycle given
node sequences.

Price collecting travelling salesman problem (PCTSP). PCTSP [38] is a problem, where each
node has a prize and a penalty. The goal is to collect the nodes with at least a minimum total prize
(constraint) and minimize tour length added with unvisited nodes’ penalties.

Capacitated vehicle routing problem (CVRP). CVRP [39] is a problem where each node has a
demand, while a vehicle must terminate the tour when the total demand limit is exceeded (constraint).
The objective is to minimize the tour length.

For the baseline algorithms, we use two types of algorithms: conventional heuristics and DRL-based
solvers. For the conventional heuristics, we use Gurobi [7] (the commercial optimization solver), and
the OR Tools [40] (the commercial optimization solver) for all three problems. In Table 1, Gurobi (t)
indicates time-limited Gurobi whose running time is restricted below t. In addition, OR Tools (t) is
the OR Tools that allows additional local search over a duration of t. For problem-specific heuristics,
we use Concorde [9] for TSP, the iterative local search (ILS) [12] for PCTSP, and LKH3 [41] for
CVRP.

For the baselines using DRL-based solvers, we concentrated on the ability of the LCP scheme, which
is improved performance over AM. Validating that the two-policies collaboration scheme outperforms
the single-policy scheme (i.e., AM) is a crucial part of this research; thus, the most important metric
for performance evaluation is improvement between vanilla AM the AM + LCP. Also, we reproduced
other competitive DRL frameworks: current emerging improvement heuristics. We exclude recently
proposed AM-style constructive heuristics, including the POMO [26] and MDAM [27] because they
can be candidate collaborators with LCP, not competitors (e.g., POMO + LCP is possible). The
detailed method for evaluation baselines in Table 1 is described as follows:

TSP. We follow baseline setting of Kool et al. [12] and Costa et al. [19]. We set DRL baselines
including the S2V-DQN [11], EAN [23], GAT-T [30], DRL-2opt [19], and AM [12]. We show the
results of S2V-DQN and EAN reported by Kool et al. [12], and the results of GAT-T reported by
Costa et al. [19]. Then we directly reproduce the two most competitive DRL frameworks among
baselines, the AM and DRL-2opt, in our machine to make a fair comparison of the speed.

PCTSP. We follow baseline setting of Kool et al. [12]. We reproduce AM [12] for DRL baseline.

2See source code in https://github.com/alstn12088/LCP
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Table 1: Performance evaluation results of the LCP scheme compared with baseline heuristics and
the DRL frameworks on TSP, PCTSP, and CVRP. The best costs (objective) among DRL frameworks
are marked in bold. The H is heuristic and Solver is exact algorithm. The “LCP {640,2}” means
that the sampling width M is 640, and the number of iterations I (of the reviser) is 2. We measure
the performance in a limited time budget, which is 10 seconds per instance. The OB means “out of
budget” and IF means “infeasible”, where the solver cannot generate solutions satisfying constraints
of target problems in a limited time.

Method N = 20 N = 50 N = 100

Cost Gap Time Cost Gap Time Cost Gap Time

T
SP

Gurobi (Solver) 3.84 0.00% 0.01s 5.70 0.00% 0.01s 7.76 0.00% 0.02s
OR Tools (H) 3.85 0.37% 5.80 1.76% 8.12 4.53%
Concorde (H) 3.84 0.00% 0.01s 5.70 0.00% 0.01s 7.76 0.00% 0.02s

S2V-DQN 3.89 1.42% 5.99 5.16% 8.31 7.03%
EAN {M : 1280} 3.84 0.11% 5.77 1.28% 8.75 12.7%
EAN+2OPT {M : 1280} 3.84 0.09% 5.75 1.00% 8.12 4.64%
GAT-T {I: 5000} 3.84 0.00% 5.71 0.20% 7.87 1.42%
Drl-2opt {I: 2000} 3.84 0.00% 3.58s 5.70 0.12% 4.88s 7.83 0.87% 7.15s
AM {M : 1280} 3.84 0.08% 0.03s 5.73 0.52% 0.09s 7.94 2.26% 0.36s
AM {M : 2560} 3.84 0.06% 0.04s 5.72 0.45% 0.13s 7.94 2.21% 0.42s
AM {M : 7500} 3.84 0.05% 0.06s 5.72 0.39% 0.29s 7.93 2.13% 1.21s

