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Abstract

We develop scalable methods for producing conformal Bayesian predictive in-1

tervals with finite sample calibration guarantees. Bayesian posterior predictive2

distributions, p(y | x), characterize subjective beliefs on outcomes of interest, y,3

conditional on predictors, x. Bayesian prediction is well-calibrated when the model4

is true, but the predictive intervals may exhibit poor empirical coverage when5

the model is misspecified, under the so calledM-open perspective. In contrast,6

conformal inference provides finite sample frequentist guarantees on predictive7

confidence intervals without the requirement of model fidelity. Using ‘add-one-in’8

importance sampling, we show that conformal Bayesian predictive intervals are9

efficiently obtained from re-weighted posterior samples of model parameters. Our10

approach contrasts with existing conformal methods that require expensive refitting11

of models or data-splitting to achieve computational efficiency. We demonstrate12

the utility on a range of examples including extensions to partially exchangeable13

settings such as hierarchical models.14

1 Introduction15

We consider Bayesian prediction using training data Z1:n = {Yi, Xi}i=1:n for an outcome of interest16

Yi and covariates Xi ∈ Rd. Given a model likelihood fθ(y | x) and prior on parameters, π(θ) for17

θ ∈ Rp, the posterior predictive distribution for the response at a new Xn+1 = xn+1 takes on the18

form19

p(y | xn+1, Z1:n) =

∫
fθ(y | xn+1)π(θ | Z1:n) dθ , (1)

where π(θ | Z1:n) is the Bayesian posterior. Asymptotically exact samples from the posterior can20

be obtained through Markov chain Monte Carlo (MCMC) and the above density can be computed21

through Monte Carlo (MC), or by direct sampling from an approximate model. Given a Bayesian22

predictive distribution, one can then construct the highest density 100× (1−α)% posterior predictive23

credible intervals, which are the shortest intervals to contain (1 − α) of the predictive probability.24

Alternatively, the central 100 × (1 − α)% credible interval can be computed using the α/2 and25

1− α/2 quantiles. Posterior predictive distributions condition on the observed Z1:n and represent26

subjective and coherent beliefs. However, it is well known that model misspecification can lead27

Bayesian intervals to be poorly calibrated in the frequentist sense (Dawid, 1982; Fraser et al., 2011),28

that is the long run proportion of the observed data lying in the (1− α) Bayes predictive interval is29

not necessarily equal to (1− α). This has consequences for the robustness of such approaches and30

trust in using Bayesian models to aid decisions.31

Alternatively, one can seek intervals around a point prediction from the model, ŷ = µ̂(x), that have32

the correct frequentist coverage of (1 − α) . This is precisely what is offered by the conformal33

prediction framework of Vovk et al. (2005), which allows the construction of prediction bands with34

finite sample validity without assumptions on the generative model beyond exchangeability of the35
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data. Formally, for Zi = {Yi, Xi}i=1:n, Zi
iid∼ P and miscoverage level α, conformal inference36

allows us to construct a confidence set Cα(Xn+1) from Z1:n and Xn+1 such that37

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1− α (2)

noting that P is over Z1:n+1. In this paper we develop computationally efficient conformal inference38

methods for Bayesian models including extensions to hierarchical settings. A general theme of our39

work is that, somewhat counter-intuitively, Bayesian models are well suited for the conformal method.40

Conformal inference for calibrating Bayesian models was previously suggested in Melluish et al.41

(2001), Vovk et al. (2005), Wasserman (2011) and Burnaev and Vovk (2014), where it is referred42

to as “de-Bayesing”, “frequentizing” and “conformalizing”, but only in the context of conjugate43

models. Here, we present a scalable MC method for conformal Bayes, implementing full conformal44

Bayesian prediction using an ‘add-one-in’ importance sampling algorithm. The automated method45

can construct conformal predictive intervals from any Bayesian model given only samples of model46

parameter values from the posterior θ ∼ π(θ | Z1:n), up to MC error. Such samples are readily47

available in most Bayesian analyses from probabilistic programming languages such as Stan Carpenter48

et al. (2017) and PyMC3 Salvatier et al. (2016). We also extend conformal inference to partially49

exchangeable settings which include the important class of Bayesian hierarchical models, and note50

the connection to Mondrian conformal prediction (Vovk et al., 2005, Chapter 4.5). We discuss the51

motivation behind using the Bayesian posterior predictive density as the conformity measure for both52

the Bayesian and the frequentist, and demonstrate the benefits in a number of examples.53

