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ABSTRACT

Recent works indicate that convolutional neural networks (CNN) need large re-
ceptive fields (RF) to compete with visual transformers and their attention mecha-
nism. In CNNs, RFs can simply be enlarged by increasing the convolution kernel
sizes. Yet the number of trainable parameters, which scales quadratically with
the kernel’s size in the 2D case, rapidly becomes prohibitive, and the training is
notoriously difficult. This paper presents a new method to increase the RF size
without increasing the number of parameters. The dilated convolution (DC) has
already been proposed for the same purpose. DC can be seen as a convolution
with a kernel that contains only a few non-zero elements placed on a regular grid.
Here we present a new version of the DC in which the spacings between the non-
zero elements, or equivalently their positions, are no longer fixed but learnable
via backpropagation thanks to an interpolation technique. We call this method
“Dilated Convolution with Learnable Spacings” (DCLS) and generalize it to the
n-dimensional convolution case. However, our main focus here will be on the
2D case for computer vision only. We first tried our approach on ResNet50: we
drop-in replaced the standard convolutions with DCLS ones, which increased the
accuracy of ImageNet1k classification at iso-parameters, but at the expense of the
throughput. Next, we used the recent ConvNeXt state-of-the-art convolutional ar-
chitecture and drop-in replaced the depthwise convolutions with DCLS ones. This
not only increased the accuracy of ImageNet1k classification but also of typical
downstream and robustness tasks, again at iso-parameters but this time with negli-
gible cost on throughput, as ConvNeXt uses separable convolutions. Conversely,
classic DC led to poor performance with both ResNet50 and ConvNeXt. The code
of the method is based on PyTorch and available.1

1 INTRODUCTION

The receptive field of a deep convolutional network is a crucial element to consider when dealing
with recognition and downstream tasks in computer vision. For instance, a logarithmic relationship
between classification accuracy and receptive field size was observed in Araujo et al. (2019). This
tells us that large receptive fields are necessary for high-level vision tasks, but with logarithmically
decreasing rewards and thus a higher computational cost to reach them.

Recent advances in vision transformers (Dosovitskiy et al., 2020) and in CNNs (Liu et al., 2022b;
Ding et al., 2022; Trockman & Kolter, 2022; Liu et al., 2022a) highlight the beneficial effect that
a large convolution kernel can have, compared to the 3 × 3 kernels traditionally used in previous
state-of-the-art CNN models (He et al., 2016). However, when naively increasing the kernel size,
the accuracy rapidly plateaus or even decreases. For example, in ConvNeXt, the best accuracy was
achieved by a 7 × 7 kernel (Liu et al., 2022b;a). Using a structural re-parameterization trick, Ding
et al. (2022) demonstrated the benefit of increasing the kernel size up to 31 by 31. Thereafter,
Liu et al. (2022a) showed that there was still room for improvement by moving to 51 by 51, us-
ing the depthwise implicit matrix multiplication (gemm) method developed by Ding et al. (2022)
and for which the implementation has been integrated into the open-sourced framework MegEngine
(Megvii, 2020), in addition to a spatial separation of the depthwise kernel followed by an accumu-
lation of the resulting activations. Yet, all these improvements have a cost in terms of memory and
computation and it does not seem possible to increase the size of the kernels indefinitely.

1https://github.com/iclr268/Dilated-Convolution-with-Learnable-Spacing
s-PyTorch
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One of the first approaches that allow inflating the receptive field of a convolutional layer without
increasing the number of learnable parameters nor the computational cost is called dilated convolu-
tion (DC). DC or “atrous convolution” was first described in Holschneider et al. (1990) and Shensa
(1992), under the name “convolution with a dilated filter” before being referred to as “dilated con-
volution” in Yu & Koltun (2015). The purpose of this approach is to inflate the convolutional kernel
by regularly inserting spaces (i.e. zeros) between the kernel elements, as depicted in Figure 2b. The
spacing between elements is thus constant, it is a hyper-parameter usually referred to as “dilation”
or “dilation rate”. Despite its early successes in classification since Yu et al. (2017), and its even
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Figure 1: Classification accuracy on ImageNet-1K as a function of latency (i.e. inverse of the
throughput). Dot diameter corresponds to the number of parameters.

more convincing results in semantic segmentation Sandler et al. (2018); Chen et al. (2017; 2018)
and object detection Lu et al. (2019), DC has gradually fallen out of favor and has been confined
to downstream tasks such as those described above. Without much success, Ding et al. (2022) tried
to implement DC in their ReplKNet architecture. Our own investigation on ResNet and ConvNeXt
with standard dilated convolution (Section 4.2) will lead to a similar conclusion. The failure of this
method for classification tasks could be attributed to the great rigidity imposed by its regular grid as
discussed in Wang & Ji (2018).

In this context, we propose DCLS (Dilated Convolution with Learnable Spacings), a new convolu-
tion method. In DCLS, the positions of the non-zero elements within the convolutional kernels are
learned in a gradient-based manner. The inherent problem of non-differentiability due to the integer
nature of the positions in the kernel is circumvented by interpolation (Fig. 2c). DCLS is a differen-
tiable method that only constructs the convolutional kernel. To actually apply the method, we could
either use the native convolution provided by PyTorch or a more advanced one such as the depthwise
implicit gemm convolution method (Ding et al., 2022), using the constructed kernel. DCLS comes
in six sub-versions: 1D, 2D, 3D and what we call N-MD methods, namely: “2-1D, 3-1D and 3-2D”
where a N-dimension kernel is used but positions are learned only along M dimension(s). The main
focus of this paper will be the 2D version for which we detail mathematical proofs, implementation
specificities and results on image classification, downstream and robustness tasks.

Instead of having a grid of kernel elements like in standard and dilated convolutions, DCLS allows
an arbitrary number of kernel elements (Fig. 2d). We refer to this free tunable hyper-parameter as
“kernel count”. In this paper, we set it in order to be at iso or fewer parameters than the baselines we
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will compare ourselves to. Conversely, we refer to the size of the kernel, or rather the maximum size
in which the kernel elements are allowed to move inside the dilated kernel, as the “dilated kernel
size”. It is also a tunable hyper-parameter.

The positions of kernel elements in DCLS are randomly initialized, and are allowed to move
throughout the learning process within the dilated kernel size limit. We will then show how sharing
positions across multiple blocks of a same convolution stage could further increase accuracy while
reducing the number of learnable parameters. This, together with other learning techniques, em-
pirically and consistently improve the overall performance of the method. They are summarized in
Section 3.
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Figure 2: (a): a standard 3×3 kernel. (b): a dilated 3×3 kernel with dilation rate 4. (c): a 2D-DCLS
kernel with 9 kernel elements and a dilated kernel size of 9. Each weight is spread over up to four
adjacent pixels. (d): a 2D-DCLS kernel with 3 kernel elements and still a dilated kernel size of 9.

2 KERNEL CONSTRUCTION IN DCLS

Our method entails that we learn the float coordinates (p1 and p2 in the 2D case for example) for
every weight w of the dilated kernel (in addition to the actual weights themselves). The positions
or coordinates of the weights within the convolution kernel are conceptually integer parameters, yet
in order to compute their derivatives, we should consider them as float parameters. This problem of
integer positions learning is smoothed by making use of a bilinear interpolation that will be described
in equations 2, 3 and 4.

2.1 NOTATION AND PRELIMINARIES

We denote by ⌊ ⌋ the floor function and we define its derivative by the zero function.

∀x ∈ R, ⌊x⌋′ def
= 0 (1)

We denote by m ∈ N∗ the number of kernel elements inside the constructed kernel and we refer
to it as the “kernel count”. Moreover, we denote respectively by s1, s2 ∈ N∗ × N∗, the sizes of
the constructed kernel along the x-axis and the y-axis. The latter could be seen as the limits of the
dilated kernel, and we refer to them as the “dilated kernel size”.

The s1 × s2 matrix space over R is defined as the set of all s1 × s2 matrices over R, and is denoted
Ms1,s2(R).

The characters w, p1 and p2 respectively stand for the weight, the position of that weight along
the x-axis (width) and its position along the y-axis (height) in the scalar case while the bold w =
(wi)1≤i≤m, p1 = (p1i )1≤i≤m and p2 = (p2i )1≤i≤m respectively stand for the weight, the width-
position of that weight and its height-position in the vector case.

