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Abstract

The design of optimal auctions is a problem of interest in economics, game the-1

ory and computer science. Despite decades of effort, strategyproof, revenue-2

maximizing auction designs are still not known outside of restricted settings.3

However, recent methods using deep learning have shown some success in approxi-4

mating optimal auctions, recovering several known solutions and outperforming5

strong baselines when optimal auctions are not known. In addition to maximiz-6

ing revenue, auction mechanisms may also seek to encourage socially desirable7

constraints such as allocation fairness or diversity. However, these philosophical8

notions neither have standardization nor do they have widely accepted formal9

definitions. In this paper, we propose PreferenceNet, an extension of existing10

neural-network-based auction mechanisms to encode constraints using (potentially11

human-provided) exemplars of desirable allocations. In addition, we introduce a12

new metric to evaluate an auction allocations’ adherence to such socially desirable13

constraints and demonstrate that our proposed method is competitive with current14

state-of-the-art neural-network based auction designs. We validate our approach15

through human subject research and show that we are able to effectively capture16

real human preferences.17

1 Introduction18

Auctions are an essential tool in many marketplaces, including those in electricity [8], advertising19

[14], and telecommunications [9, 26]. The design of auctions with desirable properties is thus an20

important theoretical and practical problem. A typical assumption is that bidders may choose to bid21

strategically and will successfully anticipate the behavior of other bidders. This results in a potentially22

complicated Bayes-Nash equilibrium which may be difficult to predict. To evade this problem, a23

common requirement is that an auction should be strategyproof (i.e. bidders should be incentivized to24

truthfully share their valuations regardless of other bidders’ actions).25

If the goal of an auction is to maximize the total welfare of all participants, the Vickrey-Clarke-26

Groves (VCG) mechanism is both strategyproof and welfare-maximizing [40, 7, 20]. Intuitively, in27

many cases the VCG mechanism corresponds to a second-price auction. If the goal is to maximize28

the revenue gained, the problem is more challenging. Myerson’s work completely characterizes29

strategyproof, revenue-maximizing auctions for a single item [29]. Beyond this case, results are30

more limited. Some results are known for the “multiple-good monopolist” problem, in which the31

auctioneer sells multiple items to a single bidder [11, 12, 24, 31, 28, 21, 18]. In addition, designing32

auctions for the related but weaker notion of Bayes-Nash incentive compatibility is reasonably well33

understood [2, 3, 4].34

There has been significant difficulty in designing strategyproof auctions involving multiple items35

and multiple bidders. [41] shares significant, but limited results which solve the case in which items36
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may have at most 2 values. Due to the apparent difficulty of analytically designing strategyproof,37

revenue maximizing auctions, recent methods instead approximate optimal auctions using machine38

learning approaches [13, 10, 19, 25, 15, 32, 33]. [37] proposes an method which guarantees exact39

strategyproofness in the single-agent setting. [39, 1] also use neural networks in the design of40

auctions. These methods primarily focus on standard mechanism design goals of revenue or welfare41

maximization, but these may not be the only goals of an auction. An auction might be conducted for42

public goods (i.e. electromagnetic spectrum distribution [9]), where the auctioneer must consider the43

effect not only on the auctioneer and bidders but on third-parties as well [30]. In other cases, such as44

auctions involving job or credit advertisements, it might be necessary to additionally constrain the45

auction mechanism to ensure fairness with respect to protected characteristics [23, 6]. Recent work46

has considered the problem of determining revenue-maximizing, strategyproof, fair auctions, either47

from a specific class [5] or with a general neural network approach [25].48

The underlying notions of “fairness” used in these papers (e.g. total-variation fairness [23]) are49

defensible but somewhat arbitrary – they are attempts to formally capture human intuition. It might50

instead be better to attempt to capture, from data, human intuitions about fairness or other ethical51

requirements that are not explicitly defined [38, 16].52

In this paper, we introduce PreferenceNet, an extension to RegretNet that directly encodes socially de-53

sirable constraints from data, and captures noisy human preferences. We are motivated by advertising54

auctions where the allocations of the auction mechanism must satisfy human preference constraints55

alongside the typical goals of strategyproofness and revenue maximization. We conduct a number56

of experiments using synthetic data (as is typical for neural network based auction mechanisms57

[13]) and evaluate our method on different auction settings and fairness constraints. We show that58