1.1 Background54

The conformal inference framework was first introduced by Gammerman et al. (1998), followed by55

the thorough book of Vovk et al. (2005). Full conformal prediction is computationally expensive,56

requiring the whole model to be retrained at each test covariate xn+1 and for each value in a reference57

grid of potential outcomes, e.g. y ∈ R for regression. This makes the task computationally infeasible58

beyond a few special cases where we can shortcut the evaluation along the outcome reference grid,59

e.g. ridge regression (Vovk et al., 2005; Burnaev and Vovk, 2014) and lasso (Lei, 2019). Shrinking60

the search grid is possible, but still requires many refittings of the model (Chen et al., 2016). The split61

conformal prediction method (Lei et al., 2018) is a useful alternative method which only requires62

a single model fit, but increases variability by dividing the data into a training and test set that63

includes randomness in the choice of the split, and has a tendency for wider intervals. Methods64

based on cross-validation such as cross-conformal prediction (Vovk, 2015) and the jacknife+ (Barber65

et al., 2021) lie in between the split and full conformal method in terms of computation. A detailed66

discussion of computational costs of various conformal methods are provided in Barber et al. (2021,67

Section 4). A review of recent advances in conformal prediction is given in Zeni et al. (2020), and68

interesting extensions have been developed by works such as Tibshirani and Foygel (2019); Romano69

et al. (2019); Candès et al. (2021).70

2 Conformal Bayes71

2.1 Full Conformal Prediction72

We begin by summarizing the full conformal prediction algorithm discussed in Vovk et al. (2005);73

Lei et al. (2018). Firstly, a conformity (goodness-of-fit) measure,74

σi := σ(Z1:n+1;Zi),

takes as input a set of data points Z1:n+1, and computes how similar the data point Zi is for75

i = 1, . . . , n + 1. A typical conformity measure for regression would be the negative squared76

error arising from a point prediction −{yi − µ̂(xi)}2, where µ̂(x) is the point predictor fit to the77

augmented dataset Z1:n+1, assumed to be symmetric with respect to the permutation of the input78

dataset. The key property of any conformity measure is that it is exchangeable in the first argument,79

i.e. the conformity measure for Zi is invariant to the permutation of Z1:n+1. Under the assumption80

that Z1:n+1 is exchangeable, we then have that σ1:n+1 is also exchangeable, and its rank is uniform81

among {1, . . . , n+ 1} (assuming continuous σ1:n+1). From this, we have that the rank of σn+1 is a82

valid p-value. If we now consider a plug-in value Yn+1 = y (where Xn+1 is known), we can denote83
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the rank of σn+1 among σ1:n+1 as84

π(y) =
1

n+ 1

n+1∑
i=1

1 (σi ≤ σn+1) .

For miscoverage level α, the full conformal predictive set,85

Cα(Xn+1) = {y ∈ R : π(y) > α}, (3)

satisfies the desired frequentist coverage as in (2). Intuitively, we are reporting the values of y which86

conform better than the fraction α of observed conformity scores in the augmented dataset. A formal87

proof can be found in Vovk et al. (2005, Chapter 8.7). For continuous σ1:n+1, we also have from Lei88

et al. (2018, Theorem 1) that the conformal predictive set does not significantly over-cover.89

In practice, beyond a few exceptions, the function π(y) must be computed on a fine grid y ∈ Ygrid, for90

example of size 100, in which case the model must be retrained 100 times to the augmented dataset to91

compute σ1:n+1, with plug-in values for yn+1 on the grid. This is illustrated in the Algorithm below.92

We note here that the grid method only provides approximate coverage, as y may be selected even if93

it lies between two grid points that are not selected. This is formalized in Chen et al. (2018), but we94

do not discuss this further. In the Appendix, we provide an empirical comparison of the grid effects.95

This is also valid for binary classification where we now have a finite Ygrid = {0, 1}, and so the grid96

method for full conformal prediction is exact and feasible.97

Observed data is Z1:n, Xn+1; Specify miscoverge level α
for each y ∈ Ygrid do

Fit model to augmented dataset {Z1, . . . , Zn, {y,Xn+1}}
Compute σ1:n and σn+1

Store the rank, π(y) , of σn+1 among σ1:n+1

end
Return the set Cα(Xn+1) = {y ∈ Ygrid : π(y) > α}.