2.2 MATHEMATICAL FORMULATION

The mathematical construction of the forward pass as well as the proofs for the derivations used in
the backward pass are in Appendix 7. This construction relies on bilinear interpolation and could be
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described by the following function:

F : Rm × Rm × Rm →Ms1,s2(R)

w,p1,p2 7→K =

m∑
k=1

f(wk, p
1
k, p

2
k)

(2)

With f defined as follows:

f : R× R× R→Ms1,s2(R)
w, p1, p2 7→ K

(3)

where ∀i ∈ J1 .. s1K, ∀j ∈ J1 .. s2K :

Kij =


w (1− r1) (1− r2) if i = ⌊p1⌋, j = ⌊p2⌋

w r1 (1− r2) if i = ⌊p1⌋+ 1, j = ⌊p2⌋
w (1− r1) r2 if i = ⌊p1⌋, j = ⌊p2⌋+ 1

w r1 r2 if i = ⌊p1⌋+1, j = ⌊p2⌋+1
0 otherwise

(4)

and where the fractional parts are:

r1 = {p1} = p1 − ⌊p1⌋ and r2 = {p2} = p2 − ⌊p2⌋ (5)

We invite the reader to look at Appendix 7 for more details on the mathematical proofs and deriva-
tives that permits to calculate the gradients of a differentiable loss function with respect to the
weights and their positions. Those derivations lead to the DCLS kernel construction algorithm
described for the 2D case in pseudo-code in Appendix 8. Furthermore, the real code for the kernel
construction in 1D, 2D, and 3D cases is included in Appendix 9. This code is written in native
PyTorch language, with classical modules, and does not require any compilation or adaptation.

3 LEARNING TECHNIQUES

So far, we have seen how to implement the DCLS method. We now turn to the techniques that allow
us to get the most out of the method. In what follows, we list the training techniques that we have
retained and for which we have noticed a consistent and empirical advantage on validation accuracy.

• Weight decay: weight decay is a regularization method widely used in a variety of deep learning
models. Though its beneficial effect on generalization, we noticed that when applied to the kernel
positions in DCLS method, weight decay tends to ”artificially” over-concentrate the positions
around the center of the kernel, resulting in poorer accuracy. Therefore, we set this hyperparameter
to 0 for the kernel positions and kept it unchanged for all the other parameters.

• Positions initialization: the DCLS positions tend to cluster around the center of the RF through-
out the learning process (see Appendix 10). In an attempt to facilitate learning, we chose an
initial distribution close to the one obtained at the end of training, that is a centered normal law of
standard deviation 0.5. Yet in practice, the uniform law gives a similar performance.

• Positions clamping / overlapping: kernel elements that reach the dilated kernel size limit are
clamped. This is done at the end of every batch step to force kernel positions to stay within limits.
Agglutination around those limits can sometimes be observed and this indicates that the dilated
kernel size is too small and should be enlarged. Positions of different kernel weights (or their
interpolations) could also overlap. They are added together in such a case.

• Dilated kernel size tuning: we empirically tuned it using the remark above. For simplicity,
we used the same dilated kernel size in all the model layers (7 for ResNet-50-dcls and 17 for
ConvNeXt-dcls; larger values did not bring any gain in accuracy). Note that increasing the dilated
kernel size has no cost on the number of trainable parameters, but has a cost on throughput,
especially when using non-separable convolutions. Besides, the convolution algorithm (which
is the most time-consuming part of DCLS) that is used after the kernel construction (whether
it is the native one or the depthwise implicit gemm one) does not leverage the kernel sparsity.
Thus, the kernel count does not impact the throughput; only the dilated kernel size does. The
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development of a convolution method that takes into account sparse kernels, such as Kundu et al.
(2019), could further help to reduce the throughput gap between DCLS convolution and standard
dilated convolution.

• Kernel count tuning: as said before, we have set this hyper-parameter to the maximal integer
value that allows us to be below the baselines to which we compare ourselves in terms of the
number of trainable parameters. Note that adding one element to the 2D-DCLS kernel leads to
having three additional learnable parameters: the weight, its vertical and its horizontal position.
For simplicity, we used the same kernel count in all the model layers.

• Positions learning rate scaling: we found that kernel positions could benefit from a special
scaling when it comes to the learning rate. As their magnitude is different from regular weights, we
scaled the learning rate of all the kernel positions by a factor of 5. This is the best factor we found
empirically. Custom-made schedulers for positions have been tested, but scaling the learning rate
while using the same scheduler as for the kernel weights remained the best choice. Interestingly,
we found that throughout learning, the average speed of the positions follows precisely the shape
of the learning rate scheduler curve (see Appendix 11).

• Synchronizing positions: we shared the kernel positions across convolution layers with the same
number of parameters (typically, those belonging to a same stage of the ConvNeXt/ResNet model),
without sharing the weights. Positions in this kind of stages were centralized in common param-
eters that accumulate the gradients. This constraint has surprisingly enhanced the accuracy while
reducing the number of extra parameters dedicated to positions (an ablation of this technique led
to a 0.13% accuracy drop on ImageNet1k with ConvNeXt-T-dcls).

• Repulsive loss: following the work of Thomas et al. (2019) on 3D cloud points, we implemented
the repulsive loss for the DCLS kernel positions to discourage multiple elements from overlapping.
Despite a slight advantage with the ResNet-50-dcls model, this technique did not significantly
improve the results with ConvNeXt-dcls.

• Depthwise implicit gemm: This method has been developed by Ding et al. (2022) and integrated
in Megvii (2020), it has for goal to modify the im2col algorithm as well as the matrix multiplica-
tion that follows, both used in the native 2D convolution method of PyTorch, by a very efficient
algorithm which does not build explicitly the im2col tensor. The advantage of this method is
that it is much faster than the native one for large kernel sizes, without affecting the convolution
speed for small kernel ones. In our experiments, the largest dilated kernel size is 17, therefore this
method is not absolutely necessary. However, the DCLS user can choose to use it instead of the
native method, which will improve the throughput.

4 RESULTS AND DISCUSSION

4.1 SETTINGS

We started with an exploratory study on ResNet-50, where we drop-in replaced all the 3 × 3 con-
volutions of the model by 2D-DCLS ones. For that, we used a lightweight procedure named the
“A3 configuration”, described in Wightman et al. (2021). We then moved to the ConvNeXt mod-
els, where we limited our studies to its three first variants namely: the tiny, the small and the base
models with input crops of size 224 × 224 (Liu et al., 2022b). Here, we drop-in replaced all the
depthwise convolutions of the model by DCLS ones. We reconducted all the experiments, and eval-
uated the seed sensitivity for the ConvNeXt-dcls model by calculating the standard deviation of the
top-1 accuracy on three different seeds, for the tiny variant. We found the standard deviation to be
±0.04, which is compatible with what was found in Liu et al. (2022b). Given this reasonably low
variability, the remaining experiments were done on one seed only. Code and scripts to reproduce
the training are available at2.

4.2 EMPIRICAL EVALUATIONS ON IMAGENET1K

In the following, we report the top-1 accuracies found on the ImageNet1k validation dataset (Deng
et al., 2009), using ImageNet1k training dataset only.

2https://github.com/iclr268/ConvNeXt-dcls
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Using ResNet-50. Table 1 presents the results obtained for the ResNet-50 experiment using the
A3 configuration. The aim of this study is not to exceed the state-of-the-art for this particular
configuration, but rather to give a first experimental evidence of the relevance of the DCLS method
with non-separable convolutions and with one of the most popular CNN architectures in computer
vision. We can observe that when using the standard dilated convolution, the results only get worse
as we increase the dilation rate. Moreover, increasing the kernel size (3→ 7) in the case of standard
convolution increases the accuracy but at the expense of not only the throughput, which decreases,
but also of the number of parameters, which triples.

With fewer parameters, the ResNet-50-dcls model surpasses the baseline but at the expense of the
throughput. This last disadvantage is due to the fact that ResNet-50 uses non-separable convolutions.
We will see in Table 2 that for the ConvNeXt model, this extra cost in throughput is minimized thanks
to the depthwise separable convolution.

model kernel size
/ count dil # param. FLOPs throughput

(image / s)
Top-1 acc.
(crop 160)

ResNet-50 3/9 1 25.6M 4.1G 1021.9 75.8
ResNet-50 7/49 1 75.9M 12.3G 642.6 77.0
ResNet-50 3/9 2 25.6M 4.1G 931.8 71.7
ResNet-50 3/9 3 25.6M 4.1G 943.4 70.1
ResNet50-dcls 7/5 − 24.0M 12.3G 627.2 76.5
ResNet50-dcls 7/6 − 26.0M 12.3G 627.1 76.5

Table 1: Classification accuracy on ImageNet-1K using ResNet-50. The throughput was calcu-
lated at inference time, on image crops of size 224× 224 using a single V100-32gb gpu. When the
model contains DCLS convolutions, we reported the kernel count and dilated kernel size. Otherwise,
the kernel size is reported and thus the kernel count is in fact the square of that parameter.

model img size # param. FLOPs throughput
(image / s) Top-1 acc.