PreferenceNet is able to effectively capture each fairness constraint and matches the performance59

of standard approaches. We also conduct two surveys to further study human preferences. In the60

first survey (n=140), when given a specific definition of fairness, we ask participants to determine61

if a given auction setting is fair in order to test the noise in human judgements. In the second62

survey (n=345), we elicit judgements of pairwise comparisons of two auction settings to determine63

preferences without priming the participants with any particular definition of fairness. We train64

PreferenceNet on these data and show that our approach can capture nuanced human preferences in65

auction design.66

2 Background and Related Work67

RegretNet. [13] presents RegretNet, a neural-network architecture for learning approximately68

strategyproof auctions that maximize revenue. RegretNet treats the auction mechanism as a function69

from bids to allocations and payments, parameterized as a neural network. Revenue is optimized70

via gradient descent on sampled truthful bid profiles; strategyproofness is enforced by computing71

strategic bids in an adversarial manner to minimize violations. RegretNet has been modified and72

extended in a variety of ways, particularly to enforce additional desirable constraints. [10, 39, 19, 25,73

15, 32].74

Special Case: Single-Bidder Auctions. We highlight a special case in which deep learning for75

auctions has been particularly successful – auctions with a single bidder. In the single-bidder setting,76

the set of strategyproof mechanisms can be easily characterized [34], and it is possible to design77

neural network architectures which will always lie in this set. [13, 37] present two different learning-78

based solutions. Both methods are guaranteed to be strategyproof, and revenue can be maximized by79

unconstrained optimization. There are some known optimal single-agent mechanisms (we highlight80

those of Manelli-Vincent [28] and Pavlov [31], as they are relevant to auction settings we study81

below). Moreover, the theory of single-bidder mechanisms is well understood [11, 12, 18], so it is82

also possible to learn empirically strong mechanisms using these approaches and then prove their83

optimality [37, 13]. Unfortunately, when moving beyond the single-agent setting, it is necessary to84

use more general neural network architectures for which these guarantees do not apply. Because we85

are interested in such settings, we focus on these general architectures in this work.86

Fairness and Human Preferences. As mentioned, while revenue, strategyproofness, and individ-87

ual rationality are the classic goals of auction design, it might also be necessary for allocations made88
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by an auction to satisfy certain other requirements such as fairness [5, 25]. However, it is not always89

clear if these mathematical definitions of these concepts actually capture human intuitions.90

[36, 38] considers human reactions to different definitions of fairness in a classification setting. [35]91

tests the extent to which human participants are able to understand and apply fairness metrics. [16]92

considers the problem of learning to perform fair clustering from human-provided demonstrations.93

As discussed below, we also crowdsource human opinions on fairness in auctions and analyze the94

results in Section 6.95

3 Problem Setting96

Auction Model. An auction is defined as a set of agents N = {1, . . . , n} bidding for items97

M = {1, . . . ,m}. Each agent i ∈ N has a corresponding private valuation vi, randomly drawn from98

a set of n valuations as v = (v1, ...vn) ∈ Vi. In general vi may be functions over the power set99

of items 2M . However, we only consider simpler cases with additive valuations and unit-demand100

valuations, where the valuation is simply a vector vi ∈ Rm of values per item.101

Each agent reports a bid vector bi to the auctioneer, which may differ from the private valuation vi.102

Given the profile of bids b = (b1, . . . , bn) of all agents, the auction has allocation and payment rules103

g(b) : Rmn → [0, 1]nm and p(b) : Rmn → Rn. We will refer to the matrix of allocation probabilities,104

whose rows must sum to 1, as g(b) = z . Likewise agent i’s value of the jth item is vi,j , and bidder i105

has payment function pi. Moreover, for unit-demand auctions, we restrict the allocation to allow each106

bidder to win, in expectation, at most 1 item. Given the allocation, each agent receives a utility which107

can in either case be represented in linear form as ui(v) =
∑
j vi,jzi,j − pi.108

Desirable Auction Properties. A mechanism is individually rational (IR) when an agent is guaran-109

teed non-negative utility: ui(vi; v) ≥ 0 ∀i ∈ N, v ∈ V . A mechanism is dominant-strategy incentive-110

compatible (DSIC) or strategyproof if every agent maximizes their own utility by bidding truthfully,111

regardless of the other agents’ bids. We can define regret, the difference in utility between the bid112

player i actually made and the best possible strategic bid: rgti(v) = maxbi ui(bi, v−i)− ui(vi, v−i).113