Algorithm 1: Full Conformal Prediction

98

2.2 Conformal Bayes and Add-One-In Importance Sampling99

In a Bayesian model, a natural suggestion for the conformity score, as noted in Vovk et al. (2005);100

Wasserman (2011), is the posterior predictive density (1), that is101

σ(Z1:n+1;Zi) = p(Yi | Xi, Z1:n+1).

This is a valid conformity score, as we have π(θ | Z1:n+1) ∝ π(θ)
∏n+1
i=1 fθ(Yi | Xi), and so σ is102

indeed invariant to the permutation of Z1:n+1. We denote this method as conformal Bayes (CB),103

and we will see shortly that the exchangeability structure of Bayesian models is key to constructing104

conformity scores in the partial exchangeability scenario.105

Beyond conjugate models, we are usually able to obtain (asymptotically exact) posterior samples106

θ(1:T ) ∼ π(θ | Z1:n), e.g through MCMC, where T is a large integer. Such samples are typically107

available as standard output from Bayesian model fitting. The posterior predictive can then be108

computed up to Monte Carlo error through109

p̂(Yn+1 | Xn+1, Z1:n) =
1

T

T∑
t=1

fθ(t)(Yn+1 | Xn+1).

The key insight is that refitting the Bayesian model with {Z1, . . . , Zn, {y,Xn+1}} is well approx-110

imated through importance sampling (IS), as only {y,Xn+1} changes between refits. This leads111

immediately to an IS approach to full conformal Bayes, where we just need to compute ‘add-one-in’112

(AOI) predictive densities. Here AOI refers to the inclusion of {Yn+1, Xn+1} into the training113

set, named in relation to ‘leave-one-out’ (LOO) cross-validation. Specifically, for Yn+1 = y and114

θ(1:T ) ∼ π(θ | Z1:n), we can compute115

p̂(Yi | Xi, Z1:n+1) =

T∑
t=1

w̃(t)fθ(t)(Yi | Xi) (4)
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where w̃(t) are our self-normalized importance weights of the form116

w(t) = fθ(t)(y | Xn+1), w̃(t) =
w(t)∑T
t′=1 w

(t′)
· (5)

We see that the unnormalized importance weights have the intuitive form of the predictive likelihood117

at the reference point {y,Xn+1} given the model parameters θ(t).118

The use of AOI importance sampling has similarities to the computation of Bayesian leave-one-out119

cross-validation (LOOCV) predictive densities (Vehtari et al., 2017), which is also used in accounting120

for model misspecification. An interesting aspect of AOI in comparison with LOO is that AOI121

predictive densities are less vulnerable to importance weight instability for the following reasons:122

• In LOOCV, the target π(θ | Z−i) generally has thinner tails than the proposal π(θ | Z1:n),123

leading to importance weight instability. In contrast, AOI uses the posterior π(θ | Z1:n) as124

a proposal for the thinner-tailed π(θ | Z1:n+1). For LOOCV the importance weights are125

proportional to 1/fθ(y | x), in contrast to the typically bounded fθ(y | x) for AOI.126

• For AOI, we are predicting Zi given Z1:n+1 which is always in-sample unlike in LOOCV127

where the datum is out-of-sample, so we can expect greater stability with AOI.128

• The IS weight stability is governed by Yn+1 = y, which is not random as we select it for129

the grid. For sufficiently large α, we will not need to compute the AOI predictive density for130

extreme values of y.131

We provide some IS weight diagnostics in the experiments and find that they are stable. In difficult132

settings such as very high-dimensions, one can make use of the recommendations of Vehtari et al.133

(2015) for assessing and Pareto-smoothing the importance weights if necessary.134

2.3 Computational complexity135

Given the posterior samples, we must compute the likelihood for each θ(t) at Z1:n, as well at136

{y,Xn+1} for y ∈ Ygrid. The additional computation required for CB for each Xn+1 is thus137

T × (n + ngrid) likelihood evaluations, which is relatively cheap. This is then followed by the138

dot product of an (n + 1) × T matrix with a T vector for each y, which is O(nT ), so the overall139

complexity is O(ngridTn). The values ngrid and T are constants, though we may want to increase T140

with the dimensionality of the model to reduce importance sampling variance. The large matrices141

involved in computing the AOI predictives suggests we can take advantage of GPU computation,142

and machine learning packages such as JAX (Bradbury et al., 2018) are highly suitable for this143

application.144

2.4 Motivation145

Much has been written on the contrasting foundations and interpretation of Bayes versus frequentist146

measures of uncertainty (Little, 2006; Shafer and Vovk, 2008; Bernardo and Smith, 2009; Wasserman,147