AM + LCP {640,10} 3.84 0.00% 0.18s 5.70 0.13% 0.30s 7.86 1.25% 0.57s
AM + LCP {1280,10} - 5.70 0.10% 0.45s 7.85 1.13% 0.90s
AM + LCP* {1280,45} - 5.70 0.02% 2.48s 7.81 0.54% 4.30s

PC
T

SP

Gurobi (Solver) 3.13 0.00% 0.01s OB OB
Gurobi {1s} (H) 3.14 0.07% 0.01s IF IF
Gurobi {10s} (H) 3.13 0.00% 0.01s 5.17 15.6% 0.19s IF
OR Tools {10s} (H) 3.14 0.05% 0.31s 4.51 0.70% 0.31s 6.35 6.21% 0.31s
OR Tools {60s} (H) 3.13 0.01% 1.80s 4.48 0.00% 1.80s 6.08 1.56% 1.80s
ILS (H) 3.16 0.77% 0.10s 4.50 0.67% 0.72s 5.98 0.00% 4.32s

AM {M : 1280} 3.18 0.39% 0.03s 4.52 0.74% 0.07s 6.08 1.67% 0.17s
AM {M : 2560} 3.15 0.41% 0.03s 4.51 0.72% 0.10s 6.07 1.57% 0.28s

AM + LCP {640,1} 3.14 0.17% 0.04s 4.50 0.51% 0.07s 6.06 1.42% 0.15s
AM + LCP {1280,5} 3.14 0.08% 0.10s 4.49 0.32% 0.20s 6.04 1.00% 0.39s

C
V

R
P

Gurobi (Solver) 6.10 0.00% 0.01s OB OB
OR Tools (H) 6.43 5.41% 11.31 9.01% 17.16 9.67%
LKH3 (H) 6.14 0.58% 0.72s 10.38 0.00% 2.52s 15.65 0.00% 4.68s

RL {M : 10} 6.40 4.92% 11.15 7.46% 16.96 8.39%
NLNS {I: 2000} 6.19 1.47% 1.00s 10.54 1.54% 1.63s 16.00 2.17% 2.18s
AM {M : 1280} 6.25 2.49% 0.05s 10.62 2.40% 0.14s 16.23 3.72% 0.34s
AM {M : 2560} 6.25 2.39% 0.06s 10.61 2.24% 0.31s 16.17 3.34% 0.75s
AM {M : 7500} 6.24 2.24% 0.09s 10.59 2.06% 0.36s 16.14 3.11% 1.42s

AM + LCP {640,1} 6.17 1.15% 0.07s 10.56 1.74% 0.15s 16.05 2.58% 0.30s
AM + LCP {1280,1} 6.16 0.92% 0.09s 10.54 1.54% 0.20s 16.03 2.43% 0.45s
AM + LCP {2560,1} 6.15 0.84% 0.14s 10.52 1.38% 0.31s 16.00 2.24% 0.77s
AM + LCP {6500,1} - - 15.98 2.11% 1.73s

CVRP. We follow baseline setting of Houttung & Tierney [32]. We report result of RL [22] based on
Houttung & Tierney [32] and we reproduce AM [12] and NLNS [32].

5.2 Performance Evaluation

In this section, we report the performance of LCP on small-scale problems (N = 20, 50, 100) in
Table 1. Then we provide a time-performance trade-off analysis including large-scale problems
(N = 500). We note that time-performance analysis is significant because any method can find an
optimal solution when given an infinite time budget. From the analysis, we can identify a specific time
region, called winner region, where LCP performs the best in terms of both speed and performance.

Performance evaluation on N = 20, 50, 100. Our method outperforms all the DRL baselines and
OR-tools in TSP, PCTSP, and CVRP, as clearly shown in Table 1.
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(a) TSP100 (b) PCTSP100 (c) CVRP100

(d) TSP500 (e) PCTSP500 (f) CVRP500

Figure 4: Details of time-performance analysis. The left (fast) and lower (lower cost) trend indicates
a better performance. In (e), the ILS cannot generate solution in time budget (t < 1000s)

Table 2: Ablation study of LCP components on TSP, PCTSP, and CVRP (N = 100). The optimal
gap is measured by comparing it with state-of-the-art solvers. The Entropy Regularization indicates
training the seeder with RS , while the default is the uniform scheduling. The best performances are
marked in bold.