In addition to satisfying the IR and DSIC constraints, the auctioneer seeks to maximize their expected114

revenue. If the auction is truly DSIC, players will bid truthfully, and as a result revenue is simply115

Ev∼V [
∑
i∈N pi(v)].116

4 PreferenceNet: Encoding Human Preferences117

We first explore a new metric to evaluate the adherence to socially desirable constraints in item allo-118

cations. Next, we describe the implementation details of PreferenceNet and important considerations119

when training the model.120

Evaluation Metrics. There are limited evaluation criteria that quantitatively measures an auction121

mechanism’s ability to enforce constraints on item allocations. If the constraints are not known122

explicitly, one can qualitatively examine the allocation graphs to evaluate the underlying allocation123

function g(b). However, visual inspection does not scale to larger auction settings. As shown in124

Figure 1, our proposed metric is not only able to capture the same insights as qualitative analysis, but125

also scales to arbitrarily large auction mechanisms.126

Given the limitations of existing analysis techniques, we propose Preference Classification Accuracy127

(PCA), a new metric to evaluate how well a learned auction model satisfies an arbitrary constraint. For128

a set of test bids b and allocations g(b) : Rmn → [0, 1]nm generated by our learned auction model,129

we assign a label s(b) ∈ {1, 0} to each allocation according to a ground truth labeling function based130

on the underlying preference. For each test bid b, s(b) is 1 if the learned auction network satisfies131

the ground truth constraint. PCA is calculated by averaging the value of s(b) over n test bids. Note132

that this metric remains valid in cases when we know the underlying preference function (e.g. total133

variation fairness, entropy) as well as when we are sampling from an unknown distribution (e.g.134

human preference elicitation). For cases where the underlying preference function is known, we can135

directly compute the preference score for a given allocation and apply a threshold to obtain a label.136

For cases where the preference function is unknown, as is the case in human preference elicitation,137

we can use the ground truth allocation-label pair to assign preference labels s(b) to new allocations138
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(d)

RegretNet Total Variational Fairness PreferenceNet Total Variational Fairness

(c)

(b)(a)

Figure 1: We compare the allocation plots of standard RegretNet approaches in enforcing total
variation fairness (TVF) [25, 23] (sub-figures a and c) with our proposed approach (sub-figures b and
d) learned through exemplars of desirable allocations that satisfy TVF. Visually, the allocations for
both the unit-demand (sub-figures a and b) and additive auctions (sub-figures c and d) are identical.
In this case, our proposed metric verifies our visual inspection, indicating that allocations from all
four models satisfy TVF with 100% accuracy. However, this qualitative analysis does not extend to
larger auction settings. In contrast, our proposed metric allows us to quantify the adherence of an
auction mechanism to an enforced constraint for arbitrarily large auctions.

based on the nearest neighbor in the ground truth set. This metric gives us a formal way to measure139

the degree to which preference constraints are violated, which crucially can be used whether or not140

the constraints follow an explicitly-known function.141

Preference Elicitation. In order to effectively elicit preferences, we rely on pairwise comparisons142

between allocations to identify both positive and negative exemplars. We compare each input set of143

of allocations against n other allocations to determine if a particular sample is preferred over these144

alternatives (see Figure 2). This method of group preference elicitation reduces noise and ensures that145

the learned preference is satisfactory to a majority of the participants. We use this ranking approach146

to generate training labels in all of our experiments as described below.147

N Pairwise Comparisons

0.65

0.68

0.66

0.64

0.64

0.65

0.67

0.67

0.61

0.67

0.68

0.69

Input

(a)

(b)

Figure 2: To elicit preferences from a group, or from a person without deterministic preferences,
we use pairwise comparisons to determine labels for each allocation. In examples (a) and (b), each
allocation (represented as a circle) has a preference score (represented by a number inside the circle).
We can compare the score of the input against n other valuations to determine the relative ranking
of the input data point. If the input data point has a smaller score than a plurality of the points it is
compared against, it is a negative exemplar for the implicit preference (as in (a)). Otherwise it is
positive (as in (b)).
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Training Algorithm. We present the training algorithm of PreferenceNet below. We use the same148

additive and unit-demand network architectures as RegretNet for arbitrary numbers of agents and149

items. Our training algorithm follows closely from RegretNet. PreferenceNet consists of two sub-150

networks: RegretNet and a 3-layer MLP with a sigmoid activation at the output. We first train the151