2011), and we provide a summary in the Appendix. Here we motivate CB predictive intervals from148

both a Bayesian and frequentist perspective.149

The pragmatic Bayesian, aware of the potential for model misspecification in either the prior or150

likelihood, may be interested in conformal inference as a countermeasure. CB predictive intervals151

with guaranteed frequentist coverage can be provided as a supplement to the usual Bayesian predictive152

intervals. The difference between the Bayesian and conformal interval may also serve as an informal153

diagnostic for model evaluation (e.g. Gelman et al. (2013)). Posterior samples through MCMC or154

direct sampling are typically available, and so CB through automated AOI carries little overhead.155

The frequentist may also wish to use a Bayesian model as a tool for constructing predictive confidence156

intervals. Firstly, the likelihood can take into account skewness, heteroscedasticity unlike the usual157

residual conformity score. Secondly, features such as sparsity, support, and regularization can be158

included through priors, while CB ensures correct coverage. Finally, a subtle issue that arises in159

full conformal prediction is that we lose validity if hyperparameter selection is not symmetric with160

respect to Zn+1, e.g. if we estimate the lasso penalty λ using only Z1:n before computing the full161

conformal intervals with said λ(Z1:n). For CB, a prior on hyperparameters induces weighting of the162

hyperparameter values by implicit cross-validation for each refit (Gneiting and Raftery, 2007; Fong163

and Holmes, 2020). We highlight here that this issue does not affect the split conformal method.164
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3 Partial Exchangeability and Hierarchical Models165

A setting of particular interest is for grouped data, which corresponds to a weakening of exchange-166

ability often denoted as partial exchangeability (Bernardo and Smith, 2009, Chapter 4.6). Assume167

that we observe data from J groups, each of size nj , where again Zi,j = {Yi,j , Xi,j}. We denote168

the full dataset as Z = {Zi,j : i = 1, . . . , nj , j = 1, . . . , J}. We may not expect the entire sequence169

Z to be exchangeable, instead only that data points are exchangeable within groups. Formally, this170

means that171

p(Z1:n1,1, . . . , Z1:nJ ,J) = p(Zπ1(1):π1(n1),1, . . . , ZπJ (1):πJ (nJ ),J) (6)
for any permutations πj of 1, . . . , nj , for j = 1, . . . , J . Alternatively, we can enforce the usual172

definition of exchangeability but only consider permutations π of 1, . . . , n such that the groupings are173

preserved. A simple example of this partial exchangeability is if Zi,j
iid∼ Pj for i = 1, . . . , nj , j =174

1, . . . , J , where Pj can now be distinct.175

Partial exchangeability is useful in multilevel modelling, e.g. where Z1:nj ,j records exam results on176

students within school j, for schools j = 1, . . . , J . Students may be deemed exchangeable within177

schools, but not between schools. Further examples may be found in Gelman and Hill (2006).178

3.1 Group Conformal Prediction179

Given a new Xnj+1,j belonging to group j for j ∈ {1, . . . , J}, we seek to construct a (1 − αj)180

confidence interval for Ynj+1,j . We define a within-group conformity score as181

σi,j := σZ−j (Z1:nj+1,j ;Zi,j)

for i = 1, . . . , nj + 1. We denote Z−j as the dataset without group j, and the subscript indicates182

the dependence of the conformity score on this, which we motivate in the next subsection. For183

each Z−j , we require the score to be invariant with respect to the permutation of Z1:nj+1,j . For184

Znj+1,j = {y,Xnj+1,j}, the conformal predictive set is then defined185

πj(y) =
1

nj + 1

nj+1∑
i=1

1
(
σi,j ≤ σnj+1,j

)
, Cαj

(
Xnj+1,j

)
= {y ∈ R : πj(y) > αj) (7)

In other words, we rank the conformity scores σ1:nj+1,j within the group j, and compute the186

conformal interval as usual with Algorithm 1. The interval is valid from the following.187

Proposition 1. Assume that {Z,Znj+1,j} is partially exchangeable as in (6), and the conformity188

measure σi,j for group j is invariant to the permutation of Z1:nj+1,j . We then have189

P
(
Ynj+1,j ∈ Cαj

(
Xnj+1,j

))
≥ 1− αj

where Cαj

(
Xnj+1,j

)
is defined in (7), and P is over {Z,Znj+1,j}.190

Proof. Conditional on Z−j , the observations Z1:nj+1,j are still exchangeable, and thus so are191

σ1:nj+1,j from the invariance of the conformity measure. The usual conformal guarantee then holds:192

P
(
Ynj+1,j ∈ Cαj

(
Xnj+1,j

)
| Z−j

)
≥ 1− αj .