Component of the LCP TSP PCTSP CVRP

Entropy Regularization Weight Scheduling Reviser cost gap cost gap cost gap

7.96 2.65% 6.08 1.64% 16.29 3.43%

! 7.96 2.68% 6.08 1.76% 16.25 3.16%
! ! 7.94 2.45% 6.07 1.62% 16.20 2.86%

! 7.86 1.32% 6.04 1.13% 16.20 2.86%

! ! 7.84 1.17% 6.05 1.16% 16.16 2.59%
! ! ! 7.82 0.88% 6.04 1.02% 16.12 2.37%

Note that for TSP (N = 100), we applied two types of revisers, each of which is denoted LCP
and LCP*, respectively. The details are described in Appendix A.4 with pseudo-code. Our LCP
and LCP* outperforms DRL-2opt, the current state-of-the-art DRL-based improvement heuristic in
N = 20, 50, 100, surpass 0.33% in N = 100.

In PCTSP, LCP outperforms AM with less time. Our method (AM + LCP {640,1}) outperforms the
OR-Tools (10s), with 4× and 2× faster speed in N = 50, 100 respectively. Compared to the ILS,
our method (AM + LCP {1280,5}) underperforms by 1.0%, but has 11 × faster speed for N = 100 .

For CVRP, our method outperforms competitive DRL frameworks.

Time-performance analysis on N = 100, 500. In Figure 4, we describe the time-performance
analysis. We cannot control the speed of the Concorde, ILS, and LKH3. We can control the speed of
DRL solvers by adjusting sample width M or the number of iterations I . For PCTSP, we can change
the speed of OR-tools by managing the time for additional local searches.

Our scheme clearly outperforms DRL-solvers in terms of both speed and performance. For PCTSP
(N = 100, 500) and CVRP (N = 500), our method achieves the winner region of t < 10, which is
best performed in a specific time region among all kind of baseline solvers (for CVRP (N = 100),
our method achieves the winner region of t < 5).

Performance on TSPLIB [20] data: see Appendix G.
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5.3 Ablation Study

In this section, we conduct an ablation study on LCP components. We leave further ablation studies
to Appendix B-F.

Ablation study of collaborative policies. In Table 2, we ablate three significant components of
LCP and show the experimental results for every case. In the case of vanilla AM, having none
of LCP components, the performance is the poorest. On the other hand, collaboration of seeder
trained with linearly scheduled-entropy and the reviser shows the best performance. Therefore, the
experimental results empirically validate our proposal of hierarchically collaborating two policies
and also demonstrate the effectiveness of using a linearly scheduled-entropy term shown in section
4.1 and Figure 2.

Ablation study of entropy regularization: see Appendix B.

Ablation study of SoftMax temperature: see Appendix C.

Ablation study of application of LCP to pointer network [10, 21]: see Appendix D.

Comparison with reviser and other improvement heuristics: see Appendix E.

Training convergence of seeder and reviser in different PyTorch seeds: see Appendix F.

6 Discussion

In this paper, we proposed a novel DRL scheme, learning collaborative policies (LCP). The extensive
experiments demonstrate that our two-policies collaboration algorithm (i.e., LCP) outperforms con-
ventional single-policy DRL frameworks, including AM [12], on various NP-hard routing problems,
such as TSP, PCTSP, and CVRP.

We highlight that LCP is a reusable scheme, can solve various problems. The neural architecture of
the seeder and reviser proposed in this paper is derived from AM [12]. It can be substituted by other
architectures, such as the pointer network [10, 21] and AM-style architectures including POMO [26]
and MDAM [27]. If further studies on neural architecture for combinatorial optimization are carried
out, the seeder and reviser can be improved further.

Also, LCP can be directly applied to other combinatorial optimization tasks, including TSP with
time windows (TSPTW), orienteering problem (OP), multiple TSP (mTSP), variations of the vehicle
routing problem (VRP), and other practical applications.