MLP using a uniformly drawn sample of allocations as inputs, and optimize the binary cross entropy152

loss function using ground truth labels (generated as in Figure 2) identifying positive and negative153

exemplars. Next, we train RegretNet using the standard training procedure with the modified loss154

function described in Eq. 1. Lastly, we sample allocations and payments from the partially trained155

RegretNet model every c epoch and augment the MLP training set to adapt to the distributional shifts156

in allocations over the course of training. Our modified loss function Cρ(w;λ) is defined as:157

Lrgt =
∑
i∈N

λ(r,i) rgti(w) +
ρr
2

(∑
i∈N

rgti(w)

)2

, Ls =
∑
j∈M

sj

158
Cρ(w;λ) = − 1

L

L∑
l=1

∑
i∈N

pwi (v(l)) + Lrgt − Ls (1)

where Ls is the output of the trained MLP. RegretNet is optimized such that it is strategyproof,159

revenue-maximizing, satisfies the preference learned by the MLP (i.e. maximizes the output scores160

of the MLP).161

For each configuration of n agents and m items, we train RegretNet for a maximum of 200 epoch162

using 160,000 training samples. We also train the MLP with 80,000 initial training samples and163

iteratively retrain the MLP with 5,000 additional samples from the partially trained RegretNet every 5164

epoch. For all networks, we use the Adam optimizer and 100 hidden nodes per layer. We apply warm165

restarts to the MLP optimizer each time we add new training data to to prevent the model from settling166

in a local minima. We incremented ρr every 2500 iterations and λr every 25 iterations. Finally, we167

report the preference classification accuracy, mean regret, and mean payments by simulating the168

allocations of 20,000 testing samples. We run all our experiments on an NVIDIA Titan X (Pascal)169

GPU. We refer readers to the supplemental material for the code.170

MLP Architecture. We learn implicit preference functions using a simple 3-layer multi-layer171

perceptron that takes as input a mini-batch of allocations and outputs a vector that scores the input172

∈ [0, 1] as a measure of how closely the allocation satisfies the ground truth preference. Given that173

neural networks are universal function approximators, with enough parameters the MLP can represent174

any arbitrary preference function. In practice, we find that ReLU non-linear activations and batch175

normalization are essential to effectively train this network.176

Class Balanced Sampling. The distribution of positive and negative training examples for arbitrary177

preferences are often imbalanced – preferred examples may be concentrated in a small region of178

possible allocations. Often, this imbalance can make it difficult to train a robust model. Commonly,179

neural networks with improper class balance fail to learn a good decision boundary. In order to180

compensate for such imbalanced datasets, we can explicitly over-sample sparse classes until there are181

an equal number of positive and negative training examples. In practice this allows the network to182

quickly learn the decision boundary and allows us to train with fewer data points.183

MLP Co-Training. The distribution of payments and allocations generated by RegretNet shift184

significantly during the course of training. As a result, the initially trained MLP may not effectively185

enforce the preference loss as RegretNet continues to train. In order to adapt to the distribution shift,186

we sample allocations from RegretNet at fixed intervals while it is training, add them back to the187

training set, and retrain the MLP. We generate noisy labels [27] using the existing MLP to reduce the188

cost of collecting expensive labels. In practice, we find that this approach effectively reinforces the189

decision boundary between positive and negative exemplars.190

Model Validation. The optimal model minimizes regret, while maximizing payments and preference191

classification accuracy. In practice, satisfying all three conditions may be difficult. Often, we find192

that choosing a fixed epoch to evaluate does not provide consistent results. Rather, we evalate each193

checkpoint on a validation set and maximize the following criteria in Eq. 2:194

α ∗ PCA + β ∗
¯p(b)

max(p(b))
+ γ ∗ (1−

¯rgt(b)

max(rgt(b))
) s.t. α+ β + γ = 1 (2)
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In our experiments we set α = 0.45, β = 0.1, γ = 0.45. It is important to note that the maximum195

regret and payments are calculated over the entire training process, while the mean regret, payment,196

and preference classification accuracy are calculated at each epoch.197

5 Sampling Synthetic Preferences198

Given the lack of publicly available auction data, we generate synthetic bids as in [13, 25, 37].199