Taking the expectation with respect to Z−j gives us the result.193

It is interesting to note that the above group conformal predictor coincides with the attribute-194

conditional Mondrian conformal predictor of Vovk et al. (2005, Chapter 4.5), with the group alloca-195

tions as the taxonomy. Validity under the relaxed Mondrian-exchangeability of Vovk et al. (2005,196

Chapter 8.4) is key for us here.197

3.2 Conformal Hierarchical Bayes198

Under this setting, a hierarchical Bayesian model can be defined of the form199

[Yi,j | Xi,j , θj , τ ]
iid∼ fθj ,τ (· | Xi,j) i = 1, . . . , nj , j = 1, . . . , J

[θj | φ]
iid∼ π(· | φ) j = 1, . . . , J

φ ∼ π(φ), τ ∼ π(τ).
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Here τ is a common parameter across groups (e.g. a common standard deviation for the residuals200

under homoscedastic errors). The desired partial exchangeability structure is clearly preserved in the201

Bayesian model (Bernardo, 1996). De Finetti representation theorems are also available for partially202

exchangeable sequences (when defined in a slightly different manner to the above), which motivate203

the specification of hierarchical Bayesian models (Bernardo and Smith, 2009, Chapter 4.6).204

The posterior predictive is once again a natural choice for the conformity measure. Denoting Z̄y as205

the entire dataset augmented with Znj+1,j = {y,Xnj+1,j}, we have206

σi,j = p(Yi,j | Xi,j , Z̄y) =

∫
fθj ,τ (Yi,j | Xi,j)π(θj , τ | Z̄y) dθj dτ (8)

for i = 1, . . . , nj + 1. The within-group permutation invariance follows as the likelihood is exchange-207

able within groups, and thus so is the posterior and resulting posterior predictive. Practically, this208

structure allows for independent coefficients θj for each group, but partial pooling through π(θ | φ)209

allows information to be shared between groups. A fully pooled model, whilst still valid, is usually210

too simple and predicts poorly, whereas a no-pooling conformity score ignores information sharing211

between groups. More details on hierarchical models can be found in Gelman et al. (2013, Chapter 5).212

We point out that we can select a separate coverage level αj for each group, which will be useful213

when group sizes nj vary - we provide a demonstration of this in the Appendix. Computation of σi,j214

is again straightforward, where MCMC now returns [θ
(1:T )
1:J , φ(1:T ), τ (1:T )] ∼ π(θ1:J , φ, τ | Z). We215

can then estimate (8) using AOI importance sampling as in (4) and (5) using the marginal samples216

{θ(1:T )
j , τ (1:T )} ∼ π(θj , τ | Z) and weights w(t) = f

θ
(t)
j ,τ(t)(y | Xnj+1,j).217

In the above we consider predictive intervals within groups. Predictive intervals for new groups218

are possible with the Bayesian model, but a conformal predictor would require additional stronger219

assumptions of exchangeability to ensure validity. We leave this for future work, noting that dealing220

with groups of different sizes seems nontrivial.221

4 Experiments222

We run and time all examples on an Azure NC6 Virtual Machine, which has 6 Intel Xeon E5-2690223

v3 vCPUs and a one-half Tesla K80 GPU card. We use PyMC3 (Salvatier et al., 2016) for MCMC224

and sklearn (Pedregosa et al., 2011) for the regular conformal predictor; both are run on the CPU.225

Computation of the CB and Bayes intervals is implemented in JAX (Bradbury et al., 2018), and run226

on the GPU. The code and further examples are provided in the Supplementary Material.227

4.1 Sparse Regression228

We first demonstrate our method under a sparse linear regression model on the diabetes dataset (Efron229

et al., 2004) considered by Lei (2019). The dataset is available in sklearn, and consists of n = 442230

subjects, where the response variable is a continuous diabetes progression and the d = 10 covariates231

consist of patient readings such as blood serum measurements. We standardize all covariates and the232

response to have mean 0 and standard deviation 1.233

The Bayesian model we consider is234

fθ(y | x) = N (y | θTx+ θ0, τ
2)

π(θj) = Laplace(0, b), π(θ0) ∝ 1, π(b) = Gamma(1, 1) π(τ) = N+(0, c)
(9)

for j = 1, . . . , d, and where b is the scale parameter andN+ is the half-normal distribution. Note that235

a hyperprior on b has removed the need for cross-validation that is required for lasso. We consider two236

values of c for the hyperprior on τ , which correspond to a well-specified (c = 1) and poorly-specified237

