
Under review as a conference paper at ICLR 2022

PIXELATED BUTTERFLY: SIMPLE AND EFFICIENT
SPARSE TRAINING FOR NEURAL NETWORK MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Overparameterized neural networks generalize well but are expensive to train. Ide-
ally, one would like to reduce their computational cost while retaining their gen-
eralization benefits. Sparse model training is a simple and promising approach to
achieve this, but there remain challenges as existing methods struggle with accuracy
loss, slow training runtime, or difficulty in sparsifying all model components. The
core problem is that searching for a sparsity mask over a discrete set of sparse ma-
trices is difficult and expensive. To address this, our main insight is to optimize over
a continuous superset of sparse matrices with a fixed structure known as products
of butterfly matrices. As butterfly matrices are not hardware efficient, we propose
simple variants of butterfly (block and flat) to take advantage of modern hardware.
Our method (Pixelated Butterfly) uses a simple fixed sparsity pattern based on flat
block butterfly and low-rank matrices to sparsify most network layers (e.g., attention,
MLP). We empirically validate that Pixelated Butterfly is 3× faster than butterfly and
speeds up training to achieve favorable accuracy–efficiency tradeoffs. On the Ima-
geNet classification and WikiText-103 language modeling tasks, our sparse models
train up to 2.5× faster than the dense MLP-Mixer, Vision Transformer, and GPT-2
medium with no drop in accuracy.

1 INTRODUCTION

Recent results suggest that overparameterized neural networks generalize well (Belkin et al., 2019), but
they are expensive to train (Kaplan et al., 2020). An ideal model should use less compute and memory
while retaining the generalization benefits of large models. The simplest and most popular direction is
to sparsify these models. This idea has a long history in machine learning (LeCun et al., 1990) and has
driven fundamental progress in other fields such as statistics (Tibshirani, 1996), neuroscience (Foldiak,
2003), and signal processing (Candes et al., 2006). However, despite significant efforts, speeding up
sparse training in wall-clock time without degrading accuracy remains an unresolved problem.

While sparse training is an active research area, it has not seen wide adoption. First, it is difficult
and expensive to find the sparsity pattern (the possible locations of the nonzeros) that could main-
tain the same level of accuracy of dense models. Many methods (pruning (Lee et al., 2018), lottery
tickets (Frankle and Carbin, 2018), hashing (Kitaev et al., 2020)) maintain dynamic sparsity masks.
However, the large overhead of evolving the sparsity mask can significantly slow down training and
complicate the implementation. Indeed, these methods either require long cycles of pruning and re-
training (Frankle and Carbin, 2018)1 or maintain expensive hash tables (Chen et al., 2019). Second,
most existing methods adopt unstructured sparsity, which may be efficient in theory, but do not take
into account the efficiency of training hardware such as GPUs (optimized for dense computation)2.
Finally, most methods target a single type of operation such as attention (Child et al., 2019; Zaheer
et al., 2020), whereas neural network (NN) models often compose different modules (attention, MLP),
and in many applications the MLP layers are the main training bottleneck (Wu et al., 2020).

A better sparse training method should (i) be simple yet accurate, ideally with a static sparsity pattern,
(ii) be fast by aligning sparsity pattern with available hardware, and (iii) have wide coverage of opera-
tors that applies to most NN layers. There are three technical challenges. First, we show that given a
budget (e.g., total non-zeros in a matrix), it is NP-hard to find the optimal static sparsity pattern for a
NN module to minimize the approximation error to the dense model. Second, for each sparsity pattern,

1State-of-the-art sparse training methods require up to 5× more training epochs compared to dense mod-
els (Evci et al., 2020)

2An unstructured sparse model with 1% nonzero weights can be as slow as a dense model (Hooker, 2020)

1

Under review as a conference paper at ICLR 2022

Pixelated Butterfly

Attention

MLP Flat Block Butterfly

+

Model Schema

C
om

pu
te

 A
llo

ca
tio

n

+

Low-rank

Attention Mask

MLP Mask

Sparse Masks

Figure 1: Pixelfly targets GEMM-based networks (networks whose computation is dominated by matrix multiply),
which it views as a series of matrix multiplication. For each matrix multiply from Model Schema, it (1) allocates
compute budget based on dimension and layer type, (2) the budget decides a mapping (hyper-parameter) to our
proposed flat block butterfly sparsity patterns, (3) outputs a hardware-aware sparse mask. Note since the hardware
is a block device, one memory access to an element in a block leads to the access to the full block.

we need to take into account hardware block-oriented efficiency (accessing each element in memory
takes the same time as accessing the block of adjacent elements (Cook, 2012), illustrated in Fig. 2).
Common theoretical measures of efficiency (e.g., number of non-zeros, FLOPs) do not map well to
modern hardware designed for block computation. Last, every different NN module might require
different sparsity patterns, which makes the problem even more complicated.

In our early exploration, we empirically study many sparsity patterns proposed in the literature to find
those patterns that can closely approximate the dense model (Details in Appendix K). We found that
one sparsity pattern, namely butterfly + low-rank, consistently outperforms the others. This sparsity
pattern closely connects to two lines of work in matrix structures: (i) sparse + low-rank matrices, which
can capture global and local information (Candès et al., 2011; Udell and Townsend, 2019; Chen et al.,
2021), and (ii) butterfly matrices (Parker, 1995; Dao et al., 2019) whose products can tightly represent
any sparse matrix (De Sa et al., 2018; Dao et al., 2020). Using the fixed sparsity pattern from butterfly
matrices, with the addition of a low-rank term, would address two of the three challenges above and
yield a simple way to sparsify most NN layers (that are based on matrix multiply).

However, butterfly matrices are inefficient on modern hardware: (i) they are difficult to parallelize as
they contain sequential products of many factors, and (ii) they are not hardware-friendly because the
sparsity patterns are not block-aligned. We propose two simple changes to make Butterfly efficient
while retaining their favorable properties. Our proposal, Pixelated Butterfly (Pixelfly), combines flat
block butterfly and low-rank matrices to yield a simple and efficient sparse training method.

• We design an extremely simple sparsity pattern inspired by butterfly + low-rank matrices, which
takes into account the hardware’s block-oriented efficiency. We propose block butterfly matrices that
are efficient as their sparsity patterns align with hardware blocks. We then introduce flat butterfly,
a first-order approximation of butterfly with residual connection, that turns the original product of
factors into a sum. Flat butterfly matrix multiplications are easy to parallelize. Pixelfly, uses the fixed
sparsity pattern from flat & block butterfly, along with a low-rank term, to produce a sparse network.

• We prove that block butterfly retains the expressiveness of butterfly matrices and can thus tightly
capture sparse matrices. We show that flat butterfly matrices can closely approximate large classes
of matrices that butterfly matrices capture. Moreover, we demonstrate that flat block butterfly + low-
rank matrices are strictly more expressive than sparse or low-rank matrices alone. Finally, leveraging
the recent advance in the neural tangent kernel (NTK), we adapt existing techniques to prove the
global convergence of gradient descent on training sparse and wide ReLU networks.

• Our proposed Pixelfly can be applied to all network modules that rely on matrix multiplication (e.g.,
linear layer, attention, MLP). To sparsify a full network, we simply need to allocate compute budget
for each layer based on matrix and hardware block size.

We empirically validate that Pixelfly can speed up the training of models (Transformers, ViT, MLP-
Mixer) without quality drop compared to baselines on a wide range of domains and tasks. On CI-
FAR10/100 & ImageNet classification, Pixelfly achieve 2.3× training time speedup compared to dense
ViT, MLP-Mixer models, and other sparse training baselines, while preserving the same accuracy. On
the WikiText-103 language modeling task, we speed up GPT-2 Medium training by 2.5× and achieve
the same perplexity. On the Long Range Arena benchmark, we maintain the same accuracy as Trans-
former with 5.2× faster training than a dense model, 2× faster than Sparse transformer, and 6× faster
than non-block-aligned sparse methods (Reformer). Our ablation studies highlight the importance of
each of our components: our butterfly sparsity improves on existing hand-crafted patterns by up to
2% of accuracy on ImageNet, our hardware-aware block-sparsity yields up to 5× speedup, and the bal-
anced compute budget allocation brings 2× speedup compared to baselines that only sparsify attention.

2

Under review as a conference paper at ICLR 2022

2 PROBLEM SETTING

We first define the problem as sparse matrix approximation with a simple hardware cost model. Then
we briefly introduce butterfly and sparse + low-rank matrices.

Memory Access

Figure 2: Visualization of
memory access for a hard-
ware with block size 4: ac-
cessing the one (red) loca-
tion means accessing the full
4× 4 block (blue).

Problem Formulation: We focus on the training of GEMM-based mod-
els, which can be viewed as a series of matrix multiplies (Given A,B ∈
Rn×d, compute C = ABT). Speeding up training while maintain-
ing model quality can be mapped to finding an approximation proce-
dure f which reduces the time T of computing C while minimizing error
E[‖f(A,B) − ABT ‖2F]. Since the hardware is a block device, accessing
any individual element within a block of memory is the same as access-
ing the full block (Cook, 2012) (Fig. 2). A simple cost model of T on
hardware with block size b would depend on the number of b-blocks being
accessed and compute time (formal definition in Appendix A). Our exper-
iment (Appendix L.5) reveals that when the non-zeros are grouped into blocks, picking the smallest
block size supported by hardware can speed up operations by 10× compared to sparsity patterns that
are not block-aligned.

Butterfly, Sparse + Low-rank Matrices: Butterfly matrices have been used in numerical linear al-
gebra (Parker, 1995; Li et al., 2015) and machine learning (Mathieu and LeCun, 2014; Jing et al.,
2017; Munkhoeva et al., 2018; Dao et al., 2019; Choromanski et al., 2019). They encode the recursive
divide-and-conquer structure of the fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965)
and provably capture any sparse matrix with near-optimal space and time complexity. Sparse and Low-
rank structures have been studied in Robust PCA (Candès et al., 2011), graph clustering (Jalali et al.,
2011), and co-variance estimation (Luo, 2011). Recently it has been adopted in attention approxima-
tion for Transformers (Chen et al., 2021).

3 BUTTERFLY MATRICES AND PIXELATED BUTTERFLY

Butterfly matrices (Parker, 1995; Dao et al., 2019) are expressive and theoretically efficient. As they
contain the set of sparse matrices, we choose to search for the sparsity pattern in this larger class due
to their fixed sparsity structure. However, there are three technical challenges. We highlight them here
along with our approaches to address them:

1. Slow speed: butterfly matrices are not friendly to modern hardware as their sparsity patterns are not
block-aligned, thus are slow. We introduce a variant of butterfly matrices, block butterfly, which
operate at the block level, yielding a block-aligned sparsity pattern.