Swin-T 2242 28M 4.5G 757.9 81.3
ConvNeXt-T 2242 29M 4.5G 774.7 82.1
ConvNeXt-T-dil2 2242 29M 4.5G 773.6 80.8
ConvNeXt-T-ker17 2242 30M 5G 560.0 82.0
SLaK-T 2242 30 / 38 M 5.0 / 9.4 G 583.5 82.5
ConvNeXt-T-dcls 2242 29M 5.0G 725.3 82.5
Swin-S 2242 50M 8.7G 436.7 83.0
ConvNeXt-S 2242 50M 8.7G 447.1 83.1
SLaK-S 2242 55 / 75 M 9.8 / 16.6 G 367.9 83.8
ConvNeXt-S-dcls 2242 50M 9.5G 433.4 83.7
Swin-B 2242 88M 15.4G 286.6 83.5
ConvNeXt-B 2242 89M 15.4G 292.1 83.8
RepLKNet-31B 2242 79M 15.4G 295.5 83.5
SLaK-B 2242 95 / 122 M 17.1 / 25.9 G 245.4 84.0
ConvNeXt-B-dcls 2242 89M 16.5G 285.4 84.1

Table 2: Classification accuracy on ImageNet-1K. The inference throughput was calculated at
inference using a single V100-32gb gpu and scaled to take into account all the optimizations used
in Liu et al. (2022b). For the SLaK model, we report both the effective number of parameters and
FLOPs returned by PyTorch and the one reported in Liu et al. (2022a) , that takes sparsity into
account.

Using ConvNeXt. We present numerically in Table 2 and graphically in Fig. 1, the results obtained
for ConvNeXt using the settings for ImageNet1k training with input crops of size 224 × 224, as
described in Liu et al. (2022b): Table 5. Exponential Moving Average (EMA) (Polyak & Juditsky,
1992) was used, and for all models in Table 2, we report the accuracy found with this technique. We
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replaced ConvNeXt’s depthwise separable convolutions (of kernel size 7× 7), by 2D-DCLS ones of
dilated kernel size 17× 17 and of kernel count equal to 34 for the tiny variant, and 40 for the small
and base variants. We used all the techniques previously described in Section 3 during training.
From Table 2, we highlight the fact that ConvNeXt with DCLS convolutions always surpasses the
ConvNeXt baseline in accuracy (gains ranging from 0.3 to 0.6) with the same number of parameters
and only a little cost on throughput. We believe that this gain in accuracy is remarkable, given
that we only replaced the depthwise convolutional layers, which represent just about 1% of the total
number of parameters and 2% of the total number of FLOPs in ConvNeXt models. ConvNeXt model
with a standard dilation of rate 2 performed poorly (see ConvNeXt-T-dil2). SLaK model performs
about as well as DCLS but with a higher cost on throughput and parameters count.

DCLS can be seen as a kernel reparametrization technique that reduces the number of trainable
parameters, and thus regularizes large kernels. For example, in the case of ConvNeXt-T-dcls, a
17× 17 kernel (289 parameters) is parameterized by 34 triplets (x-position, y-position, weight), i.e.
102 parameters. The kernels that could be represented by the DCLS reparametrization constitute a
subset of all possible dense kernels. In fact, by learning the suitable weights during training, a dense
kernel could implement any DCLS one. It may therefore be counter-intuitive that DCLS leads to
higher accuracy than a dense 17×17 convolution layer (see ConvNeXt-T-ker17). The problem with
dense convolutional layers having large kernel sizes is that the number of trainable parameters is
huge, which makes learning impractical. Finally, we observe that after training, the DCLS position
density is higher around the center of the RF (see Appendix 10), suggesting that the central region
is the most important one (yet we experienced that reducing the dilated kernel size to values < 17
degrades the accuracy, so the positions far from the center also matter). Conversely, DC samples the
whole RF uniformly, which is most likely sub-optimal, which could explain its poor performance
(see ConvNeXt-T-dil2).

4.3 EMPIRICAL EVALUATION ON DOWNSTREAM AND ROBUSTNESS TASKS

We now report the results found for semantic segmentation on the ADE20K dataset (Zhou et al.,
2019) and for object detection on the COCO dataset (Lin et al., 2014) using ConvNeXt-dcls back-
bones. Note that the depthwise implcit gemm algorithm was not used for those tasks as it led to
throughput issues. In addition, we present the results found for robustness tasks consisting of di-
rectly testing (without further tuning) the previously obtained ConvNeXt-dcls backbones on the fol-
lowing robustness benchmarks: ImageNet-C/C/A/R/Sketch (Hendrycks & Dietterich, 2019; Mintun
et al., 2021; Hendrycks et al., 2021b;a; Wang et al., 2019).

Semantic segmentation on ADE20k. The results obtained in semantic segmentation show an im-
provement in performance by the ConvNeXt-dcls tiny and base backbones with equal number of
parameters and FLOPs (Table 3). As in Liu et al. (2021) and Bao et al. (2021), we evaluated the
mIoU with single scale testing and used the exact same configurations as in Liu et al. (2022b).

backbone input crop. mIoU (ss) # param. FLOPs throughput
(image / s)

ConvNeXt-T 5122 46.0 60M 939G 23.9
SLaK-T 5122 47.1 65M 945G −
ConvNeXt-T-dcls 5122 47.1 60M 950G 21.1
ConvNeXt-S 5122 48.7 82M 1027G 22.1
ConvNeXt-S-dcls 5122 48.4 82M 1045G 19.5
ConvNeXt-B 5122 49.1 122M 1170G 21.7
ConvNeXt-B-dcls 5122 49.3 122M 1193G 18.6

Table 3: ADE20K validation results using UperNet (Xiao et al., 2018). We report mIoU results
with single-scale testing. FLOPs are based on input sizes of (2048, 512). The inference throughput
was calculated at inference using a single A100-80gb gpu and for input sizes of (3, 512, 512).

Object detection and segmentation on COCO. All ConvNeXt-dcls backbones have shown a no-
ticeable improvement in average accuracy on both the object detection and segmentation tasks on
the COCO dataset, again at iso-parameters and iso-FLOPS (Table 4). We only tested with Cascade
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Mask-RCNN (Cai & Vasconcelos, 2018) and used the exact same configurations as in Liu et al.
(2022b).

backbone FLOPs TPUT AP box AP box
50 AP box

75 AP mask APmask
50 AP mask

75

Cascade Mask-RCNN 3× schedule
ResNet-50 739G − 46.3 64.3 50.5 40.1 61.7 43.4
X101-32 819G − 48.1 66.5 52.4 41.6 63.9 45.2
X101-64 972G − 48.3 66.4 52.3 41.7 64.0 45.1
Swin-T 745G − 50.4 69.2 54.7 43.7 66.6 47.3
ConvNeXt-T 741G 11.6 50.4 69.1 54.8 43.7 66.5 47.3
CNeXt-dcls-T 751G 11.2 51.2 69.9 55.7 44.5 67.5 48.3
Swin-S 838G − 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S 827G 11.2 51.9 70.8 56.5 45.0 68.4 49.1
CNeXt-dcls-S 844G 10.5 52.8 71.6 57.6 45.6 69.0 49.3
Swin-B 982G − 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B 964G 11.1 52.7 71.3 57.2 45.6 68.9 49.5
CNeXt-dcls-B 987G 10.3 53.0 71.5 57.7 46.0 69.3 50.0

Table 4: COCO object detection and segmentation results using Cascade Mask-RCNN. Average
Precision of the ResNet-50 and X101 models are from (Liu et al., 2021). FLOPs are calculated with
image size (3, 1280, 800). The inference throughput (”TPUT”) was calculated at inference using a
single A100-80gb gpu and for input sizes of (3, 512, 512).

Robustness Evaluation on ImageNet-C/C/A/R/Sketch. ConvNeXt-dcls backbones show very
good performances when it comes to robustness. This is illustrated by the results obtained for
the different benchmarks we have tried and for which we have reconducted the experiments. All of
them show a gain in classification accuracy with DCLS, except SK with the S model (Table 5).