(c = 0.02) prior; in the latter case our posterior on τ will be heavily weighted towards a small value.238

This model is well-specified for the diabetes dataset (Jansen, 2013, Chapter 4.5) under a reasonable239

prior (c = 1). We compute the central (1−α) credible interval from the Bayesian posterior predictive240

CDF estimated using Monte Carlo and the same grid as for CB.241

To check coverage, we repeatedly divide into a training and test dataset for 50 repeats, with 30% of242

the dataset in the test split. We evaluate the conformal prediction set on a grid of size ngrid = 100243

between [ymin − 2, ymax + 2], where ymin, ymax is computed from each training dataset. The average244
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coverage, length and run-times (excluding MCMC) with standard errors are given in Table 4.1 for245

α = 0.2. MCMC induced an average overhead of 21.9s for a = 1 and 26.8s for c = 0.02 for the246

Bayes and CB interval, where we simulate T = 8000 posterior samples. The CB intervals are only247

slightly slower than the Bayes intervals, and still a small fraction of the time required for MCMC,248

and is thus an efficient post-processing step. For c = 1, the Bayesian intervals have coverage close to249

(1− α) with the smallest expected length, with CB slightly wider and more conservative. However,250

when the prior is misspecified with c = 0.02, the Bayes intervals severely undercover, whilst the CB251

coverage and length remain unchanged from the c = 1 case.252

As baselines, we compare to the split and full conformal method using the non-Bayesian lasso as the253

predictor, with the usual residual as the nonconformity score. For the split method, we fit lasso with254

cross-validation on the subset of size ntrain/2 to obtain the lasso penalty λ. For the full conformal255

method, we use the grid method for fair timing, as other estimators beyond lasso would not have the256

shortcut of Lei (2019). As setting a default λ = 1 gives poor average lengths, we estimate λ = 0.004257

on cross-validation on one of the training sets, and use this value over the 50 repeats. However,258

we must emphasize again that this is somewhat misleading, as discussed in Section 2.4. A fairer259

approach would involve fitting lasso with CV for each of the 100 grid values and 133 test values, but260

this is infeasible as each fit requires around 80ms, resulting in a total run-time of 17 minutes. On the261

other hand, the AOI scheme of CB is equivalent to refitting b for each grid and test value. In terms262

of performance, the split method has wider interval lengths than CB/full, but performs well given263

the extremely low computational costs. The full conformal method performs as well as CB, but is264

comparable in time as MCMC + CB, whilst not refitting λ.265

Table 1: Diabetes; Coverage values not within 3 standard errors (in brackets) of the target coverage
(1− α) = 0.8 are in red.

Bayes CB Split Full (λ = 0.004)
Coverage c = 1 0.806 (0.005) 0.808 (0.006) 0.816 (0.006) 0.808 (0.006)

c = 0.02 0.563 (0.006) 0.809 (0.006) 0.816 (0.006) 0.808 (0.006)
Length c = 1 1.84 (0.01) 1.87 (0.01) 1.95 (0.02) 1.86 (0.01)

c = 0.02 1.14 (0.00) 1.87 (0.01) 1.95 (0.02) 1.86 (0.01)
Run-time c = 1 0.488 (0.107) 0.702 (0.019) 0.065 (0.001) 11.529 (0.232)

(secs) c = 0.02 0.373 (0.002) 0.668 (0.003) 0.066 (0.001) 11.524 (0.240)

4.1.1 Importance weights266

For the diabetes dataset, we look at the effective sample size (ESS) of the self-normalized importance267

weights (5), which can be computed as ESS = 1/
∑T
t=1{w(t)}2 for each xn+1 and y. The ESS268

as a function of y for a single xn+1 is shown in Figure 1 for the two cases c = 1, 0.02, with the269

CB conformal bands given for α = 0.2, 0.5. We have scaled the ESS plots by ESSMCMC/T , where270

T = 8000 is the number of posterior samples and ESSMCMC is the minimum ESS out of all posterior271

parameters return by PyMC3. We observe the ESS is well behaved and stable across the range of y272

values. In both cases, the ESS for α = 0.2 is sufficiently large for a reliable estimate of the conformity273

scores. However, for c = 0.02, the ESS decays more quickly with y as the Bayes predictive intervals274

are too narrow, which the CB corrects for. Other values of xn+1 produce similar behaviour.275
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Figure 1: Effective sample sizes of IS weights with CB conformal bands for diabetes dataset with
(left) c = 1 and (right) c = 0.02.
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4.2 Sparse Classification276