2. Difficulty of parallelization: the sequential nature of butterfly matrices as products of many factors
makes it hard to parallelize the multiplication. We propose another class of matrices, flat butterfly
matrices, that are the first-order approximation of butterfly with residual connections. Flat butterfly
turns the product of factors into a sum, facilitating parallelization.

3. Reduced expressiveness of flat butterfly: even though flat butterfly matrices can approximate but-
terfly matrices with residual connections, they are necessarily high-rank and cannot represent low-
rank matrices (Udell and Townsend, 2019). We propose to add a low-rank matrix (that is also
block-aligned) to flat butterfly to increase their expressiveness.

Combining these three approaches (flat & block butterfly + low-rank), our proposal (Pixelated Butter-
fly) is a very simple method to train sparse networks.

3.1 BLOCK BUTTERFLY MATRICES

We propose a block version of butterfly matrices, which is more hardware-friendly than the regular
butterfly. The regular butterfly matrices Dao et al. (2019; 2020) will be a special case of block butterfly
with block size b = 1. We omit b in the notation if b = 1.
Definition 3.1. A block butterfly factor (denoted as Bk,b) of size kb (where k ≥ 2) and block size b is

a matrix of the form Bk,b =

[
D1 D2

D3 D4

]
where each Di is a k

2 ×
k
2 block diagonal matrix of block size

b of the form diag
(
Di,1, . . . , Di,k/2

)
where Di,j ∈ Rb×b. We restrict k to be a power of 2.

Definition 3.2. A block butterfly factor matrix (denoted as B(n,b)
k) of size nb with stride k and block

size b is a block diagonal matrix of nk (possibly different) butterfly factors of size kb and block size b:

B
(n,b)
k = diag

(
[Bk,b]1 , [Bk,b]2 , . . . , [Bk,b]n

k

)
3

Under review as a conference paper at ICLR 2022

Butterfly

Flat Butterfly

+ + +

+ +

Flat Block Butterfly

Block Butterfly

++

+ ++

Figure 3: Visualization of Flat, Block, and Flat Block butterfly.

Definition 3.3. A block butterfly matrix of size nb with block size b (denoted as B(n,b)) is a matrix that
can be expressed as a product of butterfly factor matrices: B(n,b) = B

(n,b)
n B

(n,b)
n
2

. . .B
(n,b)
2 . Define Bb

as the set of all matrices that can be expressed in the form B(n,b) (for some n).

3.2 FLAT BUTTERFLY MATRICES

In most applications of butterfly matrices to neural networks, one multiplies the O(log n) butterfly
factors. However, this operation is hard to be efficiently implemented on parallel hardware (e.g., GPUs)
due to the sequential nature of the operation3. We instead propose to use a sum of butterfly factors that
can approximate the products of the factors. This sum of factors results in one sparse matrix with a
fixed sparsity pattern, which yields up to 3× faster multiplication on GPUs (Appendix J).

Residual connections have been proposed to connect the butterfly factors (Vahid et al., 2020). We show
that residual products of butterfly matrices have a first-order approximation as a sparse matrix with a
fixed sparsity. Let M be a matrix in the set of butterfly matrices B. In residual form, for some λ ∈ R:

M = (I + λB(n)
n)(I + λB

(n)
n/2) . . . (I + λB

(n)
2). (1)

Note that this form can represent the same matrices in the class of butterfly matrices B, since any B
(n)
k

contains the identity matrix I .

Assuming that λ is small, we can expand the residual and collect the terms4:

M = I + λ(B
(n)
2 + B

(n)
4 + · · ·+ B(n)

n) + Õ(λ2).

Definition 3.4. Flat butterfly matrices of maximum stride k (for k a power of 2) are those of the form
I + λ(B

(n)
2 + B

(n)
4 + · · ·+ B

(n)
k).

Flat butterfly matrices of maximum stride n are the first-order approximation of butterfly matrices
in residual form (Eq. (1)). Notice that flat butterfly of maximum stride k are sparse matrices with
O(n log k) nonzeros with a fixed sparsity pattern, as illustrated in Fig. 3. We call this sparsity pattern
the flat butterfly pattern.

Flat block butterfly matrices are block versions of flat butterfly in Section 3.2 (shown in Fig. 3). We
empirically validate that flat block butterfly matrices are up to 3× faster than block butterfly or regular
butterfly, as shown in Appendix J.

Since flat butterfly matrices approximate the residual form of butterfly matrices, they have high rank
if λ is small (Section 4). This is one of the motivations for the addition of the low-rank term in our
method.

3.3 PIXELATED BUTTERFLY: FLAT BLOCK BUTTERFLY + LOW-RANK FOR EFFICIENT SPARSE
TRAINING

We present Pixelated Butterfly, an efficient sparse model with a simple and fixed sparsity pattern based
on butterfly and low-rank matrices. Our method targets GEMM-based neural networks, which are
networks whose computation is dominated by general matrix multiplies (GEMM), such as Transformer
and MLP-Mixer. As a result, we can view the network as a series of matrix multiplies.

3Even with a very specialized CUDA kernel, butterfly matrix multiply (O(n logn) complexity) is only faster
than dense matrix multiply (O(n2) complexity) for large values of n (around 1024) (Dao et al., 2019).

4We make the approximation rigorous in Section 4.

4

Under review as a conference paper at ICLR 2022

Given a model schema (layer type, number of layers, matrix dimension) and a compute budget, Pixe-
lated Butterfly has three steps: compute budget allocation per layer, sparsity mask selection from the
flat butterfly pattern, and model sparsification. We describe these steps in more details:

1. Compute budget allocation: based on our cost model (Appendix A), given the layer type, number
of layers, and matrix dimension, we can find the density (fraction of nonzero weights) of each layer
type to minimize the projected compute cost. Continuing our goal for a simple method, we propose
to use a simple rule of thumb: allocate sparsity compute budget proportional to the compute fraction
of the layer. For example, if the MLP layer and attention layers are projected to takes 60% and 40%
the compute time respectively, then allocate 60% of the sparsity compute budget to MLP and 40%
to attention. We verify in Appendix I that this simple rule of thumb produces similar results to
solving for the density from the cost model.

2. Sparsity mask selection: given a layer and a sparsity compute budget for that layer, we use one-
quarter to one-third of the budget for the low-rank part as a simple rule of thumb. We pick the
rank as a multiple of the smallest supported block size of the device (e.g., 32) so that the low-rank
matrices are also block-aligned. The remaining compute budget is used to select the sparsity mask
from the flat block butterfly sparsity pattern: we choose the butterfly block size as the smallest
supported block size of the device (e.g., 32), and pick the maximum stride of the flat block butterfly
(Definition 3.4) to fill up the budget.

3. Model sparsification: The resulting sparse model is simply a model whose weights or attention
follow the fixed sparsity mask chosen in step 2, with the additional low-rank terms (rank also chosen
in step 2). In particular, we parameterize each weight matrix5 as: W = γB + (1− γ)UV >, where
B is a flat block butterfly matrix (which is sparse), UV > is the low-rank component, and γ is a
learnable parameter. We train the model from scratch as usual.

Our method is very simple, but competitive with more complicated procedures that search for the
sparsity pattern (Appendix K). We expect more sophisticated techniques (dynamic sparsity, a better
approximation of butterfly) to improve the accuracy of the method.

4 THEORETICAL ANALYSIS

We characterize the expressiveness of the matrices used in our method. In particular, we prove that
block butterfly retains the expressiveness of butterfly, and that flat butterfly can accurately approximate
the residual form of butterfly. Moreover, flat block butterfly + low-rank (an instance of sparse + low-
rank) is more expressive than sparse or low-rank matrices alone. Finally, we analyze the training
convergence and generalization of networks with sparse weights. All proofs are in the Appendix.

4.1 EXPRESSIVENESS OF BLOCK BUTTERFLY

We first prove the expressiveness of block butterfly matrices.

Theorem 4.1. The set B2b of n × n block butterfly matrices with block size 2b contains the set Bb of
n× n block butterfly matrices of block size b.

By a recursive argument, the set of block butterfly matrices whose block size is a power of 2 contains
the set of regular butterfly matrices.

Dao et al. (2020) show that butterfly matrices can tightly represent all structured matrices, such as
sparse matrices and many fast transforms. As a result, block butterfly matrices can also represent those
structured matrices. In particular,

Corollary 4.2. For any constant block size b that is a power of 2, any nb × nb spare matrix with s
nonzeros can be written as products of block butterfly matrices with block size b and their transposes,
with O(s log n) parameters.

4.2 EXPRESSIVENESS OF FLAT BUTTERFLY

We now characterize how the flat butterfly matrices approximate butterfly matrices. In particular, as-
suming that each butterfly factor has bounded norm, we show that flat-butterfly matrices can accurately
approximate the residual form of butterfly with error scaling as Õ(λ2).

5We describe how to add sparse and low-rank for attention in Appendix I

5

Under review as a conference paper at ICLR 2022

Theorem 4.3. Let M be a matrix of the form in Definition 3.4 where k = n, with Bmax :=

maxi

∥∥∥B(n)
i

∥∥∥
F

and |λ| ≤ c
√
ε

lognBmax
for some constant 0 < c ≤ 1

2 and some ε > 0. Then∥∥∥M − (I + λ(B
(n)
2 + B

(n)
4 + · · ·+ B(n)

n)
)∥∥∥

F
≤ ε.

We show that flat butterfly matrices must have high-rank if λ is small. This is the motivation for the
addition of the low-rank term in Pixelfly (Section 3).

Theorem 4.4. Let M be as in Eq. (1), with Bmax := maxi

∥∥∥B(n)
i

∥∥∥
F

and |λ| ≤ c
√
ε

lognBmax
for some

constant 0 < c ≤ 1
4 and some ε > 0. Let B∞max = maxi ‖Bi‖∞. Assuming B∞max ≤ Bmax. Then

rank(I + λ(B
(n)
2 + · · ·+ B(n)

n)) = Ω

(Bmax

B∞max

)2

· log n

ε log
(
Bmax

B∞max

)
 .

4.3 EXPRESSIVENESS OF FLAT BLOCK BUTTERFLY + LOW-RANK

Chen et al. (2021) prove that there is a natural class of input sequences (generated by a clustering
process) whose attention matrix can only be approximated well by sparse + low-rank matrices, and not
sparse or low-rank matrices alone. We adapt their technique to show a similar result for the class of
matrices we use in Pixelfly.

We require an extra assumption on the clustering process compared to Chen et al. (2021): the elements
in the input sequence form clusters with the same size. Then their attention matrix will have a large
block diagonal component well-approximated by flat butterfly, while the rest of the attention matrix is
of medium size and is well-approximated by low-rank.
Theorem 4.5 (Informal). There exists a class of input sequences whose attention matrices are well-
approximated by flat block butterfly + low-rank (a special case of sparse + low-rank) but not by sparse
or low-rank alone.