Model FLOPs / Params Clean C(↓) C(↓) A R SK
ResNet-50 4.1/25.6 76.1 76.7 57.7 0.0 36.1 24.1
ConvNeXt-T 4.5/28.6 82.1 41.6 41.2 23.5 47.6 33.8
ConvNeXt-dcls-T 5.0/28.6 82.5 41.5 39.7 23.9 47.8 34.7
ConvNeXt-S 8.7/50.2 83.1 38.9 37.8 30.1 50.1 37.1
ConvNeXt-dcls-S 9.5/50.2 83.7 37.8 35.2 33.7 50.4 36.7
ConvNeXt-B 15.4/88.6 83.8 37.0 35.7 35.5 51.7 38.2
ConvNeXt-dcls-B 16.5/88.6 84.1 36.3 34.3 36.8 52.6 38.4

Table 5: Robustness evaluation of ConvNeXt-dcls. We reconducted this study for ConvNeXt. For
ImageNet-C and ImageNet-Cbar, the error is reported rather than the accuracy. It was calculated
for both datasets by taking the average error over 5 levels of noise severity and over all the noise
categories available in the datasets.

5 RELATED WORK

One of the studies that motivated the DCLS method is that of the effective receptive field (ERF)
(Luo et al., 2016), which characterizes how much each input pixel in a receptive field can impact
the output of a unit in the downstream convolutional layers of a neural network, leading to the
notion of an effective receptive field. Among the findings of this study, the most relevant ones for
ours are that not all pixels in a receptive field contribute equally to an output response, the kernel
center has a much larger impact, and that the effective receptive field size increases linearly with
the square root of convolutional layers. Given these findings, introducing a new degree of freedom
by learning the positions of non-zero weights in dilated kernels might increase the expressive power
of convolutional neural networks. A visual comparison between DCLS and non-DCLS ERFs is
available in Appendix 12.
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The work that relates the most to DCLS is that of deformable convolutions Dai et al. (2017) where
offsets from the regular dilated grid are optimized. Deformable convolutions are used for several
computer vision tasks such as object detection. Even if both approaches share the use of a rather
similar bilinear interpolation, DCLS remains very different from deformable convolution in several
aspects: firstly, deformable convolutions require the application of a regular convolution to get the
offsets (which are thus input-dependent) that are then passed to the actual deformable method. Con-
versely, in DCLS method, a dilated kernel with learnable positions is constructed and then passed
to the convolution operation, making the positions input-independent. Secondly, deformable con-
volutions have been developed for plain convolutions, not for depthwise separable ones. Finally,
the number of extra learnable parameters in 2D deformable convolutions is the number of kernel el-
ements in the preliminary convolution, precisely (channels in // groups, 2 ∗KH ∗KW ,KH ,KW )
with KH and KW being the kernel height and width, which establishes a strong dependence
between the offsets and the input feature map. Contrarily, in 2D-DCLS, the number of ex-
tra parameters dedicated to learning positions is simply twice the number of kernel weights
(2, channels out, channels in // groups, KH , KW ). We have not been able to compare our work
to the deformable convolution in ConvNeXt as the training becomes very slow (the throughput is
divided by 4 for the ConvNeXt-tiny model). In addition, we noticed that the training loss grew at the
first epochs, which means that the method is not adapted as a drop-in replacement of the depthwise
separable convolution in the ConvNeXt architecture.

DCLS is also similar to other input-independent kernel re-parameterization techniques, yet different
from them. For example in CKConv (Romero et al., 2021b) and FlexConv (Romero et al., 2021a),
the kernel weights are not learned directly; what is learned is the continuous function that maps
the positions to the weights. In Jacobsen et al. (2016), the kernel is modeled as a weighted sum of
basis functions, which consist of centered Gaussian filters and their derivatives. Pintea et al. (2021)
extended the approach by also learning the width of the Gaussians, which is equivalent to learning
the optimal resolution. Shelhamer et al. (2019) proposed to factorize the kernel as the composition of
a standard kernel with a structured gaussian one. Finally, other methods such as(Worrall & Welling,
2019; Sosnovik et al., 2019; 2021a;b; Bekkers, 2019; Zhu et al., 2019), where the goal is to build
a scale equivariant neural network, could be considered as similar to the approach. One limitation
of all these studies is that only small datasets were used (e.g., CIFAR), and whether they scale well
to larger and more challenging datasets like ImageNet1k is unknown. In addition, they cannot be
used as a drop-in replacement for the depthwise separable convolution in ConvNeXt, at least in their
current forms, so we could not benchmark them with DCLS.

6 CONCLUSION

In this work, we proposed DCLS, a new dilated convolution method where the positions of non-zero
kernel elements are made learnable via backpropagation. The non-differentiability issue of learning
discrete positions was circumvented by interpolation. We demonstrated that DCLS often outper-
forms the standard and the dilated convolution. We listed a number of techniques that improve the
learning process of DCLS, in particular sharing the positions within stages was key. We provided
evidence that searching for optimal positions of weights within a dilated kernel can improve not
only the accuracy in image classification, but also in downstream and robustness tasks, using exist-
ing CNN architectures, without increasing their number of parameters. We reported a throughput
overhead introduced by DCLS, but it remains marginal, provided that we use CNN architectures
involving separable convolutions, which is the case for most modern CNNs, such as ConvNeXts.

Future work: So far we have shown that DCLS can be used to drop-in replace standard convolution
layers in existing architectures. We now would like to search for an architecture dedicated to DCLS,
that would get the maximum benefit out of the method. In addition, we will explore alternatives
to bilinear interpolation, e.g. bicubic. Recent CNN-related works such as RepLKNet, make use
of large kernels using a re-parameterizing trick, we might explore this direction to further enhance
DCLS. Finally, we wish to show that the method is also of interest in 1D and 3D use cases. For 1D
cases, one can think of audio waveform generation, where dilated 1D convolution filters with large
receptive fields are key, as, for example, in the autoregressive WaveNet model (Oord et al., 2016),
and in generative adversarial networks (Yamamoto et al., 2020; Greshler et al., 2021). For 3D
applications, video classification with architectures using 3D convolutions, e.g., X3D Feichtenhofer
(2020), would be a good fit.
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7 APPENDIX: PROOFS AND DERIVATION FOR THE DCLS METHOD

In the following, we show how to mathematically describe the DCLS kernel construction and how
to explicitly calculate the gradients of the loss function with respect to weights and positions that are
used in the backpropagation algorithm. These gradients are useful to implement the DCLS method
in a way that is compatible with the automatic differentiation of PyTorch.
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7.1 NOTATION AND PRELIMINARIES

We denote by ⌊ ⌋ the floor function and we define its derivative by the zero function.

∀x ∈ R, ⌊x⌋′ def
= 0 (6)

We denote by m ∈ N∗ the number of kernel elements inside the constructed kernel and we refer
to it as the “kernel count”. Moreover, we denote respectively by s1, s2 ∈ N∗ × N∗, the sizes of
the constructed kernel along the x-axis and the y-axis. The latter could be seen as the limits of the
dilated kernel, and we refer to them as the “dilated kernel size”.

The n × p matrix space over R is defined as the set of all n × p matrices over R, and is denoted
Mn,p(R).

The Frobenius inner product ×
F

of two matrices A and B ofMn,p(R) is defined by:

A×
F
B = tr(ATB)

Where “tr” stands for the trace of the square matrix ATB.

The characters w, p1 and p2 respectively stand for the weight, the position of that weight along
the x-axis (width) and its position along the y-axis (height) in the scalar case while the bold w =
(wi)1≤i≤m, p1 = (p1i )1≤i≤m and p2 = (p2i )1≤i≤m respectively stand for the weight, the width-
position of that weight and its height-position in the vector case.

The proofs and algorithms that will be shown in the next subsections are made for the case of
tensors with one input channel and one output channel. Without loss of generality, those proofs and
algorithms hold for the general case of 4D tensors and higher by considering and applying them
channel-wise.

7.2 2D-DCLS, SCALAR WEIGHT CASE

We begin by the case of a kernel containing only one element.