In this section, we analyze the Wisconsin breast cancer (Wolberg and Mangasarian, 1990), again277

available in sklearn. The dataset is of size 569, where the binary response variable corresponds to a278

malignant or benign tumour. The 30 covariates consist of measurements of cell nuclei. Again, we279

standardize all covariates to have mean 0 and standard deviation 1.280

We consider the logistic likelihood fθ(y = 1 | x) = [1 + exp {− (θTx+ θ0)}]−1, with the same281

priors for θ, θ0 as in (9). The Bayesian predictive set is the smallest set from {0}, {1}, {0, 1} that282

contains at least (1− α) of the posterior predictive probability. The conformal baselines are as above283

but with L1-penalized logistic regression, and for the full conformal method we have λ = 1. We284

again have 50 repeats with 70-30 train-test split, and set α = 0.2. The grid method is now exact,285

and the size of the CB intervals can take on the values {0, 1, 2}. The results are provided in Table 2,286

where MCMC required an average of 45.4s to produce T = 8000 samples. We see that even with287

reasonable priors, Bayes can over-cover substantially, which CB corrects in roughly the same amount288

of time as it takes to compute the usual Bayes interval. However, we point out that CB may produce289

empty prediction sets, whereas Bayes cannot, and we investigate this in the Appendix.290

Table 2: Breast Cancer; Coverage values not within 3 standard errors (in brackets) of the target
coverage (1− α) = 0.8 are in red. “Size” denotes the average number of elements in the conformal
prediction set, averaged over the test points and repetitions.

Bayes CB Split Full
Coverage 0.990 (0.001) 0.812 (0.005) 0.814 (0.006) 0.811 (0.005)

Size 1.06 (0.00) 0.81 (0.00) 0.82 (0.01) 0.81 (0.00)

Run-time (secs) 0.364 (0.007) 0.665 (0.012) 0.079 (0.002) 1.008 (0.016)

4.3 Hierarchical Model291

We now demonstrate Bayesian conformal inference using a hierarchical Bayesian model for multilevel292

data. We stick to the varying intercept and varying slope model (Gelman et al., 2013), that is for293

j = 1, . . . , J :294

fθj ,τ (yi,j) = N (yi,j | θT

jXi,j + θ0,j , τ
2)

π(θj) = N (φ, s2), π(θ0,j) = N (φ0, s
2
0)

(10)

with hyperpriors N (0, 1) on the location parameters φ, φ0 and Exp(1) on the standard deviations295

s, s0, τ . We now apply this to a simulated example, and an application to the radon dataset of Gelman296

and Hill (2006) is given in the Appendix.297

We consider two simulation scenarios, with J = 5 groups and nj = 10 elements per group:298

1. Well-specified: We generate group slopes θj
iid∼ N (0, 1) for j = 1, . . . , J . For each j, we299

generate Xi,j ∼ N (0, 1) and Yi,j ∼ N (θjXi,j , 1).300

2. Misspecified: We generate group slopes and variances θj
iid∼ N (0, 1), τj

iid∼ Exp(1) for301

j = 1, . . . , J . For each j, we generate Xi,j ∼ N (0, 1) and Yi,j ∼ N
(
θjXi,j , τ

2
j

)
.302

The first scenario has homoscedastic noise between groups as assumed in the model (10) whereas the
second scenario is heteroscedastic between groups. To evaluate coverage, we only draw θ1:J , τ1:J
once (and not per repeat), giving us the values

θ1:J = [1.33,−0.77,−0.32,−0.99,−1.07], τ1:J = [1.24, 2.30, 0.76, 0.28, 1.11].