The formal theorem statement and proof are in Appendix B.3.

4.4 CONVERGENCE AND GENERALIZATION OF SPARSE NETWORKS

There are natural questions about the training and generalization of sparse models: do they train sim-
ilarly to dense models, is their generalization close to that of dense models, and can one successfully
train them with gradient descent? Our analysis theoretically shows that the answers are yes.

Our analysis relies on the neural tangent kernel (NTK) (Jacot et al., 2018) of the network. The NTK of
two data points x and y measures the similarity between the gradient of the network when evaluated at x
compared to the gradient when evaluated at y. This kernel governs the dynamics of the neural network
output function f(·, θ) throughout the training and its generalization. We build on the great literature
of NTK (Li and Liang, 2018; Du et al., 2019; Allen-Zhu et al., 2019b). The standard result (Song and
Yang, 2019) implies the following, if the NTK of the sparse model is close to the NTK of the dense
model, then (i) their training convergence speed is similar, (ii) their generalization bounds are similar.
For completeness, we state the formal result in Appendix F.

Though this result does not capture the possible regularization effect of sparsity, it shows that sparse
models with small NTK difference from dense NTK preserve the generalization ability of dense mod-
els, a subject that has been studied more extensively, both from empirical and from theoretical perspec-
tives. We also show that training wide and sparse networks with gradient descent converges globally,
similar to the result for wide dense networks (Du et al., 2019; Allen-Zhu et al., 2019b) in Appendix H.

5 EXPERIMENTS

In this section, our goal is to demonstrate that an extremely simple fixed sparsity pattern can actually
speed up sparse model training in wall-clock time without degrading model quality. Specifically, we
empirically validate three claims that suggest Pixelfly can improve training speed of different model
architectures while retaining model quality on a wide range of domains and tasks.

1. Section 5.1: for image classification tasks, we first show the empirical NTK of flat block butterfly
+ low-rank sparsity pattern is closer to dense NKT than other baselines. Then we demonstrate our

6

Under review as a conference paper at ICLR 2022

superior end-to-end performance. Specifically, we achieve training speed up on both MLP-Mixer
and ViT models by up to 2.3× wall-clock time with no drop in accuracy compared to the dense
model and up to 4× compared to RigL, BigBird and other sparse baselines.

2. Section 5.2: for language modeling and text classification tasks, we can speed up GPT-2 small dense
model training by 2.1×, achieving a perplexity of 22.5 on wikitext-103. In addition, on Long Range
Arena (LRA) benchmark, we maintain the same accuracy but have 5.2× speed-up in training.

3. Section 5.3: we show the necessity of block flat butterfly and low-rank structures, hardware-
alignment and wide coverage of most network layers by conducting ablation studies on these three
components of Pixelfly.

5.1 IMAGE CLASSIFICATION

0 25 50 75 100

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

CIFAR100 Training Dynamics

Dense

BigBird

Pixelfly

NTK Distance = 0.15

NTK Distance = 0.35

Figure 4: NTK Comparison
with Dense Model.

We evaluate the quality and efficiency of Pixelfly through three met-
rics: (1) distance to training dynamic of the dense model: compare the
distance between empirical NTK kernel6 of the models with candidate
patterns, including BigBird (Zaheer et al., 2020), Butterfly (Dao et al.,
2020), and that of the dense model, (2) upstream accuracy: compare
the accuracy and training time of the Pixelfly, the dense counterpart,
and other baselines on same image classification tasks, (3) downstream
accuracy: compare the accuracy of our pretrained Pixelfly and dense
model fine-tuned on downstream tasks (Appendix L.4). The empirical
NTK of the model with flat block butterfly + low-rank, picked by Pix-
elfly, is closer to the NTK of the dense model. Pixelfly MLP-mixer and ViT models also retain the
same top-1 accuracy of the original dense models while achieving up to 2.3× speed up.

Setup: We use three popular vision benchmarks, CIFAR-10/100 (Krizhevsky et al., 2009) and Ima-
geNet (Deng et al., 2009). We choose recent popular Vision Transformer (Dosovitskiy et al., 2020),
T2T-ViT (Yuan et al., 2021) and MLP-Mixer (Tolstikhin et al., 2021) as representative base models.
Their major computation bottlenecks are in different components, e.g. MLP only, attention, or both so
we can evaluate the end-to-end applicability of Pixelfly more clearly.

Figure 5: The performance of Pixelfly and ViT or MLP-Mixer on CIFAR10,
CIFAR100 and ImageNet benchmarks. We measure the accuracy and the
training time speedup (on ImageNet) compared to the dense model.
Model CIFAR10 CIFAR100 ImageNet Speedup

Mixer-S/16 86.4 58.7 72.4 -
Pixelfly-Mixer-S/16 89.8 62.9 72.6 1.7×
Mixer-B/16 87.6 59.5 75.6 -
Pixelfly-Mixer-B/16 90.6 65.4 76.3 2.3×
ViT-S/16 89.5 65.1 77.7 -
Pixelfly-ViT-S/16 91.3 66.8 77.5 1.9×
ViT-B/16 89.9 61.9 78.5 -
Pixelfly-ViT-B/16 92.2 65.1 78.6 2.0×

Empirical NTK: To charac-
terize the training dynamic of
the sparse networks, we com-
pute the empirical NTK ker-
nels for dense Vision Trans-
former on CIFAR-100. Then,
we show the relative differ-
ences between kernels of mod-
els with different sparsity pat-
terns and that of the dense one
in Fig. 4. Specifically, we pick
a popular sparsity pattern com-
bination – Bigbird pattern (Za-
heer et al., 2020) for attention layer and random (magnitude-based sparsity at initialization equals to
random) for MLP layer, as a representative baseline. The plot indicates that our designed pattern, flat
block butterfly + low-rank is the closest one to that of the dense one among all the patterns. Hence,
we expect them to enjoy the most benefits of their dense overparameterized counterparts in real tasks.
More details on measuring empirical NTK are covered in the Appendix L.3.

Figure 6: Comparison with a representative
sparse training baseline RigL (Evci et al., 2020).

Model ImageNet (Acc) Speedup
Mixer-S/32 58.56 -

RigL (Evci et al., 2020) 56.10 0.8×
Pixelfly (ours) 59.61 2.1×

Training from scratch: We validate that Pixelfly trains
up to 2.3× and 2.0× faster than dense MLP-Mixer and
ViT models from scratch, with the same accuracy under
the same setting (batch size, epochs). Specifically, we
sparsify the models with Pixelfly and train them on three
commonly used vision benchmarking datasets, CIFAR-
10/100 and ImageNet. We measure their Top-1 accuracy
wall-clock training time. To summarize the general trend, Fig. 5 highlights that our sparse vision
models consistently retain the accuracy of their dense counterparts in terms of accuracy and achieve
training-time speed-up.

6There is an emerging consensus that the NTK is an informative measure of how training and convergence
behaviors of two models are similar.

7

Under review as a conference paper at ICLR 2022

Furthermore, we have discussed in Section 1 that current sparse training algorithms aim to dynamic
search what could be good sparsity for efficient inference but do not speed up training in wall-clock
time. But we still present the comparison results in Fig. 6 for completeness. For a fair comparison,
we conduct the experiment on Mixer-S/32 model for 100 epochs because RigL aims for sparsity on
weights, while we aim for both weights & attention. As expected, RigL does not speed up training (the
pioneering work has unstructured sparsity and does not achieve speed up on GPU) but surprisingly
Pixelfly outperforms both dense and RigL in terms of accuracy while achieving 2.1× speedup.

Figure 7: Comparison with representative sparse attention
baselines.

Model ImageNet (Acc) Speedup
T2T-ViT 81.7 -
BigBird 81.5 0.9×

Sparse Transformer 81.4 1.3×
Pixelfly 81.7 1.4×

Finally, we compare Pixelfly with BigBird
and Sparse Transformer pattern. For a fair
comparison, we choose T2T-ViT as the base
model because its major bottleneck is on
the T2T attention module (our baselines are
efficient attention variants). We can see
from Fig. 7 that Pixelfly is the only one that
can maintain the accuracy and have actual
speed up. Further more, Pixelfly speeds up T2T module (large attention) by 1.4× compare to dense.

5.2 LANGUAGE MODELING AND TEXT CLASSIFICATION

In this section, we aim to evaluate the effectiveness of Pixelfly in the text domain, on a language model-
ing task and Long Range Arena (LRA (Tay et al., 2020)) benchmarks. On WikiText-103 (Merity et al.,
2016), Pixelfly achieves 22.5 perplexity, which is around the same perplexity as GPT-2 small (Radford
et al., 2019) but trains 2.1× faster. On LRA, Pixelfly obtains almost the same accuracy as the full
model but gains up to 5.2× speed-up.

Setup: We use WikiText-103 for language modeling and LRA for classification tasks. We use GPT-
2 small and vanilla Transformer as the base dense models. The computational bottleneck of GPT-2
small for moderate sequence length, e.g. 512, would be on both attention and MLP layers, while the
bottleneck of transformer on LRA task is on attention since the benchmark is designed to evaluate
models under long-context scenarios.

Figure 8: The performance of Pixelfly, BigBird and GPT-
2-Small, Medium on WikiText-103. We measure the per-
plexity and the training speed up.

Model WikiText-103 (ppl) Speedup
GPT-2-Small 22.2 -

BigBird 23.3 0.96×
Pixelfly 22.5 2.1×

GPT-2-Medium 20.9 -
BigBird 21.5 1.1×
Pixelfly 21.0 2.5×

GPT-2-Small, Medium on WikiText-103: We
show training GPT-2-Small, Medium and its Pix-
elfly model from scratch on a commonly used
NLP benchmarking dataset, wikiText-103. We
measure their perplexity on that dataset, and our
training speed up. All setup and finetuning hy-
perparameters follow the ones in the original pa-
per (Radford et al., 2019). We present the results
in Fig. 8. It is not hard to see that Pixelfly mod-
els have great advantages in accuracy-efficiency
tradeoffs since it maintains the same perplexity
as the dense model but achieve up to 2.5× speed-up in training.

Figure 9: The performance of Pixelfly, Reformer and vanilla transformer on
Long-Range-Arena benchmarks. We measure the accuracy and training speed.

Model ListOps Text Retrieval Image Pathfinder Avg Speedup
Transformer 36.54 63.12 80.33 41.56 73.49 59.01 -

Reformer 36.85 58.12 78.36 28.30 67.95 53.90 0.8×
Pixelfly 37.65 66.78 80.55 42.35 72.01 59.86 5.2×

Vanilla Transformer on
LRA: We compare vanilla
transformer and its Pix-
elfly models trained from
scratch on LRA bench-
mark. We measure the accu-
racy, throughput, and train-
ing time of both models. Each task has a different sequence length varying between 1024 and 4096.
We follow the implementation and experimental setting in (Xiong et al., 2021). We compare the per-
formance of Pixelfly against the dense transformer and report the results in Fig. 9. We also include the
numbers of other baselines from the same repository in the appendix. We can see Pixelfly cause almost
no drop in accuracy while achieving 5.2× speed-up in time.