Further Works. We made an important first step: two-policies collaboration where each pol-
icy specializing in exploration or exploitation can improve conventional single-policy systems on
combinatorial optimization tasks. The important direction of further research is introducing more
sophisticated strategies to explore or exploit combinatorial solution space. New exploration strategies
for overcoming the proposed approximated entropy maximization scheme are needed. Also, it is
necessary to investigate more effective exploitation strategies beyond the proposed revision scheme.

Acknowledgements and Disclosure of Funding

This research is supported in part by the KAIST undergraduates research program (URP), 2019. We
thank Hankook Lee and Prof. Jinwoo Shin for building part of this project in the URP. We thank
Joonsang Park, Keeyoung Son, Hyunwook Park, Haeyeon Rachel Kim, and our anonymous reviewers
for feedback and discussions.

10



References
[1] Rajesh Matai, Surya Singh, and M.L. Mittal. “Traveling Salesman Problem: an Overview of

Applications, Formulations, and Solution Approaches”. In: Nov. 2010. ISBN: 978-953-307-
426-9. DOI: 10.5772/12909.

[2] B. Yuan, M. Orlowska, and S. Sadiq. “On the Optimal Robot Routing Problem in Wireless
Sensor Networks”. In: IEEE Transactions on Knowledge and Data Engineering 19.9 (2007),
pp. 1252–1261. DOI: 10.1109/TKDE.2007.1062.

[3] Olin Johnson and Jing Liu. “A traveling salesman approach for predicting protein functions”.
In: Source code for biology and medicine 1 (Feb. 2006), p. 3. DOI: 10.1186/1751-0473-1-3.

[4] Haiguang Liao et al. Attention Routing: track-assignment detailed routing using attention-
based reinforcement learning. 2020. arXiv: 2004.09473 [cs.LG].

[5] M. Kim et al. “Reinforcement Learning-based Auto-router considering Signal Integrity”. In:
2020 IEEE 29th Conference on Electrical Performance of Electronic Packaging and Systems
(EPEPS). 2020, pp. 1–3. DOI: 10.1109/EPEPS48591.2020.9231473.

[6] Christos H. Papadimitriou. “The Euclidean travelling salesman problem is NP-complete”.
In: Theoretical Computer Science 4.3 (1977), pp. 237–244. ISSN: 0304-3975. DOI: https:
//doi.org/10.1016/0304-3975(77)90012-3. URL: http://www.sciencedirect.
com/science/article/pii/0304397577900123.

[7] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2021. URL: http://www.
gurobi.com.

[8] Keld Helsgaun. “An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic”. In: European Journal of Operational Research 126 (Oct. 2000), pp. 106–130. DOI:
10.1016/S0377-2217(99)00284-2.

[9] David Applegate et al. “Concorde TSP solver”. In: 2006. URL: http : / / www . math .
uwaterloo.ca/tsp/concorde/m.

[10] Irwan Bello et al. Neural Combinatorial Optimization with Reinforcement Learning. 2017.
arXiv: 1611.09940 [cs.AI].

[11] Elias Khalil et al. “Learning Combinatorial Optimization Algorithms over Graphs”. In: Ad-
vances in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017, pp. 6348–6358. URL: https://proceedings.neurips.cc/paper/
2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf.

[12] Wouter Kool, Herke van Hoof, and Max Welling. “Attention, Learn to Solve Routing Prob-
lems!” In: International Conference on Learning Representations. 2019. URL: https://
openreview.net/forum?id=ByxBFsRqYm.

[13] Matthew Veres and Medhat Moussa. “Deep Learning for Intelligent Transportation Systems:
A Survey of Emerging Trends”. In: IEEE Transactions on Intelligent Transportation Systems
21.8 (2020), pp. 3152–3168. DOI: 10.1109/TITS.2019.2929020.

[14] Christof Angermueller et al. “Model-Based Reinforcement Learning for Biological Sequence
Design”. In: International Conference on Learning Representations. 2020.

[15] Haiguang Liao et al. “Attention Routing: track-assignment detailed routing using attention-
based reinforcement learning”. In: CoRR abs/2004.09473 (2020). arXiv: 2004.09473. URL:
https://arxiv.org/abs/2004.09473.