We first validate PreferenceNet using synthetic preferences, and extend our analysis to real human200

preferences in Section 6. In our synthetic preference experiments, we are interested in three types201

of fairness: total variation fairness (TVF), entropy, and a quota system. All three definitions of202

fairness map the allocations g(b) onto R. We train auction models for each of these valuation function203

and compare RegretNet with our proposed model under uniform additive and unit-demand auction204

settings in Table 5. Note in Table 5 that RegretNet is trained with an additional loss function term to205

explicitly optimize for the preference. PreferenceNet is trained as described in 4. We describe the206

three definitions of fairness below:207

Total Variation Fairness. An auction mechanism satisfies total variation fairness if the `1-distance208

between allocations for any two users is at most the distance between those users. That is, total209

variation fairness is satisfied when210

∀k ∈ {1, ..., c},∀j, j′ ∈M,
∑
i∈Ck

|g(b)i,j − g(b)i,j′ | ≤ dk(j, j′). (3)

We fix d = 0 in all of our experiments. We minimize violations of the above constraints.211

Entropy. An auction mechanism satisfies the entropy constraint if the entropy of the normalized212

allocation for a bid profile b213

−
n∑
i=1

P

(
g(b)i,·∑
j g(b)ij

)
logP

(
g(b)i,·∑
j g(b)ij

)
(4)

is maximized. We normalize across items, turning the allocation into a probability distribution. This214

normalization ensures that entropy reflects diversity in the allocations, and not the overall number of215

items being allocated. Specifically, encouraging entropy ensures that the allocation for a given agent216

will tend to be more uniformly distributed.217

Quota. An auction mechanism satisfies the quota constraint if, for each item in the (normalized)218

allocation, the smallest allocation to any agent j is greater than some minimum threshold t:219

min
j

(
g(b)·,j∑
i g(b)i,j

)
> t (5)

Here, we normalize the allocation so that the allocation per item will be a probability distribution220

over agents. The intuition for this definition is that each agent must guarantee some floor across every221

item. Returning to the advertising example, this ensures some minimum percentage of ad impressions222

are seen by every demographic group.223

We train a number of models to compare the performance between RegretNet and PreferenceNet.224

Despite leveraging an weaker, implicit signal to learn fairness constraints, PreferenceNet is able to225

closely match the performance of RegretNet. Surprisingly, PreferenceNet improves upon RegretNet226

in some cases, indicating that with careful hyperparameter tuning, further improvements are possible.227

Of the three fairness constraints examined, enforcing a quota is hardest for additive auctions, as both228

RegretNet and PreferenceNet struggled for auctions with a large number of agents.229

Limitations. Despite its effectiveness, we highlight limitations of our approach. In general, Prefer-230

enceNet always optimizes for the simplest function. For example, if learning a piece-wise preference231

where the positive exemplars are not clustered in a single region as in Figure 3, PreferenceNet tends232

to only satisfy part of the piece-wise function. This is unsurprising, given that neural networks are233

known to take shortcuts in optimization [17]. Moreover, PreferenceNet has difficulty in generating234

allocations with tightly clustered preference scores to satisfy a particular constraint. Given that we235

optimize for preferences implicitly using exemplars, this behavior is understandable. We study these236

limitations further in the supplemental material.237
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Table 1: We evaluate both RegretNet and PreferenceNet over nxm auctions (“u” refers to unit-demand
and “a” refers to additive), where n is the number of agents andm is the number of items. We measure
three criteria (a) PCA, (b) Regret Mean (STD), (c) Payment Mean (STD). Although PreferenceNet
learns each preference implicitly, it produces similar performance to our strong baseline.

(a) TVF Entropy Quota

RegretNet PreferenceNet RegretNet PreferenceNet RegretNet PreferenceNet

2x2 u 100.0 100.0 86.4 69.6 100.0 100.0
2x4 u 100.0 100.0 99.7 94.9 100.0 100.0
4x2 u 100.0 100.0 100.0 94.5 .1 100.0
4x4 u 100.0 99.3 100.0 67.4 100.0 100.0

2x2 a 100.0 100.0 99.6 99.5 75.1 100.0
2x4 a 100.0 100.0 100.0 100.0 36.0 100.0
4x2 a 100.0 100.0 99.9 100.0 .1 .1
4x4 a 100.0 99.9 100.0 96.1 0 0