5.3 ABLATION STUDY

We conduct ablation studies on each component of Pixelfly (Details in Appendix L.5). Specifically, we
present (i) how flat block butterfly and low-rank affect the model quality, (ii) how different block size
would affect the training speed, (iii) how budget allocation affects the end-to-end speed up.

8

Under review as a conference paper at ICLR 2022

Necessity of Flat Block Butterfly and Low-rank: (i) We apply different parameter allocation of flat
block butterfly and Low-rank component in Pixelfly Mixer-S model on CIFAR-10 under the different
density varying in [0.05, 0.1, 0.2]. We found that similar to what was reported in (Chen et al., 2021),
using around 1

4 budget on Low-rank and 3
4 on flat block butterfly achieves the best accuracy. (ii) We

also compare Pixelfly with baseline sparsity patterns and show it is 2.7× faster than dense, 3× faster
than Butterfly, 3.2× faster than BigBird under 10% density.

Block Size: We study the accuracy-efficiency trade-off for flat block butterfly and random sparsity
pattern with different block sizes from 1-32 (Table 7). We found that first, under the same density,
the same sparsity patterns covered with different block sizes could have a big difference in efficiency.
Under the same block, the pattern with more locality can be more efficient. Last, the density can seem
very small, but actually memory access could be up to 100% of the matrix. Therefore, we always want
to make full utilization of the smallest block size that the hardware (or compiler) supported.

Budget Allocation: We sparsify different components of ViT-small separately, including attention and
MLP. We show that their compute ratio is approximately 1 : 2 , so if only sparsify one of them, the
other one will be the bottleneck preventing end-to-end speed up. Therefore, it is necessary to have an
algorithm that can sparsify all layers.

6 RELATED WORK

Lottery Ticket Hypothesis. Models proposed in our work can be roughly seen as a class of manually
constructed lottery tickets. Lottery tickets (Frankle and Carbin, 2018) are a set of small sub-networks
derived from a larger dense network, which outperforms their parent networks. Many insightful stud-
ies (Morcos et al., 2019; Orseau et al., 2020; Frankle et al., 2019; 2020; Malach et al., 2020; Pensia
et al., 2020) are carried out to analyze these tickets, but it remains difficult to generalize to large models
due to training cost. In an attempt, follow-up works (Wang et al., 2020; Tanaka et al., 2020) show that
one can find tickets without training labels. We draw inspiration from one of them, Liu and Zenke
(2020), which uses the NTK to avoid using labels in sparsifying networks. Other recent works use spe-
cialized hardware to accelerate sparse training (Goli and Aamodt, 2020; Raihan and Aamodt, 2020).

Neural Pruning. Our work is loosely related to neural network pruning. By iteratively eliminating
neurons and connections, pruning has seen great success in compressing complex models. Pioneering
work (Han et al., 2015a;b) shows that pruning can produce significantly smaller and faster models
for inference. Subsequent methods (Li et al., 2016; Lin et al., 2017; Dong et al., 2017; Sanh et al.,
2020; Lagunas et al., 2021; Zhu and Gupta, 2017) improve on the quality of the pruned models. While
both our and the pruning methods aim to produce sparse models, we target training efficiency, whereas
pruning mostly focuses on inference efficiency at the cost of sacrificing training speed.

Overparameterized Models and NTK. Our analysis for sparse model convergence relies heavily on
recent advance in neural tangent kernel (NTK) (Jacot et al., 2018). NTK is a tool which has been widely
used in analyzing overparameterized models’ convergence (Li and Liang, 2018; Du et al., 2019; Allen-
Zhu et al., 2019b;c; Song and Yang, 2019), generalization (Allen-Zhu et al., 2019a), connection to
data separability (Oymak and Soltanolkotabi, 2020), and cost per iteration (Brand et al., 2021)). Deep
Double Descent (Nakkiran et al., 2019; d’Ascoli et al., 2020) conjectures that the generalization error
improves as the parameter count grows. It is not surprising that the community is racing to break the
record of the largest parameter counts (Radford et al., 2019; Brown et al., 2020; Dosovitskiy et al.,
2020; Tolstikhin et al., 2021; Zhang et al., 2021; Naumov et al., 2019; Jumper et al., 2021).

We provide extended related work in Appendix M.

7 CONCLUSION

In our early exploration of many sparsity patterns with complex training procedures, we found that
a simple pattern (butterfly + low-rank) consistently (though not always) performed among the best.
This motivated us to propose Pixelated Butterfly, a simple and efficient sparse training method. In
our quest for simplicity and efficiency, we have chosen to use fixed sparsity that aligns with modern
hardware, which was sufficient to yield wall-clock training time speedup without sacrificing accuracy.
We are excited about several future directions. Inspired by the remarkable success of model pruning
for inference, it is possible that dynamic block sparse mask could be made efficient yet still accurate.
Our flat butterfly is a simple first order approximation of the rich class of butterfly matrices, and there
could be more sophisticated approximations that retain more expressiveness. Our method is a first
step towards the goal of making sparse models train faster than dense models and make them more
accessible to the general machine learning community.

9

Under review as a conference paper at ICLR 2022

Ethics Statement. As the amount of data and model size grows, our work seeks to understand how
to train those large models more efficiently by exploiting sparsity. This potentially connects to energy
savings during large-model training. In addition, this allows the general community that has limited
access to the computational resources to train and understand those foundation models. Our method
is applicable to popular models such as MLP-based and Transformer-based architectures, which may
improve a wide range of applications, each with their own potential benefits and harms. For example,
making language modeling more efficient might simplify the process of spreading misinformation.
Similarly, better image classification models might make automatic surveillance easier. To alleviate
the above risks, we need to address application-specific issues like privacy, bias and discrimination,
going beyond the accuracy metric we currently considered. Specifically, for image classification task,
while our work partially addresses the issue of environmental cost, it does not address other issues such
as fairness and bias in model and datasets.

Reproducibility Statement. To facilitate the reproducibility of our algorithms and results, (i) we
include a link to anonymous downloadable source code in supplementary materials, (ii) for our theo-
retical statements and results, we include clear explanations of any assumptions and a complete proof
of the claims from Appendix A to Appendix H; for any datasets used in the experiments, a complete
description of the data processing steps is in Appendix L.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. In Advances in neural information processing systems,
pages 6155–6166, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019c.

Noga Alon. Perturbed identity matrices have high rank: Proof and applications. Combinatorics,
Probability and Computing, 18(1-2):3–15, 2009.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit accel-
eration by overparameterization. In International Conference on Machine Learning, pages 244–253.
PMLR, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019b.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized) neural
networks in near-linear time. In ITCS, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete and
inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

10

Under review as a conference paper at ICLR 2022

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-
parameterized deep relu networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3349–3356, 2020.

Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshumali Shrivastava.
Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learning sys-
tems. arXiv preprint arXiv:1903.03129, 2019.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. In NeurIPS, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Mark Rowland, Wenyu Chen, and Adrian Weller. Unifying orthogonal Monte
Carlo methods. In International Conference on Machine Learning, pages 1203–1212, 2019.

DC Collins and ES Angel. The diagonal decomposition technique applied to the dynamic programming
solution of elliptic partial differential equations. Journal of Mathematical Analysis and Applications,
33(3):467–481, 1971.

Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012. ISBN 9780124159334.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pages 1517–1527. PMLR, 2019.

Tri Dao, Nimit S Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri
Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all structured
linear maps. In International conference on representation learning, 2020.

Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of overfitting:
Where & why do they appear? arXiv preprint arXiv:2006.03509, 2020.

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A two-pronged
progress in structured dense matrix vector multiplication. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1060–1079. SIAM, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In ICLR. https://arxiv.org/pdf/1810.02054, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pages 2943–2952.
PMLR, 2020.

Peter Foldiak. Sparse coding in the primate cortex. The handbook of brain theory and neural networks,
2003.

11

https://arxiv.org/pdf/1810.02054

Under review as a conference paper at ICLR 2022

Dean Foster, Howard Karloff, and Justin Thaler. Variable selection is hard. In Conference on Learning
Theory, pages 696–709. PMLR, 2015.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connec-
tivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pages
3259–3269. PMLR, 2020.

Negar Goli and Tor M. Aamodt. Resprop: Reuse sparsified backpropagation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Scott Gray, Alec Radford, and Diederik P Kingma. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 3, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015b.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. Training dynamics of deep networks using
stochastic gradient descent via neural tangent kernel. arXiv preprint arXiv:1905.13654, 2019.

Sara Hooker. The hardware lottery. arXiv preprint arXiv:2009.06489, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and general-
ization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Ali Jalali, Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering partially observed graphs via
convex optimization. In ICML, 2011.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljacić. Tunable efficient unitary neural networks (EUNN) and their application to RNNs.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1733–
1741. JMLR. org, 2017.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The
International Conference on Machine Learning (ICML), 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster trans-
formers. arXiv preprint arXiv:2109.04838, 2021.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598–605, 1990.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32:8572–8583, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

12

Under review as a conference paper at ICLR 2022

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

Yingzhou Li, Haizhao Yang, Eileen R. Martin, Kenneth L. Ho, and Lexing Ying. Butterfly factoriza-
tion. Multiscale Modeling & Simulation, 13(2):714–732, 2015.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In NeurIPS, 2018.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
a51fb975227d6640e4fe47854476d133-Paper.pdf.

Tianlin Liu and Friedemann Zenke. Finding trainable sparse networks through neural tangent transfer.
In International Conference on Machine Learning, pages 6336–6347. PMLR, 2020.

Xi Luo. High dimensional low rank and sparse covariance matrix estimation via convex minimization.
arXiv preprint arXiv:1111.1133, 199, 2011.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pages
6682–6691. PMLR, 2020.

Michael Mathieu and Yann LeCun. Fast approximation of rotations and Hessians matrices. arXiv
preprint arXiv:1404.7195, 2014.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843, 2016.

Ari S Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: general-
izing lottery ticket initializations across datasets and optimizers. arXiv preprint arXiv:1906.02773,
2019.

Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, and Ivan Oseledets. Quadrature-based fea-
tures for kernel approximation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
9165–9174. Curran Associates, Inc., 2018.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. arXiv preprint arXiv:1912.02292, 2019.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. Advances
in Neural Information Processing Systems, 33, 2020.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global convergence
guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information
Theory, 1(1):84–105, 2020.