The function f that defines the kernel construction in the scalar weight case is as follows:

f : R× R× R→Ms1,s2(R)
w, p1, p2 7→K

(7)

where ∀i ∈ J1 .. s1K, ∀j ∈ J1 .. s2K :

Kij =


w (1− r1) (1− r2) if i = ⌊p1⌋, j = ⌊p2⌋

w r1 (1− r2) if i = ⌊p1⌋+ 1, j = ⌊p2⌋
w (1− r1) r2 if i = ⌊p1⌋, j = ⌊p2⌋+ 1

w r1 r2 if i = ⌊p1⌋+1, j = ⌊p2⌋+1
0 otherwise

(8)

and where the fractional parts are:

r1 = {p1} = p1 − ⌊p1⌋ and r2 = {p2} = p2 − ⌊p2⌋ (9)

The constructed kernel K is zero except for at most the 4 adjacent positions that represent the 2D

interpolation of the single weight w. Note that
s2∑
j=1

s1∑
i=1

Kij = w.

We then define the scalar loss function as:

loss = g(f(w, p1, p2)) (10)

with g :Ms1,s2(R) → R a differentiable function that models the action of all the layers that will
follow f in the model.
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By applying the chain rule we obtain:

∂loss

∂w
= g′(f(w, p1, p2))×

F

∂f(w, p1, p2)

∂w
(11)

∂loss

∂p1
= g′(f(w, p1, p2))×

F

∂f(w, p1, p2)

∂p1
(12)

∂loss

∂p2
= g′(f(w, p1, p2))×

F

∂f(w, p1, p2)

∂p2
(13)

with

g′(f(w, p1, p2)) =
∂loss

∂K
=

∂loss

∂f(w, p1, p2)
(14)

Let us put

g′(f(w, p1, p2)) = G =


g11 g12 · · · g1s2

g21
. . . g2s2

...
. . .

...
gs11 gs12 · · · gs1s2

 (15)

and let us consider two column vectors x = [x1 x2 · · · xs1 ]
T of Rs1 and y =

[y1 y2 · · · ys2 ]
T of Rs2 . We have:

xT f(w, p1, p2)y =

s1∑
i=1

s2∑
j=1

Kijxiyj (16)

Since K is zero except for the 4 aforementioned positions, we have:

xT f(w, p1, p2)y = K⌊p1⌋⌊p2⌋ x⌊p1⌋ y⌊p2⌋

+K⌊p1⌋+1⌊p2⌋ x⌊p1⌋+1 y⌊p2⌋

+K⌊p1⌋⌊p2⌋+1 x⌊p1⌋ y⌊p2⌋+1

+K⌊p1⌋+1⌊p2⌋+1 x⌊p1⌋+1 y⌊p2⌋+1

(17)

By deriving this expression with respect to w, p1 and p2 we obtain:

∂(xT f(w, p1, p2)y)

∂w
= (1− r1) (1− r2) x⌊p1⌋ y⌊p2⌋

+ r1 (1− r2) x⌊p1⌋+1 y⌊p2⌋

+ (1− r1) r2 x⌊p1⌋ y⌊p2⌋+1

+ r1 r2 x⌊p1⌋+1 y⌊p2⌋+1

(18)

∂(xT f(w, p1, p2)y)

∂p1
= w [− (1− r2) x⌊p1⌋ y⌊p2⌋

+ (1− r2) x⌊p1⌋+1 y⌊p2⌋

− r2 x⌊p1⌋ y⌊p2⌋+1

+ r2 x⌊p1⌋+1 y⌊p2⌋+1]

(19)

∂(xT f(w, p1, p2)y)

∂p2
= w [− (1− r1) x⌊p1⌋ y⌊p2⌋

− r1 x⌊p1⌋+1 y⌊p2⌋

+ (1− r1) x⌊p1⌋ y⌊p2⌋+1

+ r1 x⌊p1⌋+1 y⌊p2⌋+1]

(20)
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Because of the linearity of the differentiation in the three previous equations, we could write:

∂(xT f(w, p1, p2)y)

∂w
= xT ∂f(w, p1, p2)

∂w
y = xTGwy (21)

∂(xT f(w, p1, p2)y)

∂p1
= xT ∂f(w, p1, p2)

∂p1
y = xTGp1y (22)

∂(xT f(w, p1, p2)y)

∂p2
= xT ∂f(w, p1, p2)

∂p2
y = xTGp2y (23)

where Gw, Gp1 , Gp2 , respectively stand for the s1 by s2 matrices described below and which have
zeros everywhere except at the four positions of interpolation.

Gw =

⌊p2⌋ ⌊p2⌋+1



0 · · · 0 0 · · · 0
...

. . . 0 0 . .
. ...

0 0 (1−r1)(1−r2) r2(1−r1) 0 0 ⌊p1⌋
0 0 r1(1−r2) r1r2 0 0 ⌊p1⌋+1
... . .

.
0 0

. . .
...

0 · · · 0 0 · · · 0

(24)

Gp1 =

⌊p2⌋ ⌊p2⌋+1



0 · · · 0 0 · · · 0
...

. . . 0 0 . .
. ...

0 0 −w(1−r2) −wr2 0 0 ⌊p1⌋
0 0 w(1−r2) wr2 0 0 ⌊p1⌋+1
... . .

.
0 0

. . .
...

0 · · · 0 0 · · · 0

(25)

Gp2 =

⌊p2⌋ ⌊p2⌋+1



0 · · · 0 0 · · · 0
...

. . . 0 0 . .
. ...

0 0 −w(1−r1) w(1−r1) 0 0 ⌊p1⌋
0 0 −wr1 wr1 0 0 ⌊p1⌋+1
... . .

.
0 0

. . .
...

0 · · · 0 0 · · · 0

(26)

From the three equations (21), (22) and (23), we can identify

∂f(w, p1, p2)

∂w
= Gw (27)

∂f(w, p1, p2)

∂p1
= Gp1 (28)

∂f(w, p1, p2)

∂p2
= Gp2 (29)
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Finally, we have:

∂loss

∂w
= G×

F
Gw = (1− r1) (1− r2) g⌊p1⌋⌊p2⌋

+ r1 (1− r2) g⌊p1⌋+1⌊p2⌋

+ (1− r1) r2 g⌊p1⌋⌊p2⌋+1

+ r1 r2 g⌊p1⌋+1⌊p2⌋+1

(30)

∂loss

∂p1
= G×

F
Gp1 = w [− (1− r2) g⌊p1⌋⌊p2⌋

+ (1− r2) g⌊p1⌋+1⌊p2⌋

− r2 g⌊p1⌋⌊p2⌋+1

+ r2 g⌊p1⌋+1⌊p2⌋+1]

(31)

∂loss

∂p2
= G×

F
Gp2 = w [− (1− r1) g⌊p1⌋⌊p2⌋

− r1 g⌊p1⌋+1⌊p2⌋

+ (1− r1) g⌊p1⌋⌊p2⌋+1

+ r1 g⌊p1⌋+1⌊p2⌋+1]

(32)

In the next subsection, we will see how this result can be generalized to the vector case.

7.3 2D-DCLS, GENERAL CASE

The general case is the one where the weights w = [w1 w2 · · · wm]
T and the positions

p1 =
[
p11 p12 · · · p1m

]T
, p2 =

[
p21 p22 · · · p2m

]T
are stored in vectors, with the frac-

tional parts r1 = {p1} = p1 − ⌊p1⌋ =
[
r11 r12 · · · r1m

]T
and r2 = {p2} = p2 − ⌊p2⌋ =[

r21 r22 · · · r2m
]T

extended as well.

The function f defined in equation (7) is then extended to the function F defined as follows:

F : Rm × Rm × Rm →Ms1,s2(R)

w,p1,p2 7→K =

m∑
i=1

f(wi, p
1
i , p

2
i )

(33)

The constructed kernel K here is the result of a summation of the function f defined in (7) over the
elements of weight and position vectors. We then define the scalar loss function as in (10).

loss = g(F (w,p1,p2)) (34)

with g :Ms1,s2(R) → R a differentiable function that models the action of all the layers that will
follow F in the model.

Let us put

g′(F (w,p1,p2)) = G =


g11 g12 · · · g1s2

g21
. . . g2s2

...
. . .

...
gs11 gs12 · · · gs1s2

 (35)

As in (11), (12) and (13), by applying the chain rule we obtain:
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∀i ∈ J1 .. mK :

∂loss

∂wi
= g′(F (w,p1,p2))×

F

∂F (w,p1,p2)

∂wi
(36)

∂loss

∂p1i
= g′(F (w,p1,p2))×

F

∂F (w,p1,p2)

∂p1i
(37)

∂loss

∂p2i
= g′(F (w,p1,p2))×

F

∂F (w,p1,p2)

∂p2i
(38)

with

g′(F (w,p1,p2)) =
∂loss

∂K
=

∂loss

∂F (w,p1,p2)
(39)

Let us put this time

g′(F (w,p1,p2)) = G =


g11 g12 · · · g1s2

g21
. . . g1s2

...
. . .