[16] Azalia Mirhoseini et al. “Device Placement Optimization with Reinforcement Learning”. In:
Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June 2017,
pp. 2430–2439. URL: http://proceedings.mlr.press/v70/mirhoseini17a.html.

[17] Azalia Mirhoseini et al. “Chip Placement with Deep Reinforcement Learning”. In: CoRR
abs/2004.10746 (2020). arXiv: 2004.10746. URL: https://arxiv.org/abs/2004.10746.

[18] A. Croes. “A method for solving traveling salesman problems”. In: Operations Research 5
(1958), pp. 791–812.

[19] Paulo R. de O. da Costa et al. Learning 2-opt Heuristics for the Traveling Salesman Problem
via Deep Reinforcement Learning. 2020. arXiv: 2004.01608 [cs.LG].

[20] Gerhard Reinelt. “TSPLIB–A Traveling Salesman Problem Library”. In: ORSA Journal on
Computing 3.4 (1991), pp. 376–384.

11

https://doi.org/10.5772/12909
https://doi.org/10.1109/TKDE.2007.1062
https://doi.org/10.1186/1751-0473-1-3
https://arxiv.org/abs/2004.09473
https://doi.org/10.1109/EPEPS48591.2020.9231473
https://doi.org/https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/https://doi.org/10.1016/0304-3975(77)90012-3
http://www.sciencedirect.com/science/article/pii/0304397577900123
http://www.sciencedirect.com/science/article/pii/0304397577900123
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1016/S0377-2217(99)00284-2
http://www.math.uwaterloo.ca/tsp/concorde/m
http://www.math.uwaterloo.ca/tsp/concorde/m
https://arxiv.org/abs/1611.09940
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9896106ca98d3d05b8cbdf4fd8b13a1-Paper.pdf
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1109/TITS.2019.2929020
https://arxiv.org/abs/2004.09473
https://arxiv.org/abs/2004.09473
http://proceedings.mlr.press/v70/mirhoseini17a.html
https://arxiv.org/abs/2004.10746
https://arxiv.org/abs/2004.10746
https://arxiv.org/abs/2004.01608


[21] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. “Pointer Networks”. In: Advances in
Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates,
Inc., 2015, pp. 2692–2700. URL: https://proceedings.neurips.cc/paper/2015/
file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

[22] MohammadReza Nazari et al. “Reinforcement Learning for Solving the Vehicle Routing
Problem”. In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et
al. Vol. 31. Curran Associates, Inc., 2018, pp. 9839–9849. URL: https://proceedings.
neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf.

[23] Michel Deudon et al. “Learning Heuristics for the TSP by Policy Gradient”. In: Integration of
Constraint Programming, Artificial Intelligence, and Operations Research. Ed. by Willem-Jan
van Hoeve. Cham: Springer International Publishing, 2018, pp. 170–181. ISBN: 978-3-319-
93031-2.

[24] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017,
pp. 5998–6008. URL: https : / / proceedings . neurips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[25] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning”. In: Machine Learning 8 (1992), pp. 229–256.

[26] Yeong-Dae Kwon et al. “POMO: Policy Optimization with Multiple Optima for Reinforcement
Learning”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle
et al. Vol. 33. Curran Associates, Inc., 2020, pp. 21188–21198. URL: https://proceedings.
neurips.cc/paper/2020/file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf.

[27] Liang Xin et al. “Multi-decoder attention model with embedding glimpse for solving vehicle
routing problems”. In: Proceedings of 35th AAAI Conference on Artificial Intelligence. 2021.

[28] Paul Shaw. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing
Problems. 1997.

[29] Xinyun Chen and Yuandong Tian. “Learning to Perform Local Rewriting for Combinatorial
Optimization”. In: Advances in Neural Information Processing Systems. 2019.

[30] Yaoxin Wu et al. Learning Improvement Heuristics for Solving Routing Problems. 2020. arXiv:
1912.05784 [cs.AI].

[31] Paulo R d O da Costa et al. “Learning 2-opt Heuristics for the Traveling Salesman Problem via
Deep Reinforcement Learning”. In: Proceedings of The 12th Asian Conference on Machine
Learning. Ed. by Sinno Jialin Pan and Masashi Sugiyama. Vol. 129. Proceedings of Machine
Learning Research. Bangkok, Thailand: PMLR, 18–20 Nov 2020, pp. 465–480. URL: http:
//proceedings.mlr.press/v129/costa20a.html.