D Stott Parker. Random butterfly transformations with applications in computational linear algebra.
1995.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos. Op-
timal lottery tickets via subsetsum: Logarithmic over-parameterization is sufficient. arXiv preprint
arXiv:2006.07990, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

13

https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a51fb975227d6640e4fe47854476d133-Paper.pdf

Under review as a conference paper at ICLR 2022

Md Aamir Raihan and Tor M Aamodt. Sparse weight activation training. arXiv preprint
arXiv:2001.01969, 2020.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with provable
guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 250–263, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by fine-
tuning. arXiv preprint arXiv:2005.07683, 2020.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound. arXiv
preprint arXiv:1906.03593, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu
Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient trans-
formers. arXiv preprint arXiv:2011.04006, 2020.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The penn treebank: an overview. Treebanks,
pages 5–22, 2003.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,
Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-mixer: An all-mlp architec-
ture for vision. arXiv preprint arXiv:2105.01601, 2021.

Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM
Journal on Mathematics of Data Science, 1(1):144–160, 2019.

Keivan Alizadeh Vahid, Anish Prabhu, Ali Farhadi, and Mohammad Rastegari. Butterfly transform:
An efficient fft based neural architecture design. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12021–12030. IEEE, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserv-
ing gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range
attention. arXiv preprint arXiv:2004.11886, 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas
Singh. Nystromformer: A Nystrom-based algorithm for approximating self-attention. arXiv preprint
arXiv:2102.03902, 2021.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint
arXiv:2101.11986, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33, 2020.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
arXiv preprint arXiv:2106.04560, 2021.

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe
Ji, Jian Guan, et al. Cpm: A large-scale generative chinese pre-trained language model. AI Open, 2:
93–99, 2021.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

14

Under review as a conference paper at ICLR 2022

A PROBLEM FORMULATION

We formulate the problem of sparse model training as sparse matrix approximation with a simple
hardware cost model (Section 2).

We first describe our simple cost model for sparse matrix multiplication to reflect the fact that parallel
hardware such as GPUs are block-oriented (Cook, 2012; Gray et al., 2017): accessing one single
element from memory costs the same as accessing one whole block of elements. We then formulate the
sparse matrix approximation in the forward pass and the backward pass. The cost model necessitates
narrowing the sparsity pattern candidates to those that are block-aligned.

Cost model We model the time cost of an operation based on the number of floating point operations
and memory access. The main feature is that our cost model takes into account memory coalescing,
where accessing a memory location costs the same as accessing the whole block of b elements around
it (typically b = 16 or 32 depending on the hardware).

Let Costmem be the memory access cost (either read or write) for a block of b contiguous elements.
Accessing any individual element within that block also costs Costmem time. Let Costflop be the
compute cost of a floating point operation. Let Nblockmem be the number of block memory access, and
Nflop be the number of floating point operations. Then the total cost of the operation is

Totalcost = Costmem ·Nblockmem + Costflop ·Nflop.

This cost model is a first order approximation of the runtime on modern hardware (GPUs), ignoring
the effect of caching.

Block-aligned sparsity pattern, Block cover, and Memory access cost As the memory access cost
depends on the number of block of memory being accessed, we describe how the number of nonzero
elements in a sparse matrix relates to the number of blocks being accessed. We first define a block
cover of a sparse mask.

Definition A.1. A sparse mask M ∈ {0, 1}m×n is (b1, b2)-block-aligned if for any index i, j where
Mij = 1, we also have Mi′j′ = 1 where:

i′ = b1bi/b1c+ r1, j
′ = b2bj/b2c+ r2 for all r1 = 0, 1, . . . , b1 − 1 and r2 = 0, 1, . . . , b2 − 1.

The (b1, b2)-block cover of a sparse mask M ∈ {0, 1}m×n is the (b1, b2)-block-aligned mask M ′ ∈
{0, 1}m×n with the least number of nonzeros such that Mij ≤M ′ij for all i, j.

We omit the block size (b1, b2) if it is clear from context.

A sparse mask M being (b1, b2) block-aligned means that if we divide M into blocks of size b1 × b2,
then each block is either all zeros or all ones. To get the (b1, b2)-block cover of a sparse mask M , we
simply divide M into blocks of size b1 × b2 and set each block to all ones if any location in that block
is one.

For a sparse matrix with sparse mask M on a device with block size b, the number of block memory
access Nblockmem is the number of nonzero blocks in its (1, b)-block cover M ′ (assuming row-major
storage). This corresponds to the fact that to access a memory location on modern hardware (GPUs),
the device needs to load a whole block of b elements around that location.

Fast sparse matrices means block-aligned sparsity pattern For sparsity patterns that are not block-
aligned, such as the random sparse pattern where each location is independently zero or nonzero,
its (1, b)-block cover might increase the density by a factor of close to b times (we show this more
rigorously in the Appendix). As memory access often dominates the computation time, this means that
non block-aligned sparsity will often result is b times slower execution than block-aligned ones. In
other words, exploiting hardware locality is crucial to obtain speed up.

Therefore, this cost model indicates that instead of searching over sparsity patterns whose total cost is
less than some budget C, we can instead search over block-aligned patterns whose number of nonzeros
is less than some limit k. For our theoretical analysis, we consider sparsity patterns that are (1, b)-
block-aligned. In practice, since we need to access both the matrix and its transpose (in the forward
and backward pass), we require the sparsity pattern to be both (1, b)-block-aligned and (b, 1)-block-
aligned. This is equivalent to the condition that the sparsity pattern is (b, b)-block-aligned.

15

Under review as a conference paper at ICLR 2022

Sparse matrix approximation in the forward pass We now formulate the sparse matrix approx-
imation in the forward pass. That is, we have weight matrix A with input B and we would like to
sparsify A while minimizing the difference in the output. For easier exposition, we focus on the case
where number of nonzeros in each row is the same.
Definition A.2 (Forward regression). Given four positive integers m ≥ n ≥ d ≥ k ≥ 1, matrices A ∈
Rm×d and B ∈ Rd×n. The goal is to find a (1, b)-block-aligned binary mask matrix M ∈ {0, 1}m×d
that satisfies

min
M∈{0,1}m×d

‖A ·B − (A ◦M) ·B‖1

s.t. ‖Mi‖0 = k,∀i ∈ [d]

where Mi is the i-th row of M .

Sparse matrix approximation in the backward pass In the backward pass to compute the gradient
wrt to the weight matrix A, we would like to sparsify the gradient CB> while preserving as much of
the gradient magnitude as possible.
Definition A.3 (Backward regression). Given four positive integers m ≥ n ≥ d ≥ k ≥ 1, matrices
B ∈ Rd×n and C ∈ Rm×n. The goal is to find a (1, b)-block-aligned binary mask matrix M ∈
{0, 1}m×d such that

min
M∈{0,1}m×d

‖C ·B> − (C ·B>) ◦M‖1

s.t. ‖Mi‖0 = k, ∀i ∈ [d]

where Mi is the i-th row of M .

Without making any assumptions, such problems are in general computationally hard Foster et al.
(2015); Razenshteyn et al. (2016).

16

Under review as a conference paper at ICLR 2022

B ANALYSIS OF BUTTERFLY VARIANTS

We present formal versions of theorems in Section 4 regarding variants of butterfly matrices. We
provide full proofs of the results here.

B.1 BLOCK BUTTERFLY ANALYSIS

Proof of Theorem 4.1. Let M be an n × n block butterfly matrix with block size b. We want to show
that M also has a representation as an n× n block butterfly matrix with block size 2b.

By Definition 3.3, M has the form:

M = B
(n

b ,b)
n
b

B
(n

b ,b)
n
2b

. . .B
(n

b ,b)
4 B

(n
b ,b)

2 .

Notice that we can combine that last two terms to form a matrix of the form B
(n

2b ,2b)
2 (see Fig. 3).

Moreover, other terms in the product of the form B
(n

b ,b)
n

2ib

can also be written as B(n
2b ,2b)
n

2i−12b

(see Fig. 3).
Thus M also has the form:

M = B
(n

2b ,2b)
n
2b

B
(n

2b ,2b)
n
4b

. . .B
(n

2b ,2b)
2 .

In other words, M is also an n× n block butterfly matrix with block size 2b.

Proof of Corollary 4.2. Dao et al. (2020, Theorem 3) states that any n×n sparse matrix with s nonzeros
can be represented as products of butterfly matrices and their transposes, with O(s log n) parameters.

For a constant block size b that is a power of 2, the set of n× n block butterfly matrices of block size b
contains the set of regular butterfly matrices by Theorem 4.1. Therefore any such n× n sparse matrix
also has a representation has products of block butterfly matrices of block size b and their transposes,
with O(s log n) parameters.

B.2 FLAT BUTTERFLY ANALYSIS

We prove Theorem 4.3, which relates the first-order approximation in the form of a flat butterfly matrix
with the original butterfly matrix.

Proof of Theorem 4.3. Let n = 2m and letB1, . . . , Bm ∈ Rn×n be them butterfly factor matrices (we
rename them here for simplicity of notation).

Let

E =

m∏
i=1

(I + λBi)−

(
I +

m∑
i=1

λBi

)
.

Our goal is to show that ‖E‖F ≤ ε.
We first recall some properties of Frobenius norm. For any matrices A and C, we have ‖AC‖F ≤
‖A‖F ‖C‖F and ‖A+ C‖F ≤ ‖A‖F + ‖C‖F .

Expanding the terms of the product in E, we have

E =

m∑
i=2

λi
∑

s∈[m],|s|=i

∏
j∈s

Bj .

17

Under review as a conference paper at ICLR 2022

Using the above properties of Frobenius norm, we can bound E:

‖E‖F ≤
m∑
i=2

λi
∑

s∈[m],|s|=i

∏
j∈s
‖Bj‖F

≤
m∑
i=2

λi
∑

s∈[m],|s|=i

∏
j∈s

Bmax

=

m∑
i=2

λ2mi
(
Bimax

)
=

m∑
i=2

(λmBmax)i

≤
m∑
i=

(
c
√
ε
)i

≤ c2ε
∞∑
i=0

(c
√
ε)i

≤ c2ε

1− c
√
ε

≤ ε,
where in the last step we use the assumption that c ≤ 1

2 .

We now bound the rank of the first-order approximation.

Proof of Theorem 4.4. Let M∗ = I +
∑m
i=1 λBi. Note that any entry in

∑m
i=1 λBi has absolute value

at most

mλB∞max ≤
c
√
εB∞max

Bmax
≤ 1

4
,

where we use the assumption that B∞max ≤ Bmax and c ≤ 1
4 .

Thus any diagonal entry in M∗ has absolute value at least 1 − 1
4 = 3

4 and the off-diagonal entries are

at most c
√
εB∞max

bm .

Alon (2009, Theorem 1.1) states that: there exists some c > 0 such that for any real M ∈ Rn×n, if the
diagonal elements have absolute values at least 1

2 and the off-diagonal elements have absolute values
at most ε where 1

2
√
n
≤ ε ≤ 1

4 , then rank(M) ≥ c logn
ε2 log 1/ε .