...
gs11 g12 · · · gs1s2

 (40)

Using the definition of F , and by substituting the last equation in (36), (37) and (38), we have:

∂loss

∂wi
= G×

F

∂
∑m

i=1 f(wi, p
1
i , p

2
i )

∂wi
(41)

∂loss

∂p1i
= G×

F

∂
∑m

i=1 f(wi, p
1
i , p

2
i )

∂p1i
(42)

∂loss

∂p2i
= G×

F

∂
∑m

i=1 f(wi, p
1
i , p

2
i )

∂p2i
(43)

And we know that:

∀(i, j) ∈ J1 .. mK2 :

i ̸= j =⇒
∂f(wj , p

1
j , p

2
j )

∂wi
=

∂f(wj , p
1
j , p

2
j )

∂p1i
=

∂f(wj , p
1
j , p

2
j )

∂p2i
= 0

which simplifies equations (41), (42) and (43) to

∀i ∈ J1 .. mK :

∂loss

∂wi
= G×

F

∂f(wi, p
1
i , p

2
i )

∂wi
(44)

∂loss

∂p1i
= G×

F

∂f(wi, p
1
i , p

2
i )

∂p1i
(45)

∂loss

∂p2i
= G×

F

∂f(wi, p
1
i , p

2
i )

∂p2i
(46)

We can notice that we are brought back to the scalar case, and we deduce from (30), (31) and (32)
the gradients of the loss function with respect to weights and positions in the general case:

17



Under review as a conference paper at ICLR 2023

∀i ∈ J1 .. mK : (
∂loss

∂w

)
i

= (1− r1i ) (1− r2i ) g⌊p1
i ⌋⌊p2

i ⌋

+ r1i (1− r2i ) g⌊p1
i ⌋+1⌊p2

i ⌋

+ (1− r1i ) r
2
i g⌊p1

i ⌋⌊p2
i ⌋+1

+ r1i r2i g⌊p1
i ⌋+1⌊p2

i ⌋+1

(47)

(
∂loss

∂p1

)
i

= wi [− (1− r2i ) g⌊p1
i ⌋⌊p2

i ⌋

+ (1− r2i ) g⌊p1
i ⌋+1⌊p2

i ⌋

− r2i g⌊p1
i ⌋⌊p2

i ⌋+1

+ r2i g⌊p1
i ⌋+1⌊p2

i ⌋+1]

(48)

(
∂loss

∂p2

)
i

= wi [− (1− r1i ) g⌊p1
i ⌋⌊p2

i ⌋

− r1i g⌊p1
i ⌋+1⌊p2

i ⌋

+ (1− r1i ) g⌊p1
i ⌋⌊p2

i ⌋+1

+ r1i g⌊p1
i ⌋+1⌊p2

i ⌋+1]

(49)

The results found for the general case are nothing but a component-wise application of the result
obtained in the scalar case. In addition, we show in Appendix 7.4, the extension to the 1D and 3D
convolution cases.

7.4 1D-DCLS, 3D-DCLS

We denote respectively by s1, s2, s3 ∈ N∗ × N∗ × N∗, the sizes of the constructed kernel along the
x-axis, y-axis and the z-axis. Moreover, the n × p × q tensor space of third dimension is denoted
Rn×p×q .

The function f defined in (7) could be adapted in order to construct a suitable kernel for the 1D
convolution in the scalar weight case as follows:

f1D : R× R→ Rs

w, p 7→ k
(50)

where ∀i ∈ J1 .. sK :

ki =

{
w (1− r) if i = ⌊p⌋

w r if i = ⌊p⌋+ 1
0 else

(51)

and where the fractional part is:

r = {p} = p− ⌊p⌋ (52)

Following the same construction in Appendix 7.3 we can show that the gradients of the loss function
with respect to weights and positions in the general 1D case are:

∀i ∈ J1 .. mK : (
∂loss

∂w

)
i

= (1− ri) g⌊pi⌋ + ri g⌊pi⌋+1 (53)(
∂loss

∂p

)
i

= wi (g⌊pi⌋+1 − g⌊pi⌋) (54)
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Furthermore, we define the function f3D, the suitable kernel construction function in the 3D convo-
lution case, as such:

f : R× R× R× R→ Rs1×s2×s3

w, p1, p2, p3 7→ K
(55)

where ∀i ∈ J1 .. s1K, ∀j ∈ J1 .. s2K,∀l ∈ J1 .. s3K :

Kijl =



w (1− r1) (1− r2) (1− r3) if i = ⌊p1⌋, j = ⌊p2⌋, l = ⌊p3⌋
w r1 (1− r2) (1− r3) if i = ⌊p1⌋+ 1, j = ⌊p2⌋, l = ⌊p3⌋
w (1− r1) r2 (1− r3) if i = ⌊p1⌋, j = ⌊p2⌋+ 1, l = ⌊p3⌋

w r1 r2 (1− r3) if i = ⌊p1⌋+1, j = ⌊p2⌋+1, l = ⌊p3⌋
w (1− r1) (1− r2) r3 if i = ⌊p1⌋, j = ⌊p2⌋, l = ⌊p3⌋+ 1

w r1 (1− r2) r3 if i = ⌊p1⌋+ 1, j = ⌊p2⌋, l = ⌊p3⌋+ 1
w (1− r1) r2 r3 if i = ⌊p1⌋, j = ⌊p2⌋+ 1, l = ⌊p3⌋+ 1

w r1 r2 r3 if i = ⌊p1⌋+1, j = ⌊p2⌋+1, l = ⌊p3⌋+ 1
0 else

(56)

and where the fractional parts are:

r1 = {p1} = p1 − ⌊p1⌋
r2 = {p2} = p2 − ⌊p2⌋
r3 = {p3} = p3 − ⌊p3⌋

(57)

We can show that the gradients of the loss function with respect to weights and positions in the
general 3D case are:

∀i ∈ J1 .. mK : (
∂loss

∂w

)
i

= (1− r1i ) (1− r2i ) (1− r3i ) g⌊p1
i ⌋⌊p2

i ⌋⌊p3
i ⌋

+ r1i (1− r2i ) (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋

+ (1− r1i ) r
2
i (1− r3i ) g⌊p1

i ⌋⌊p2
i ⌋+1⌊p3

i ⌋

+ r1i r2i (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋

+ (1− r1i ) (1− r2i ) r
3
i g⌊p1

i ⌋⌊p2
i ⌋⌊p3

i ⌋+1

+ r1i (1− r2i ) r
3
i g⌊p1

i ⌋+1⌊p2
i ⌋⌊p3

i ⌋+1

+ (1− r1i ) r
2
i r3i g⌊p1

i ⌋⌊p2
i ⌋+1⌊p3

i ⌋+1

+ r1i r2i r3i g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋+1

(58)

(
∂loss

∂p1

)
i

= wi [ − (1− r2i ) (1− r3i ) g⌊p1
i ⌋⌊p2

i ⌋⌊p3
i ⌋

+ (1− r2i ) (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋

− r2i (1− r3i ) g⌊p1
i ⌋⌊p2

i ⌋+1⌊p3
i ⌋

+ r2i (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋

− (1− r2i ) r
3
i g⌊p1

i ⌋⌊p2
i ⌋⌊p3

i ⌋+1

+ (1− r2i ) r
3
i g⌊p1

i ⌋+1⌊p2
i ⌋⌊p3

i ⌋+1

− r2i r3i g⌊p1
i ⌋⌊p2

i ⌋+1⌊p3
i ⌋+1

+ r2i r3i g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋+1]

(59)
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(
∂loss

∂p2

)
i

= wi [− (1− r1i ) (1− r3i ) g⌊p1
i ⌋⌊p2

i ⌋⌊p3
i ⌋

− r1i (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋

+ (1− r1i ) (1− r3i ) g⌊p1
i ⌋⌊p2

i ⌋+1⌊p3
i ⌋

+ r1i (1− r3i ) g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋

− (1− r1i ) r
3
i g⌊p1

i ⌋⌊p2
i ⌋⌊p3

i ⌋+1

− r1i r3i g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋+1

+ (1− r1i ) r
3
i g⌊p1

i ⌋⌊p2
i ⌋+1⌊p3

i ⌋+1

+ r1i r3i g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋+1]