(b) TVF Entropy Quota

RegretNet PreferenceNet RegretNet PreferenceNet RegretNet PreferenceNet

2x2 u .012 (.012) .012 (.012) .02 (.02) .011 (.01) .012 (.013) .013 (.012)
2x4 u .008 (.006) .016 (.013) .045 (.045) .022 (.019) .012 (.01) .034 (.022)
4x2 u .015 (.009) .028 (.013) .025 (.025) .056 (.018) .026 (.017) .819 (.136)
4x4 u .033 (.024) .067 (.037) .031 (.031) .029 (.014) .037 (.023) .432 (.145)

2x2 a .005 (.004) .006 (.004) .006 (.006) .013 (.008) .008 (.007) .05 (.031)
2x4 a .008 (.011) .008 (.009) .007 (.007) .008 (.009) .01 (.01) .078 (.032)
4x2 a .038 (.076) .014 (.011) .036 (.036) .162 (.052) .017 (.013) .017 (.013)
4x4 a .424 (.324) .139 (.104) .015 (.015) .257 (.1) .038 (.017) .039 (.018)

(c) TVF Entropy Quota

RegretNet PreferenceNet RegretNet PreferenceNet RegretNet PreferenceNet

2x2 u 4.18 (.45) 4.17 (.44) 4.26 (.37) 4.14 (.43) 4.19 (.35) 4.18 (.33)
2x4 u 4.37 (.29) 4.41 (.34) 4.48 (.34) 4.47 (.21) 4.44 (.16) 4.49 (.29)
4x2 u 4.93 (.21) 4.98 (.21) 4.85 (.23) 4.99 (.21) 5.16 (.24) 5.03 (.21)
4x4 u 8.81 (.39) 8.92 (.38) 8.79 (.5) 8.81 (.42) 8.8 (.3) 8.81 (.36)

2x2 a .87 (.31) .87 (.32) .88 (.32) .9 (.31) .73 (.37) .6 (.3)
2x4 a 1.75 (.38) 1.74 (.4) 1.77 (.45) 1.74 (.4) 1.76 (.44) 1.39 (.5)
4x2 a 1.1 (.34) 1.2 (.22) 1.1 (.34) 1.15 (.22) 1.3 (.23) 1.31 (.23)
4x4 a 2.58 (.39) 2.41 (.36) 2.26 (.3) 2.28 (.32) 2.52 (.32) 2.56 (.33)

(a) (b) (c)

TVF (PCA = 77.8) Entropy (PCA = 91.2) Quota (PCA = 94.4)

Figure 3: We simulate preference elicitation where positive exemplars are spread along multiple
bands. The grey bands represent ground truth regions of positive exemplars, and the red bands
represent ground truth regions of negative exemplars. In each plot, the green histogram represents the
preference scores of the generated allocations. A model that perfectly enforcing a given preference
rule will generate allocations that have valuations entirely within the grey bands.
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Decision Boundary

Survey Results Probit Synthetic Noise Model

Easy Negative
Examples

Easy Positive
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Hard
Examples

Figure 4: We crowdsource human annotators to examine various advertising scenarios and determine
if an allocation is fair according to a given definition. We simplify the definition of total variation
fairness (TVF) and measure the noise in responses as a function of the ambiguity of the scenario. We
expect that the the label noise for a particular TVF value is inversely proportional to the distance
from the decision boundary. Concretely, easy allocations will have lower noise ratios, and ambiguous
allocations will have high noise ratios. We can leverage this model of uncertainty and apply it to our
synthetic experiments to better simulate human preference elicitation.

6 Soliciting Human Preferences238

In this section, we detail the creation of and results derived from two human subjects surveys. The239

results of these surveys are used to validate core assumptions of our model and provide data that we240

use to train an auction model. We find that PreferenceNet is able to adhere to the notion of fairness241

expressed by the human’s preferences of auction outcomes. This encouraging result validates the242

utility and expressiveness of PreferenceNet.243

We conducted both surveys through Cint, a crowdsourcing platform which connected us with English-244

speaking participants located in the United States. After submitting an application for our human245

subjects research to our institutional IRB, we were notified that the survey was exempt from IRB246

review. Our survey protocols can be found in the supplemental materials. Cint compensates per survey247

completion (regardless of length to complete), and both surveys were set to pay $1.92. All survey248

results are anonymized to protect participant privacy. We include these results in the supplemental249

material.250

Measuring Preference Noise. Our first survey was designed to test how participants would inter-251

pret and apply a simple fairness definition. The survey protocol was designed as follows: We primed252

participants to consider an advertising auction that was shown to two different (vague) demographic253

groups. Each participant was told that an auction would be fair if each ad was presented to each group254

at equal rates. After some familiarization, we asked the participants to determine if a given scenario255

was fair. Each participant was asked 30 such questions. The median completion time for the survey256

was 6 minutes with a median hourly wage of $18. The 30 questions presented to the participants257

came from a question bank of 64 randomly generated scenarios, each with an associated TVF score.258