Applying this theorem to our setting, we have that

rank(M∗) ≥ Ω

(Bmax

B∞max

)2

· m

ε log
(
Bmax

B∞max

)
 .

We just need to show that B
∞
max

Bmax
≥ 1

2c
√
εn

to satisfy the condition of the theorem.

Indeed, we have that 1 ≤ Bmax

B∞max
≤
√

2n as each ‖Bi‖0 ≤ 2n. Combining the two conditions on Bmax

B∞max
,

we have shown that 1 ≤ Bmax

B∞max
≤ 2c
√
εn. This concludes the proof.

B.3 FLAT BLOCK BUTTERFLY + LOW-RANK ANALYSIS

We show that flat butterfly + low-rank (an instance) of sparse + low-rank, is more expressive than either
sparse or low-rank alone. We adapt the argument from Chen et al. (2021) to show a generative process
where the attention matrix can be well approximated by a flat butterfly + low-rank matrix, but not by a
sparse or low-rank alone.

We describe here a generative model of an input sequence to attention, parameterized by the inverse
temperature β ∈ R and the intra-cluster distance ∆ ∈ R.

18

Under review as a conference paper at ICLR 2022

Process 1. Let Q ∈ Rn×d, where d ≥ Ω(log3/2(n)), with every row of Q generated randomly as
follows:

1. For C = Ω(n), sample C number of cluster centers c1, . . . , cC ∈ Rd independently from
N (0, Id/

√
d).

2. For each cluster around ci, sample ni = b number of elements around ci, of the form zij = ci + rij
for j = 1, . . . , ni where rij ∼ N (0, Id∆/

√
d). Assume that the total number of elements is n = cb

and ∆ ≤ O(1/ log1/4 n).

Let Q be the matrix whose rows are the vectors zij where i = 1, . . . , C and j = 1, . . . , ni. Let
A = QQ> and let the attention matrix be Mβ = exp(β ·A).

Theorem B.1. LetMβ , be the attention matrix in Process 1. Fix ε ∈ (0, 1). LetR ∈ Rn×n be a matrix.
Consider low-rank, sparse, and sparse + low-rank approximations to Mβ . Assume (1 −∆2) log n ≤
β ≤ O(log n).

1. Flat butterfly + low-rank: There exists a flat butterfly + low-rank R with n1+o(1) parameters
with ‖Mβ −R‖F ≤ εn.

2. Low-rank: If R is such that n− rank(R) = Ω(n), then ‖Mβ −R‖F ≥ Ω(n).

3. Sparse: If R has sparsity o(n2), then ‖Mβ −R‖F ≥ Ω(n).

Proof sketch. As the argument is very similar to that of Chen et al. (2021, Theorem 1), we describe
here the modifications needed to adapt their proof.

The main difference between our generative process and that of Chen et al. (2021) is that each cluster
has the same number of elements, which is the same as the block size. The resulting attention matrix
will have a large block diagonal component, similar to that Chen et al. (2021). However, all the blocks
in the block diagonal component has the same block size, which is b. Moreover, a flat block butterfly
of block size b contains a block diagonal component of block size b. Therefore, this flat block butterfly
matrix plays the same role as the sparse matrix in the proof of Chen et al. (2021). The rest of the
argument follows that of theirs.

19

Under review as a conference paper at ICLR 2022

Roadmap The analysis of sparse networks is organized as follows. In Section C we list some basic
notations that will be used. In Section D we consider the problem of adding sparsity on W , and we
achieve polynomial solving time. In Section E we prove that the gradient descent can be done fast
under the sparsity assumption. In Section G we consider the problem of adding sparsity on a, and
we show that minimizing the dropout loss is equivalent with a kernel ridge regression problem. In
Section H we analyze the dynamics of gradient flow and prove the convergence result.

C NOTATIONS

For a vector x, we use ‖x‖p to denote its `p norm, and we mainly consider p = 1, 2 in this paper. For
a matrix A, we use ‖A‖0, ‖A‖1, ‖A‖F to denote the `0 norm, entry-wise `1 norm and Frobenius norm
of A respectively. For two matrices A,B ∈ Rd×m, we use A ◦ B to denote their Hadamard product.
We use Tmat(n, d,m) to denote the time of multiplying n× d matrix with another d×m matrix. For
a symmetric matrix A, we use λmin(A) to denote its minimum eigenvalue. We also let vec(A) be
the vectorization of a matrix A in column first order. We use 〈·, ·〉 to denote standard Euclidean inner
product between two vectors.

Moreover, we use N (µ,Σ) to denote the Gaussian distribution with mean µ and covariance Σ. We
denote the ReLU function by φ(z) = max{z, 0}. For an event E, we use 1{E} or 1E to denote its
indicator function.

D SPARSITY ON HIDDEN LAYER WEIGHTS

D.1 APPLYING MASKS BEFORE MULTIPLICATION

Given matrix A ∈ Rn×d, B ∈ Rd×n, naively computing AB takes Tmat(n, d, n). Note that, we can
also consider the case where A and B have different size. For simplicity, let us consider the case where
matrix A and matrix B> have the same size.

Our goal is to find “optimal" binary mask matrix W ∈ {0, 1}d×n such that,

min
W
‖f(A ·B)− f(A · (W ◦B))‖1

s.t. ‖WB,i‖0 = k, ∀i ∈ [n]

Remark D.1. In the practical applications we care about, the function f is the activation function of
neural network, e.g., ReLU(z) = max{z, 0}.

We define a sparse targeted regression problem:
Definition D.2 (Sparse mark regression, `1 version). Given a matrix B ∈ Rd×n, and a vector a ∈ Rd,
the goal is to find a k-sparse binary vector w ∈ {0, 1}d to minimize the following problem:

min
w
‖a> ·B − (a> ◦ w>) ·B‖1.

Naively, the above problem can be solved in n · dO(k) via guess all the
(
d
k

)
choices.

Lemma D.3. The targeted sparse mask regression problem can be solved in n · dO(k).

Proof. We need to guess
(
d
k

)
times, which becomes dO(k). Each time it takes nd operations, thus the

total time is

nd · dO(k) = n · dO(k).

Definition D.4 (`1 version). Given three positive integers m ≥ n ≥ d ≥ k ≥ 1, matrices A ∈ Rm×d
and B ∈ Rd×n. We define our problem as finding the binary matrix W ∈ {0, 1}m×d that satisfies

min
W
‖A ·B − (A ◦W) ·B‖1

s.t. ‖Wi∗‖0 = k,∀i ∈ [m].

where Wi∗ is the i-th row of W .
Theorem D.5. The problem being defined as Definition D.4 can be solved in mndO(k) time.

20

Under review as a conference paper at ICLR 2022

Proof. Our problem can be decomposed into m sub-problems as follows:

‖A ·B − (A ◦W) ·B‖1 =

m∑
i=1

∥∥(A ·B)i∗ − ((A ◦W) ·B)i∗
∥∥

1

=

m∑
i=1

∥∥Ai∗ ·B − (A ◦W)i∗ ·B
∥∥

1

=

m∑
i=1

∥∥Ai∗ ·B − (Ai∗ ◦Wi∗) ·B
∥∥

1

where Ai∗ means the i-th row of matrix A. By applying Lemma D.3, each sub-problem

min
Wi∗
‖Ai∗ ·B − (Ai∗ ◦Wi∗) ·B‖1

can be solved in n · dO(k) time. Then the problem defined in Definition D.4 can be solved in

m · ndO(k) = mndO(k)

time in total. Thus we finish the proof.

In the above Theorem, we show that solving the sparse mask regression problem is NP-hard. However,
if we add some mild assumptions and consider minimizing `1 norm, then we can solve the regression
problem in polynomial time, as the following parts show.

Definition D.6 (`1 version). Given a matrix B ∈ Rd×n≥0 , and a vector a ∈ Rd≥0, the goal is to find a
k-sparse binary vector w ∈ {0, 1}d to solve

min
w
‖a> ·B − (a> ◦ w>) ·B‖1

Lemma D.7. The targeted `1 version sparse mask regression problem can be solved in

O(nd+ n log n)

which is polynomial time.

Proof. We first consider the situation when a ∈ {0, 1}d. In this case, we have

‖a> ·B − (a> ◦ w>) ·B‖1 + ‖(a> ◦ w>) ·B‖1 = ‖a> ·B‖1
where ‖a> ·B‖1 is fixed. So we only need to consider the following problem:

max
w
‖(a> ◦ w>) ·B‖1.

For simplicity we assume ai = 1,∀i ∈ [d], and we only need to solve

max
w
‖w> ·B‖1

where w has k elements equal to 1 and d − k elements equal to 0. For i ∈ [d], we compute Si =∑n
j=1Bij which is the summation of i-th row of B, and sort them as S(1) ≥ S(2) ≥ · · · ≥ S(n). Then

we only need to let w(i) = 1 for i ∈ [k] and other elements equal to 0. Computing all Si takes O(nd)
time, sorting Si takes O(n log n) time, thus the total time consumption is O(nd+n log n) in this case.

Next, we consider the general case when a ∈ Rd≥0. We let

Bi∗ = aiBi∗ and ai =

{
1, ai > 0

0, ai = 0
, ∀i ∈ [d]

where Bi∗ is the i-th row of B. Then our optimization problem is equivalent to

min
w
‖a> ·B − (a> ◦ w>) ·B‖1

where B ∈ Rd×n≥0 and a ∈ {0, 1}d. Thus we turn this case into the first case. Constructing B and a
takes O(nd) time, thus the total time consumption is also O(nd+ n log n) in this case.

21

Under review as a conference paper at ICLR 2022

Definition D.8 (`1 version). Given three positive integers m ≥ n ≥ d ≥ k ≥ 1, matrices A ∈ Rm×d≥0

and B ∈ Rd×n≥0 . We define our problem as finding the binary matrix W ∈ {0, 1}m×d that satisfies

min
W
‖A ·B − (A ◦W) ·B‖1

s.t. ‖Wi∗‖0 = k,∀i ∈ [m].

where Wi∗ is the i-th row of W .
Theorem D.9. The problem being defined as Definition D.8 can be solved in

O(mnd+mn log n)

time.

Proof. Our problem can be decomposed into m sub-problems as follows:

‖A ·B − (A ◦W) ·B‖1 =

m∑
i=1

∥∥(A ·B)i∗ − ((A ◦W) ·B)i∗
∥∥

1

=

m∑
i=1

∥∥Ai∗ ·B − (A ◦W)i∗ ·B
∥∥

1

=

m∑
i=1

∥∥Ai∗ ·B − (Ai∗ ◦Wi∗) ·B
∥∥

1

where Ai∗ means the i-th row of matrix A. By applying Lemma D.7, each sub-problem
min
Wi∗
‖Ai∗ ·B − (Ai∗ ◦Wi∗) ·B‖1

can be solved in O(nd+ n log n) time. Then the problem defined in Definition D.8 can be solved in
m ·O(nd+ n log n) = O(mnd+mn log n)

time in total. Thus we finish the proof.