(60)

(
∂loss

∂p3

)
i

= wi [ − (1− r1i ) (1− r2i ) g⌊p1
i ⌋⌊p2

i ⌋⌊p3
i ⌋

− r1i (1− r2i ) g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋

− (1− r1i ) r
2
i g⌊p1

i ⌋⌊p2
i ⌋+1⌊p3

i ⌋

− r1i r2i g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋

+ (1− r1i ) (1− r2i ) g⌊p1
i ⌋⌊p2

i ⌋⌊p3
i ⌋+1

+ r1i (1− r2i ) g⌊p1
i ⌋+1⌊p2

i ⌋⌊p3
i ⌋+1

+ (1− r1i ) r
2
i g⌊p1

i ⌋⌊p2
i ⌋+1⌊p3

i ⌋+1

+ r1i r2i g⌊p1
i ⌋+1⌊p2

i ⌋+1⌊p3
i ⌋+1]

(61)
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8 APPENDIX: THE 2D-DCLS KERNEL CONSTRUCTION ALGORITHM

In the following, we describe with pseudocode the forward and backward passes for kernel con-
struction used in 2D-DCLS. In practice, W, P1 and P2 are 3-D tensors of size (channels out,
channels in // groups, K count), but the algorithms presented here are easily extended
to this case by applying them channel-wise.

Algorithm 1 2D-DCLS kernel construction forward pass

Input: W, P1, P2 : vectors of dimension m

Output: K : the constructed kernel, of size (s1 × s2)
1: K← 0

2: p1 ← ⌊P1⌋; p2 ← ⌊P2⌋
3: R1 ← P1 − p1; R2 ← P2 − p2

4: save for backward (p1,p2,R1,R2)
5: for i = 0→ m− 1 do
6: K[p1

i ,p
2
i ] += Wi ∗ (1− R1

i ) ∗ (1− R2
i )

7: K[p1
i + 1,p2

i ] += Wi ∗ (R1
i ) ∗ (1− R2

i )

8: K[p1
i ,p

2
i + 1] += Wi ∗ (1− R1

i ) ∗ (R
2
i )

9: K[p1
i + 1,p2

i + 1] += Wi ∗ (R1
i ) ∗ (R

2
i )

10: end for

Algorithm 2 2D-DCLS kernel construction backward pass

Input: GradK = ∂Loss
∂K : matrix of dimension (s1 × s2)

Output: ∂Loss
∂W , ∂Loss

∂P 1 , ∂Loss
∂P 2 : vectors of dimension m

1: ∂Loss
∂W ← 0, ∂Loss

∂P 1 ← 0, ∂Loss
∂P 2 ← 0

2: p1,p2,R1,R2 ← load saved ( )
3: for i = 0→ m− 1 do
4:

∂Loss

∂W
[i] +=

∂Loss

∂K
[p1

i ,p
2
i ] ∗ (1−R1

i ) ∗ (1−R2
i ) +

∂Loss

∂K
[p1

i + 1,p2
i ] ∗ R1

i ∗ (1−R2
i )

+
∂Loss

∂K
[p1

i ,p
2
i + 1] ∗ (1−R1

i ) ∗ R2
i +

∂Loss

∂K
[p1

i + 1,p2
i + 1] ∗ R1

i ∗ R2
i

5:

∂Loss

∂P 1
[i] += Wi ∗ [−

∂Loss

∂K
[p1

i ,p
2
i ] ∗ (1− R2

i ) +
∂Loss

∂K
[p1

i + 1,p2
i ] ∗ (1− R2

i )

−∂Loss

∂K
[p1

i ,p
2
i + 1] ∗ R2

i +
∂Loss

∂K
[p1

i + 1,p2
i + 1] ∗ R2

i ]

6:

∂Loss

∂P 2
[i] += Wi ∗ [−

∂Loss

∂K
[p1

i ,p
2
i ] ∗ (1− R1

i )−
∂Loss

∂K
[p1

i + 1,p2
i ] ∗ R1

i

+
∂Loss

∂K
[p1

i ,p
2
i + 1] ∗ (1− R1

i ) +
∂Loss

∂K
[p1

i + 1,p2
i + 1] ∗ R1

i ]

7: end for

The ‘for’ loops in the algorithms are fully parallelized using GPU threads. The 2D-DCLS convo-
lution with kernel construction is then obtained by applying the classical 2D-convolution provided
natively by PyTorch or any other method such as the depthwise implicit gemm convolution method
Ding et al. (2022) using the constructed kernel.
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When considering a concurrent execution of this pseudocode, the additions may result, in case of
overlapping, in a replacement of the overlapped values instead of the desired accumulation. This
problem can be addressed by using atomic addition operations.

9 APPENDIX: THE DCLS KERNEL CONSTRUCTION ALGORITHM IN NATIVE
PYTORCH

In the following, we describe with PyTorch code the DCLS construction module for 1D, 2D and 3D
versions. The DCLS convolution method is obtained by using the constructed kernel as a weight for
the native torch.nn.Conv{1,2,3}d, or another convolution method such as depthwise implicit gemm
Megvii (2020).

class ConstructKernel1d(Module):
def __init__(self, out_channels,
in_channels, groups, kernel_count, dilated_kernel_size):

super().__init__()
self.out_channels = out_channels
self.in_channels = in_channels
self.groups = groups
self.dilated_kernel_size = dilated_kernel_size
self.kernel_count = kernel_count
I = torch.arange(0, dilated_kernel_size[0])
I = I.expand(out_channels,
in_channels//groups, kernel_count,-1).permute(3,0,1,2)
self.I = Parameter(I, requires_grad=False)

self.lim = torch.zeros(1)
self.lim[0] = dilated_kernel_size[0]
self.lim = self.lim.expand(out_channels, in_channels//groups,

kernel_count, -1).permute(3,0,1,2)
self.lim = Parameter(self.lim, requires_grad=False)

def forward(self, W, P):
P = P + self.lim // 2
Pr = P
P = P.floor()
R = (Pr - P).expand(self.dilated_kernel_size[0],-1,-1,-1,-1)
R1 = R.select(2,0); P1 = P.select(0,0)
cond1 = (self.I == P1)
cond2 = (self.I == P1+1)
W1 = torch.where(cond1, 1.0, 0.0)
W2 = torch.where(cond2, 1.0, 0.0)

K = W1 + R1 * (W2 - W1)
K = W * K
K = K.sum(3)
K = K.permute(1,2,0)
return K

class ConstructKernel2d(Module):
def __init__(self, out_channels, in_channels, groups,
kernel_count, dilated_kernel_size):

super().__init__()
self.out_channels = out_channels
self.in_channels = in_channels
self.groups = groups
self.dilated_kernel_size = dilated_kernel_size
self.kernel_count = kernel_count
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J = torch.arange(0,
dilated_kernel_size[0]).expand(dilated_kernel_size[1],-1)
I = torch.arange(0,
dilated_kernel_size[1]).expand(dilated_kernel_size[0],-1)
I = I.expand(out_channels,
in_channels//groups, kernel_count,-1,-1).permute(3,4,0,1,2)
J = J.expand(out_channels,
in_channels//groups, kernel_count,-1,-1).permute(4,3,0,1,2)

self.I = Parameter(I, requires_grad=False)
self.J = Parameter(J, requires_grad=False)
self.lim = torch.zeros(2)
self.lim[0] = dilated_kernel_size[0]
self.lim[1] = dilated_kernel_size[1];
self.lim = self.lim.expand(out_channels, in_channels//groups,

kernel_count, -1).permute(3,0,1,2)
self.lim = Parameter(self.lim, requires_grad=False)

def forward(self, W, P):
P = P + self.lim // 2
Pr = P
P = P.floor()
R = (Pr - P).expand(self.dilated_kernel_size[0],
self.dilated_kernel_size[1],-1,-1,-1,-1)
R1 = R.select(2,0); P1 = P.select(0,0)
R2 = R.select(2,1); P2 = P.select(0,1)
R1R2 = R1*R2
cond1 = (self.I == P1)
cond2 = (self.J == P2)
cond3 = (self.I == P1+1)
cond4 = (self.J == P2+1)
W1 = torch.where(cond1*cond2, 1.0, 0.0)
W2 = torch.where(cond1*cond4, 1.0, 0.0)
W3 = torch.where(cond3*cond2, 1.0, 0.0)
W4 = torch.where(cond3*cond4, 1.0, 0.0)
K = W1 + R1R2*(W1 - W2 - W3 + W4) + R1*(W3 - W1) + R2*(W2-W1)
K = W * K
K = K.sum(4)
K = K.permute(2,3,0,1)
return K