Human understanding is an inherently noisy process. Despite providing the same context, we observe259

that survey participants understand a given definition of fairness and apply it to various scenarios260

differently. Given this data, we perform a normality test using a Q-Q plot as shown in the supplemental261

material. We find that our survey data are well correlated with the Gaussian distribution. This is also262

well supported by our visual inspection of the noise distribution. Experimentally, we observe that263

participants’ choice of what is fair has a decision boundary at approximately a TVF value of 0.7.264

Interestingly, the noise is maximal near the decision boundary as shown in Figure 4. Concretely, we265

can model this noise using a probit model, so that the probability that that the label is unpertubed266

for a particular TVF value increases with distance such that P (Y = 1|X) = kΦ( |x−µ|σ ), where Φ is267

the CDF of the Gaussian distribution, µ is the decision boundary, σ is the measured sample standard268

deviation, and k is an optional parameter that can scale the noise. We can use this noise model to269

perturb the input training data to the MLP to better simulate real data. We explore this further in the270

supplemental material.271
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Human TVF Entropy Quota

Human 0 0.002 0.002 0.032

TVF 0.002 0 0.001 0.033

Entropy 0.002 0.001 0 0.032

Quota 0.032 0.033 0.032 0

Unit Demand Auction Additive Auction
Human TVF Entropy Quota

Human 0 0.005 0.004 0.009

TVF 0.005 0 0.002 0.011

Entropy 0.004 0.002 0 0.010

Quota 0.009 0.011 0.010 0

Human Preferences PCA Regret Mean (STD) Payment Mean (STD)

2x2 Unit 100.0 .016 (.015) 4.20 (.37)
2x2 Additive 100.0 .005 (.004) .87 (.31)

Figure 5: We randomly sample 20,000 bids and compute the average L2 distance from each model’s
learned allocations to identify allocation similarity. We find that human preferences are most similar to
both TVF and entropy in both the unit demand and additive auction settings. Moreover, PreferenceNet
is able to perfectly capture human preferences with low regret.

Group Preference Elicitation. We designed our second survey to ask similar questions to the272

preference noise survey above. However, there were two primary differences: (1) we did not prime273

the participants with a fairness definition, and (2) the participants were presented with two scenarios274

and were asked which they thought was more fair. Each participant was asked 30 of these pairwise275

questions on the questions described above (full protocol details in the supplemental materials). This276

survey had 345 participants who had a median completion time of 7 minutes and a median pay of277

$15 per hour.278

Notions of fairness and diversity have neither standardized nor widely accepted formal definitions [38,279

35, 36, 22]. The purpose of this survey is to elicit preferences from a group and train an auction model280

whose allocations resemble the group preference. Using the survey data, we apply our preference281

elicitation strategy as described in Section 4 to generate training labels for each sample. After training282

PreferenceNet to enforce the group preference for both the unit-demand and additive auction settings,283

we find that the group preference is more similar to TVF and entropy. As shown in Figure 5, human284

preferences are not perfectly captured by these typical models, both because group preferences rarely285

converge to a unifying model, and preference elicitation is a noisy process.286

7 Conclusion287

Although surveying people to elicit their preferences can effectively help us model ambiguous288

definitions of socially beneficial constraints, we must be careful about the framing of the survey289

questions and the choice of audiences we survey.290

Ethical Implications. Humans are inherently biased, so we need to be cognizant of the effects291

these latent biases might have over preferences for fairness. Moreover, sampling human preferences292

facilitates opportunities for data poisoning attacks, in which a malicious survey respondent could try293

to negatively impact the survey collection process. In general, we can mitigate both of these issues294

by sampling at scale to avoid problems with noisy labels, although this brings additional cost. Most295

importantly, we must involve stakeholders to ensure that their preferences are validated through the296

learned model in an iterative process.297

In this paper we present PreferenceNet, a novel extension to RegretNet that makes it easier to learn298

preferences from data to encode socially desirable constraints for auction design. We introduce a new299

metric to empirically measure how closely a learned mechanism enforces a particular constraint, and300

show that our proposed method is able to effectively capture human preferences.301
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