D.2 APPLYING MASKS AFTER MULTIPLICATION

Definition D.10. Given matrix B ∈ Rd×n, C ∈ Rm×n. The goal is to find a mask W ∈ {0, 1}m×d
where each column of W is k-sparse

min
W∈{0,1}m×d

‖C ·B> − (C ·B>) ◦W‖1

Remark D.11. The B defined in Definition D.4 is the same as the B defined in Definition D.10. B is
corresponding to the X in the neural network setting.

E GRADIENT COMPUTATION

In this section we consider a neural network with one hidden layer and m neurons in this hidden layer.
Suppose x ∈ Rd is the input, W = (w1, · · · , wm) ∈ Rd×m is the weight matrix of the first layer,
a ∈ Rm is the output weight, andM ∈ {0, 1}d×m is the mask matrix with each column having at most
k non-zero entries. The neural network f : Rd → R is defined as

f(x) = a>φ
(

(M ◦W)> · x
)
.

For simplicity, we only optimize W and fix a. Consider the mean square loss

L(W) =
1

2

n∑
i=1

(f(xi)− yi)2 =
1

2

n∑
i=1

(a>φ((M ◦W)> · xi)− yi)2.

In the forward computation, for a batch of data points x1, · · · , xn ∈ Rd, let X ∈ Rd×n denote the
input data points matrix. For convenience, we define

∆W (t) = W (t+ 1)−W (t) = −η ∂L(W (t))

∂W (t)

where η is the step size. We define function gt : Rd → Rm as

gt(x) = (f(x)− y) · diag{φ′((M ◦W (t))> · x)} · a
and also denote gt(X) = (gt(x1), · · · , gt(xn)) ∈ Rm×n.

22

Under review as a conference paper at ICLR 2022

Lemma E.1. We can express ∆W (t) as

∆W (t) = −η(X · g>t (X)) ◦M,

and each column of ∆W (t) has at most k non-zero entries.

Proof. From the definition, we know

∆W (t) = − η ∂L(W (t))

∂W (t)

= − η
(n∑
i=1

(f(xi)− yi) diag{φ′((M ◦W (t))> · xi)}︸ ︷︷ ︸
m×m

a︸︷︷︸
m×1

x>i︸︷︷︸
1×d

)>
◦ M︸︷︷︸
d×m

= − η(

n∑
i=1

gt(xi) · x>i)> ◦M

= − η(X︸︷︷︸
d×n

· g>t (X)︸ ︷︷ ︸
n×m

) ◦ M︸︷︷︸
d×m

.

Since each column of M has at most k non-zero entries, we easily know each column of ∆W (t) also
has at most k non-zero entries.

Lemma E.2. Suppose that matrices M ∈ Rd×m, W (t) ∈ Rd×m and ∆W (t) ∈ Rd×m are given and
pre-computed, then we can compute ft+1(X) in

O(mnk)

time. (Here ft+1(X) is the evaluation of f at W (t+ 1).)

Proof. The goal is to compute

ft+1(X) = a> · φ((M︸︷︷︸
d×m

◦W (t+ 1)︸ ︷︷ ︸
d×m

)> ·X).

By using Lemma E.1, we have

(M ◦W (t+ 1))> ·X = (M ◦ (W (t) + ∆W (t)))> ·X
= (M ◦W (t))> ·X + (M ◦∆W (t))> ·X
= (M ◦W (t))> ·X − η(M ◦ (X · g>t (X)) ◦M)> ·X
= (M ◦W (t))> ·X − η((X · g>t (X)) ◦M)> ·X
= (M ◦W (t))> ·X + (∆W (t))> ·X.

Notice that we have already computed (M ◦W (t))> ·X ∈ Rm×d from previous iteration, so we only
need to compute (∆W (t))> ·X where ∆W (t) ∈ Rd×m and X ∈ Rd×n. By using Lemma E.1, each
row of (∆W (t))> has at most k non-zero entries, thus we can compute (∆W (t))> · X in O(mnk)
time.

Lemma E.3. Suppose that matrices M ∈ Rd×m,W (t) ∈ Rd×m and ft(X) are given and pre-
computed, then we can compute ∂L(W (t))

∂W (t) in O(mnk) time.

Proof. By using Lemma E.1, we have

∂L(W (t))

∂W (t)
= (X · g>t (X)) ◦M

where gt(x) = (f(x)−y) ·diag{φ′((M ◦W (t))> ·x)}·a ∈ Rm and gt(X) = (gt(x1), · · · , gt(xn)) ∈
Rm×n. We first computeM ◦W (t) inO(mk) time, then we can construct gt(X) ∈ Rm×n in n·O(mk)
time. Given gt(X), since we only need to compute km entries of X · g>t (X), where each entry can be
computed in O(n) time, thus we can compute ∂L(W (t))

∂W (t) in O(mnk) time.

23

Under review as a conference paper at ICLR 2022

Algorithm 1 The sparse training algorithm

1: procedure SPARSE TRAINING({xi, yi}i∈[n])
2: Initialization ar, wr(0) ∼ N (0, Id) for r ∈ [m].
3: for t = 1→ T do
4: /*forward computation*/
5: Compute M ◦W (t) . Takes O(mk) time.
6: for i = 1→ n do
7: ft(xi)← a>φ((M ◦W (t))> · xi) . Takes O(mk) time.
8: gt(xi)← (f(xi)− yi) · diagφ′((M ◦W (t))> · xi) · a . Takes O(mk) time.
9: end for

10: /*backward computation*/
11: gt(X)← (gt(x1), · · · , gt(xn)).
12: ∂L(W (t))

∂W (t) = (X · g>t (X)) ◦M . Takes O(mnk) time.

13: W (t+ 1) = W (t) + ∆W (t) . ∆W (t) = −η ∂L(W (t))
∂W (t) .

14: end for
15: end procedure

F NEURAL TANGENT KERNEL, CONVERGENCE, AND GENERALIZATION

Our analysis relies on the neural tangent kernel (NTK) (Jacot et al., 2018) of the network.
Definition F.1. Let f(·, θ) : Rd → R be the function specified by a neural network with parameters
θ ∈ Rp and input dimension d. The parameter θ is initialized randomly from a distribution P . Then its
neural tangent kernel (NTK) (Jacot et al., 2018) is a kernel K : Rd × Rd → R defined by:

K(x, y) = E
θ∼P

[〈
∂f(x; θ)

∂θ
,
∂f(y; θ)

∂θ

〉]
.

We can relate the training and generalization behavior of dense and sparse models through their NTK.
The standard result (Song and Yang, 2019) implies the following.
Proposition F.2. Let fdense denote a ReLU neural network with L layers with dense weight ma-
trices θdense with NTK Kdense, and let fsparse be the ReLU neural network with the same archi-
tecture and with weight matrices θsparse whose rows are k-sparse, and with NTK Ksparse. Let
x1, . . . , xN be the inputs sampled from some distribution PX . Suppose that the empirical NTK matrices
Kd = Kdense(xi, xj) and Ks = Ksparse(xi, xj) for (i, j) ∈ [N]× [N] satisfy ‖Kd −Ks‖ ≤ δ.

Training. We knew the the number of iterations of dense network is λmin(Kd)
−2n2 log(1/ε) to reach

the ε training loss. For sparse network we need (λmin(Kd)− δ)−2n2 log(1/ε).

Generalization. We knew the the number of iterations of dense network is λmin(Kd)
−2n2 log(1/ε)

to reach the generalization error ε training loss. For sparse network we need (λmin(Kd) −
δ)−2n2 log(1/ε).

These results relate the generalization bound of sparse models to that of dense models.

24

Under review as a conference paper at ICLR 2022

G DROPOUT NEURAL NETWORK AND KRR
We consider a two layer neural network with ReLU activation function, and write

f(W,x) :=
1√
m

m∑
r=1

arφ(w>r x) =
1√
m

m∑
r=1

arw
>
r x1w>r x≥0 (2)

where wr(0) ∼ N(0, Id) ∈ Rd, ar ∼ unif({−1,+1}) and all randomnesses are independent. We will
fix ar during the training process and use 1√

m
normalization factor, both of which are in the literature

of Du et al. (2019); Song and Yang (2019); Brand et al. (2021).

Suppose the training data are (x1, y1), . . . , (xn, yn) ∈ Rd×R, we define the classical objective function
L̂ as follows:

L̂(W) :=
1

2

n∑
i=1

(f(W,xi)− yi)2
.

The gradient with respect to loss function L̂ is

∂L̂

∂wr
=

1√
m

n∑
i=1

(f(W,xi)− yi)arxi1w>r xi≥0.

We consider the effect of dropout on network training. For each r ∈ [m], we introduce the mask by
defining random variable σr as follows:

σr =

{
0, with probability 1− q;
1/q, with probability q.

It is easy to see that E[σr] = 0 · (1 − q) + (1/q) · q = 1 and E[σ2
r] = 02 · (1 − q) + (1/q)2 · q =

1/q. We assume σi and σj are independent for any i 6= j, then E[σiσj] = E[σi]E[σj] = 1. Let
σ = (σ1, · · · , σm), we define our dropout neural net as

F (W,x, σ) :=
1√
m

m∑
r=1

arσrφ(w>r x) =
1√
m

m∑
r=1

arσrw
>
r x1w>r x≥0. (3)

Dropout explicitly change the target function, since we need to minimize the `2 distance between
F (W,x, σ) and y, instead of f(W,x) and y. Formally, we define the dropout loss as

L(W) :=
1

2
E
σ

[
n∑
i=1

(F (W,xi, σ)− yi)2

]
. (4)

We first give an explicit formulation of L which also shows the difference between L and L̂.