class ConstructKernel3d(Module):
def __init__(self, out_channels, in_channels, groups,
kernel_count, dilated_kernel_size):

super().__init__()
self.out_channels = out_channels
self.in_channels = in_channels
self.groups = groups
self.dilated_kernel_size = dilated_kernel_size
self.kernel_count = kernel_count
L = torch.arange(0,
dilated_kernel_size[0]).expand(dilated_kernel_size[1],
dilated_kernel_size[2],-1)
J = torch.arange(0,
dilated_kernel_size[1]).expand(dilated_kernel_size[0],
dilated_kernel_size[2],-1)
I = torch.arange(0,
dilated_kernel_size[2]).expand(dilated_kernel_size[0],
dilated_kernel_size[1],-1)
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L = L.expand(out_channels,
in_channels//groups,kernel_count,-1,-1,-1).permute(5,3,4,0,1,2)
I = I.expand(out_channels,
in_channels//groups,kernel_count,-1,-1,-1).permute(3,4,5,0,1,2)
J = J.expand(out_channels,
in_channels//groups,kernel_count,-1,-1,-1).permute(3,5,4,0,1,2)
self.L = Parameter(L, requires_grad=False)
self.I = Parameter(I, requires_grad=False)
self.J = Parameter(J, requires_grad=False)
self.lim = torch.zeros(3)
self.lim[0] = dilated_kernel_size[0]
self.lim[1] = dilated_kernel_size[1]
self.lim[2] = dilated_kernel_size[2]
self.lim = self.lim.expand(out_channels, in_channels//groups,

kernel_count, -1).permute(3,0,1,2)
self.lim = Parameter(self.lim, requires_grad=False)

def forward(self, W, P):
P = P + self.lim // 2
Pr = P
P = P.floor()
R = (Pr - P).expand(self.dilated_kernel_size[0],
self.dilated_kernel_size[1], self.dilated_kernel_size[2],-1,-1,-1,-1)
R1 = R.select(3,0); P1 = P.select(0,0)
R2 = R.select(3,1); P2 = P.select(0,1)
R3 = R.select(3,2); P3 = P.select(0,2)

cond1 = (self.L == P1)
cond2 = (self.I == P2)
cond3 = (self.J == P3)
cond4 = (self.L == P1+1)
cond5 = (self.I == P2+1)
cond6 = (self.J == P3+1)
W1 = torch.where(cond1*cond2*cond3, 1.0, 0.0)
W2 = torch.where(cond4*cond2*cond3, 1.0, 0.0)
W3 = torch.where(cond1*cond5*cond3, 1.0, 0.0)
W4 = torch.where(cond4*cond5*cond3, 1.0, 0.0)
W5 = torch.where(cond1*cond2*cond6, 1.0, 0.0)
W6 = torch.where(cond4*cond2*cond6, 1.0, 0.0)
W7 = torch.where(cond1*cond5*cond6, 1.0, 0.0)
W8 = torch.where(cond4*cond5*cond6, 1.0, 0.0)
# needs a better computing
K = W1 * (1 - R1) * (1 - R2) * (1 - R3)
K += W2 * R1 * (1 - R2) * (1 - R3)
K += W3 * (1 - R1) * R2 * (1 - R3)
K += W4 * R1 * R2 * (1 - R3)
K += W5 * (1 - R1) * (1 - R2) * R3
K += W6 * R1 * (1 - R2) * R3
K += W7 * (1 - R1) * R2 * R3
K += W8 * R1 * R2 * R3
K = W * K
K = K.sum(5)
K = K.permute(3,4,0,1,2)
return K
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10 APPENDIX: HISTOGRAMS OF POSITIONS

In the following, we show as histograms over training epochs, the distribution of the four kernel
positions for the 2D-DCLS convolutions of the ConvNeXt-T-dcls model. Note that there is no
agglutination or edge effect around the kernel limits, and that the distributions are relatively stable,
with a higher concentration around the center of the kernel. Individual positions, however, are
constantly moving; see animation at:

https://wandb.ai/dcls/convnext/reports/Dcls-scatters-s0-b0-22-0
9-25-14-37-09---VmlldzoyNjkyMjkz?accessToken=e32u5xgd4a9bn46w0j09
d51kxvry2ciwedotq0im3haw1j1ue1a200jnjaf1jtbe.

Figure 3: The distribution over epochs
of kernel positions for the stage 0 of the
ConvNeXt-T-dcls model.

Figure 4: Idem for stage 1.

Figure 5: Idem for stage 2. Figure 6: Idem for stage 3.

11 APPENDIX: SPEED CURVES AND LEARNING RATE SCHEDULE

Here, we plot the average speed curves of the four position tensors for the 2D-DCLS convolutions
VP of the ConvNeXt-T-dcls model as functions of the training epochs. The general formula for the
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average speed of a DCLS position tensor of size (cout, cin,m) ∈ N∗3, at epoch t, is as follows:

∀t ∈ J1 .. tmaxK : VP(t) =
1

cout · cin ·m

cout∑
k=1

cin∑
j=1

m∑
i=1

|P t
ijk − P t−1

ijk |

Figure 7: The average speed of the four position tensors for the ConvNeXt-T-dcls model as function
of epochs.

Figure 8: The learning schedule used for training ConvNeXt-T-dcls model.

At epoch 0, we can notice that the average speed is abnormally high, this is due to the fact that in the
beginning, the positions are initialized randomly and we arbitrarily considered that VP(0) = 0, thus
the large speed gap at initialization. Another peak can be seen at epoch 20, this one is due to the
introduction of the repulsive loss (Thomas et al., 2019) at this precise epoch during training. This
last causes a momentary increase in the average speed of the DCLS positions. In general, we can
say that over epochs, the average DCLS positions follow the shape of the scheduler used in training.
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12 APPENDIX: EFFECTIVE RECEPTIVE FIELDS COMPARISON

In the following, we show the effective receptive fields (ERF) calculated respectively for ConvNeXt-
T-dcls, ConvNeXt-T with a standard dilated kernel of rate 2 and ConvNeXt-T models. The input
crops used here are of size 1024 × 1024 and the heatmaps are normalized (between 0 and 1). We
observe that the ERF of ConvNeXt-T-dcls has a particular shape that resembles a square with more
prominent diagonals and medians. The ERF of ConvNeXt-T with a standard dilated kernel is larger
but with gridding artifacts. In all plots, it seems that the center has more importance.

Figure 9: The effective receptive field (ERF)
of the ConvNeXt-T-dcls model.

Figure 10: The effective receptive field of the
ConvNeXt model with dilated kernels (dil
rate 2) instead of the dense 7× 7 ones.

Figure 11: The effective receptive field of the
ConvNeXt-T model.
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13 APPENDIX: TIME MEASUREMENTS

Figure 12: For the 3 ConvNeXt variants (tiny, small and base), we measure the elapsed time in ms for
1 forward + backward pass with a fixed batch size 128 and inputs of size (3,224,224) using DCLS2d
convolution accelerated by the depthwise implicit gemm algorithm. Measures were carried using
a single A100-80gb gpu. We also compare those timings to the 3 ConvNeXt baselines.

Figure 13: For the 3 ConvNeXt variants (tiny, small and base), we measure the elapsed time in
ms for 1 forward + backward pass with a fixed batch size 128 and inputs of size (3,224,224) using
DCLS2d convolution with the PyTorch native 2D convolution algorithm. Measures were carried
using a single A100-80gb gpu. We compare those timings to the 3 ConvNeXt baselines. We also
compare those timings to the 3 ConvNeXt baselines.
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Figure 14: For different dilated kernel sizes (ranging from 7 to 31), and 4 different map sizes, we
measure the elapsed time in ms for 1 forward + backward pass with a fixed batch size 128 and a
fixed kernel count 34 using a single DCLS2d construct module with a 2D convolution accelerated
by the depthwise implicit gemm algorithm. Measures were carried using a single Quadro RTX
8000 gpu.

Figure 15: For different dilated kernel sizes (ranging from 7 to 31), and 4 different map sizes /
channels, we measure the elapsed time in ms for 1 forward + backward pass with a fixed batch size
128 and a fixed kernel count 34 using a single DCLS2d construct module with the PyTorch native
2D convolution algorithm. Measures were carried using a single Quadro RTX 8000 gpu.
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