For each of the 50 repeats, we draw nj = 10 training and test data points from each group using the303

above θ1:J (and τ1:J for scenario 2), and report test coverage and lengths within each group. We304

use a grid of size 100 between [−10, 10]. The group-wise average lengths and coverage are given305

in Table 4.3 again with α = 0.2. Again run-times are given post-MCMC, where MCMC required306

an average of 90.1s and 78.4s for scenarios 1 and 2 respectively to generate T = 8000 samples.307

The Bayes interval is again the central (1− α) credible interval. The CB and Bayes methods have308

comparable run-times, likely due to the small n. As a reference, fitting a linear mixed-effects model in309
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statsmodels (Seabold and Perktold, 2010) to the dataset takes around 200ms, so the full conformal310

method, which requires refitting for each of the 100 grid value and 50 test values, would take a total311

of 17 minutes. For scenario 1, both Bayes and CB provide close to (1− α) coverage, with the Bayes312

lengths being smaller. This is unsurprising, as the Bayesian model is well-specified. In scenario 2, the313

Bayes intervals noticeably over/under-cover depending on the value of τ1:J in relation to the Bayes314

posterior mean τ̄ ≈ 1.3. CB is robust to this, adapting its interval lengths accordingly (in particular315

for Groups 2 and 4) and providing within-group validity.316

Table 3: Simulated grouped dataset; Coverage values not within 3 standard errors (in brackets) of the
target coverage (1− α) = 0.8 are in red.

Scenario 1 Scenario 2
Group Bayes CB Bayes CB

Coverage 1 0.808 (0.020) 0.794 (0.022) 0.826 (0.020) 0.786 (0.025)
2 0.800 (0.019) 0.812 (0.024) 0.522 (0.027) 0.812 (0.024)
3 0.824 (0.017) 0.824 (0.022) 0.974 (0.008) 0.824 (0.020)
4 0.786 (0.017) 0.798 (0.022) 1.000 (0.000) 0.836 (0.021)
5 0.772 (0.019) 0.810 (0.020) 0.826 (0.022) 0.796 (0.022)

Overall 0.798 (0.009) 0.808 (0.009) 0.830 (0.010) 0.811 (0.009)
Length 1 2.80 (0.05) 3.19 (0.13) 3.65 (0.08) 4.01 (0.17)

2 2.76 (0.05) 3.21 (0.15) 3.61 (0.08) 7.27 (0.33)
3 2.75 (0.04) 3.07 (0.13) 3.59 (0.08) 2.28 (0.09)
4 2.75 (0.05) 3.05 (0.12) 3.57 (0.08) 1.23 (0.04)
5 2.78 (0.05) 3.14 (0.11) 3.61 (0.08) 3.47 (0.12)

Overall 2.77 (0.04) 3.13 (0.06) 3.61(0.08) 3.65 (0.09)
Run-time (secs) Overall 0.222 (0.002) 0.381 (0.009) 0.221 (0.002) 0.375 (0.002)

5 Discussion317

In this work, we have introduced the AOI importance sampling scheme for conformal Bayesian318

computation, which allow us to construct frequentist-valid predictive intervals from a baseline319

Bayesian model using the output of an MCMC sampler. This extends naturally to the partially320

exchangeable setting and hierarchical Bayesian models.321

Under model misspecification, or theM-open scenario (Bernardo and Smith, 2009), CB can produce322

calibrated intervals from the Bayesian model. In the partially exchangeable case, CB can remain valid323

within groups. We find that even under reasonable priors, Bayesian predictives can over-cover, and324

CB can help reduce the length of intervals to get closer to nominal coverage. Diagnosing Bayesian325

miscalibration is in general non-trivial, but CB automatically corrects for this. When posterior326

samples of model parameters are available, AOI importance sampling is only a minor increase in327

computation, and interestingly is much faster than the split method which would require another328

run of MCMC. For the frequentist, CB intervals enjoy the tightness of the full conformal method,329

for a single expensive fit with MCMC followed by a cheap refitting process. We are also free to330

incorporate prior information, and use more complex likelihoods or priors, as well as automatically331

fitting hyperparameters.332

There are however limitations to our approach, dictated by the realities of MCMC and IS. Firstly, the333

intervals are approximate up to MC error and reliant on representative MC samples not disrupting334

exchangeability of the conformity scores. The stability of AOI importance sampling also depends335

on the posterior predictive being a good proposal, which may break down if the addition of the new336

datum {y,Xn+1} has very high leverage on the posterior.337

If only approximate posterior samples are available, e.g. through variational Bayes (VB), then an338

AOI scheme may still be feasible, where one includes an additional correction term in the IS weights339

for the VB approximation, e.g. in Magnusson et al. (2019). However, this remains to be investigated.340

Combining this with the Pareto-smoothed IS method of Vehtari et al. (2015) may lead to additional341

scalability with dimensionality. In our experience, CB intervals tend to be a single connected interval,342

which may allow for computational shortcuts in adapting the search grid. It would also be interesting343

to pursue the theoretical connections between the Bayesian and CB intervals, in a similar light to344

Burnaev and Vovk (2014).345
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