[32] André Hottung and Kevin Tierney. “Neural Large Neighborhood Search for the Capacitated
Vehicle Routing Problem”. In: CoRR abs/1911.09539 (2019). arXiv: 1911.09539. URL:
http://arxiv.org/abs/1911.09539.

[33] Hao Lu, Xingwen Zhang, and Shuang Yang. “A Learning-based Iterative Method for Solving
Vehicle Routing Problems”. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL: https:
//openreview.net/forum?id=BJe1334YDH.

[34] Chaitanya K. Joshi et al. Learning TSP Requires Rethinking Generalization. 2020. arXiv:
2006.07054 [cs.LG].

[35] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. “Generalize a Small Pre-trained Model to
Arbitrarily Large TSP Instances”. In: CoRR abs/2012.10658 (2020). arXiv: 2012.10658. URL:
https://arxiv.org/abs/2012.10658.

[36] Wouter Kool et al. “Deep Policy Dynamic Programming for Vehicle Routing Problems”. In:
CoRR abs/2102.11756 (2021). arXiv: 2102.11756. URL: https://arxiv.org/abs/2102.
11756.

[37] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. URL:
http://arxiv.org/abs/1412.6980.

[38] Egon Balas. “The prize collecting traveling salesman problem”. In: Networks 19.6 (1989),
pp. 621–636. DOI: https://doi.org/10.1002/net.3230190602. URL: https://
onlinelibrary.wiley.com/doi/abs/10.1002/net.3230190602.

12

https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f231f2107df69eab0a3862d50018a9b2-Paper.pdf
https://arxiv.org/abs/1912.05784
http://proceedings.mlr.press/v129/costa20a.html
http://proceedings.mlr.press/v129/costa20a.html
https://arxiv.org/abs/1911.09539
http://arxiv.org/abs/1911.09539
https://openreview.net/forum?id=BJe1334YDH
https://openreview.net/forum?id=BJe1334YDH
https://arxiv.org/abs/2006.07054
https://arxiv.org/abs/2012.10658
https://arxiv.org/abs/2012.10658
https://arxiv.org/abs/2102.11756
https://arxiv.org/abs/2102.11756
https://arxiv.org/abs/2102.11756
http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1002/net.3230190602
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230190602
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230190602


[39] Paolo Toth and Daniele Vigo. Vehicle Routing. Ed. by Daniele Vigo and Paolo Toth.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014. DOI: 10.1137/
1 . 9781611973594. URL: https : / / epubs . siam . org / doi / abs / 10 . 1137 / 1 .
9781611973594.

[40] Laurent Perron and Vincent Furnon. OR-Tools. Version 7.2. Google, 2019. URL: https:
//developers.google.com/optimization/.

[41] Keld Helsgaun. “An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained
Traveling Salesman and Vehicle Routing Problems”. In: (Dec. 2017). DOI: 10.13140/RG.2.
2.25569.40807.

13

https://doi.org/10.1137/1.9781611973594
https://doi.org/10.1137/1.9781611973594
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.13140/RG.2.2.25569.40807
https://doi.org/10.13140/RG.2.2.25569.40807

	Introduction
	Related Works
	DRL-based Constructive Heuristics
	DRL-based Improvement Heuristics
	Hybrid Approaches with Conventional Solvers

	Formulation of Routing Problems
	Learning Collaborative Policies
	Seeding Process
	Revision Process

	Experiments
	Target Problems and Baselines
	Performance Evaluation
	Ablation Study

	Discussion
	Details of Experiments
	Detailed Explanation of Target Problems.
	Detailed Implementation of Seeder in Inference Phase
	Detailed Implementation of Reviser
	Algorithmic Details of LCP.
	Details of Experimental Setting

	Ablation Study of Scaled Entropy Regularization
	Ablation to SoftMax Temperature
	Applying the LCP to Other DRL Frameworks
	Comparison with Reviser and Improvement Heuristics
	Experiments of Training Convergence in Different PyTorch Seeds 
	Details of Real World Experiments on TSP