Lemma G.1. The dropout loss defined in Eq. (4) can be expressed as the sum of classical loss L̂ and
a regularization term as

L(W) = L̂(W) +
1− q
2mq

n∑
i=1

m∑
r=1

φ(w>r xi)
2. (5)

Proof. Since E[σr] = 1, we have

E
σ

[F (W,xi, σ)] =
1√
m

E
σ

[

m∑
r=1

arσrφ(w>r x)] =
1√
m

m∑
r=1

arφ(w>r xi) = f(W,xi) (6)

25

Under review as a conference paper at ICLR 2022

holds for any i ∈ [n]. Next, we show the difference between L and L̂:

2(L(W)− L̂(W))

= E
σ

[
n∑
i=1

(F (W,xi, σ)− yi)2

]
−

n∑
i=1

(f(W,xi)− yi)2

=

n∑
i=1

(
E
σ

[
(F (W,xi, σ)− yi)2

]
− (f(W,xi)− yi)2

)
=

n∑
i=1

(
E
σ

[
F (W,xi, σ)2

]
− f(W,xi)

2
)

=

n∑
i=1

 1

m

∑
r1,r2∈[m]

E[ar1ar2σr1σr2φ(w>r1xi)φ(w>r2xi)]−
1

m

∑
r1,r2∈[m]

ar1ar2φ(w>r1xi)φ(w>r2xi)


=

1

m
· 1− q

q

n∑
i=1

m∑
r=1

a2
rφ(w>r xi)

2

=
1

m
· 1− q

q

n∑
i=1

m∑
r=1

φ(w>r xi)
2 (7)

where the first step follows from definition, the second step follows from the linearity of expectation,
the third step follows from Eq. (6), the forth step follows from expansion, the fifth step follows from
E[σr1σr2] = 1 for r1 6= r2 and E[σ2

r1] = 1
q , and the last step follows from a2

r = 1. Thus we have

L(W) = L̂(W) +
1− q
2mq

n∑
i=1

m∑
r=1

φ(w>r xi)
2

and finish the proof.

Before we move on, we introduce some extra notations and definitions. We denote

W = vec(W) =


w1

w2

...
wm

 ∈ Rmd, and Y =


y1

y2

...
yn

 ∈ Rn.

Definition G.2. We define matrix G∞ ∈ Rn×n which can be viewed as a Gram matrix from a kernel
associated with ReLU function as follows:

G∞ij (X) = E
w∼N (0,I)

[x>i xj1w>xi≥0,w>xj≥0], ∀i, j ∈ [n]× [n]

and assume λ0 = λmin(G∞) > 07.

Definition G.3. We define the masked matrix ΦW (X,σ) ∈ Rn×md as

ΦW (X,σ) :=
1√
m


Φ(x1, σ)
Φ(x2, σ)

...
Φ(xn, σ)



=
1√
m


a1σ11〈w1,x1〉≥0x

>
1 a2σ21〈w2,x1〉≥0x

>
1 . . . amσm1〈wm,x1〉≥0x

>
1

a1σ11〈w1,x2〉≥0x
>
2 a2σ21〈w2,x2〉≥0x

>
2 . . . amσm1〈wm,x2〉≥0x

>
2

...
...

...
...

a1σ11〈w1,xn〉≥0x
>
n a2σ21〈w2,xn〉≥0x

>
n . . . amσm1〈wm,xn〉≥0x

>
n


7According to Theorem 3.1 in Du et al. (2019), the assumption holds when xi is not parallel with xj for i 6= j,

which is reasonable in reality.

26

Under review as a conference paper at ICLR 2022

and also define the unmasked matrix Φ̂W (X) ∈ Rn×md as

Φ̂W (X) :=
1√
m


a11〈w1,x1〉≥0x

>
1 a21〈w2,x1〉≥0x

>
1 . . . am1〈wm,x1〉≥0x

>
1

a11〈w1,x2〉≥0x
>
2 a21〈w2,x2〉≥0x

>
2 . . . am1〈wm,x2〉≥0x

>
2

...
...

...
...

a11〈w1,xn〉≥0x
>
n a21〈w2,xn〉≥0x

>
n . . . am1〈wm,xn〉≥0x

>
n

 .
Definition G.4. We define the masked block diagonal matrix ΨW (X,σ) ∈ Rmd×md as

ΨW (X,σ) :=
1

m
diag

(
ψ1, ψ2, · · · , ψm

)
.

where ∀r ∈ [m], ψr ∈ Rd×d is defined as

ψr := a2
rσ

2
r

n∑
i=1

xix
>
i · 12

〈wr,xi〉≥0 = σ2
r

n∑
i=1

xix
>
i · 1〈wr,xi〉≥0.

We also define the unmasked block diagonal matrix Ψ̂W (X) ∈ Rmd×md as

Ψ̂W (X) :=
1

m
diag

(
ψ̂1, ψ̂2, · · · , ψ̂m

)
.

where ∀r ∈ [m], ψ̂r ∈ Rd×d is defined as

ψ̂r :=

n∑
i=1

xix
>
i · 1〈wr,xi〉≥0.

Lemma G.5. It is easy to verify that

ΦW (X,σ) = Φ̂W (X) ·Dσ and ΨW (X,σ) = Ψ̂W (X) ·D2
σ

where
Dσ := diag(σ1, · · · , σ1︸ ︷︷ ︸

d

, · · · , σm, · · · , σm︸ ︷︷ ︸
d

) ∈ Rmd×md.

For convenience, we will simply denote ΦW = ΦW (X,σ) and ΨW = ΨW (X,σ). Then by using the
above notations, we can express our dropout loss as L(W) = 1

2 Eσ[‖ΦWW − Y ‖22].

Lemma G.6. If we denote λ = 1−q
q ≥ 0, then we have

L(W) =
1

2
‖Φ̂WW − Y ‖22 +

λ

2
W
>

Ψ̂WW.

Proof. As for the first term, we have

‖Φ̂WW − Y ‖22 =

n∑
i=1

(
1√
m

m∑
r=1

ar1〈wr,xi〉≥0x
>
i · wr − yi)2

=

n∑
i=1

(
1√
m

m∑
r=1

arφ(w>r xi)− yi)2

=

n∑
i=1

(f(W,xi)− yi)2

= 2L̂(W).

As for the second term, since Ψ̂W is a block diagonal matrix, we have

W
>

Ψ̂WW =
1

m

m∑
r=1

(
w>r ·

(
a2
r

n∑
i=1

xix
>
i · 12

〈wr,xi〉≥0

)
· wr

)
=

1

m

m∑
r=1

n∑
i=1

(
(w>r xi) · (w>r xi)> · 12

〈wr,xi〉≥0

)
=

1

m

n∑
i=1

m∑
r=1

φ(w>r xi)
2.

27

Under review as a conference paper at ICLR 2022

Thus by using Lemma G.1, we have

L(W) = L̂(W) +
1− q
2mq

n∑
i=1

m∑
r=1

φ(w>r xi)
2

=
1

2
‖Φ̂WW − Y ‖22 +

λ

2
W
>

Ψ̂WW

and finish the proof.

Remark G.7. A classical kernel ridge regression problem can be defined as

min
W

1

2
‖φ(X)>W − Y ‖22 +

λ

2
‖W‖22

where φ : Rd → F is a feature map. Note that Lemma G.6 breaks the dropout loss into two parts: the
first part is an error term, and the second part can be seen as a regularization term. Thus the task of
minimizing the dropout loss L(W) is equivalent to a kernel ridge regression (KRR) problem.

28

Under review as a conference paper at ICLR 2022

H DYNAMICS OF KERNEL METHODS (CONTINUOUS GRADIENT FLOW)
The NTK also allows us to analyze the training convergence of sparse networks. We show that gradient
descent converges globally when training wide sparse networks. This convergence speed is similar to
that of dense models (Du et al., 2019; Allen-Zhu et al., 2019b).

In this section we will discuss the dynamics of kernel method under the mask σ, which adds sparsity
in the output layer. Our problem will be considered in over-parameterized scheme. First we introduce
some additional definitions and notations. We define symmetric Gram matrix G(W) as G(W) :=

Φ̂W · Φ̂>W ∈ Rn×n. For all i, j ∈ [n]× [n], we have

G(W)ij =
1

m

m∑
r=1

a2
r1〈wr,xi〉≥0,〈wr,xj〉≥0x

>
i xj =

1

m
x>i xj

m∑
r=1

1〈wr,xi〉≥0,〈wr,xj〉≥0.

We define block symmetric matrix H(W) as H(W) = Φ̂>W · Φ̂W ∈ Rmd×md. Then for all i, j ∈
[m]× [m], the (i, j)-th block of H(W) is

H(W)ij =
1

m
aiaj

n∑
k=1

xkx
>
k · 1〈wi,xk〉≥0,〈wj ,xk〉≥0 ∈ Rd×d.

By using Lemma G.6, we consider the corresponding kernel regression problem:

min
W

Lk(W) = min
W

1

2
‖Φ̂W − Y ‖22 +

λ

2
W
>

Ψ̂W (8)

where Φ̂ ∈ Rn×md, W ∈ Rmd×1, Y ∈ Rn×1 and Ψ̂ ∈ Rmd×md. The main difference from neural
network is that we assume Φ̂ (related to NTK, e.g., see Definition G.3) and Ψ̂ (related to regularization
term, e.g., see Definition G.4) do not change during the training process.

The gradient of Lk can be expressed as

∇WLk(W) = Φ̂>Φ̂W − Φ̂>Y + λΨ̂W. (9)

We use W ? to denote the optimal solution of Eq. (8), and it satisfies

∇WLk(W)
∣∣
W=W? = (Φ̂>Φ̂ + λΨ̂)W ? − Φ̂>Y = 0. (10)

Since Ψ̂ is a positive diagonal matrix, Φ̂−
1
2 exists, thus we have

W ? = (Φ̂>Φ̂ + λΨ̂)−1Φ̂>Y.

Next, we consider the question from a continuous gradient flow aspect. In time t, we denote W (t) =

vec(W (t)), Φ̂(t) = Φ̂W (t), Ψ̂(t) = Ψ̂W (t). We also denote G(t) = G(W (t)) and H(t) = H(W (t)).
Following the literature of Du et al. (2019), we consider the ordinary differential equation defined by

dwr(t)

dt
= −∂Lk(W (t))

∂wr(t)
. (11)

Lemma H.1 (Lemma 3.1 in Du et al. (2019)). If m = Ω(n
2

λ2
0

log(nδ)), we have with probability at least

1− δ, ‖G(0)−G∞‖2 ≤ λ0

4 and λmin(G(0)) ≥ 3
4λ0.

Lemma H.2 (Lemma 3.2 in Du et al. (2019)). If w1, · · · , wm are i.i.d generated from N (0, Id), then
with probability at least 1 − δ, the following holds. For any set of weight vectors w1, · · · , wm ∈ Rd
that satisfy for any r ∈ [m], ‖wr − wr(0)‖2 ≤ cδλ0

n2 for some small positive constant c, then matrix
G ∈ Rd×d satisfies ‖G−G(0)‖2 < λ0

4 and λmin(G) > λ0

2 .

The above lemma shows that for W that is close to W (0), the Gram matrix G also stays close to the
initial Gram matrix G(0), and its minimal eigenvalue is lower bounded.

Lemma H.3 (Gradient Flow). If we assume λmin(Ψ̂) ≥ Λ0 > 0, then with probability at least 1 − δ,
for w1, · · · , wm ∈ Rd that satisfy ∀r ∈ [m], ‖wr − wr(0)‖2 ≤ cδλ0

n2 , we have

d‖Φ̂W − Φ̂W ?‖22
dt

≤ −γ‖Φ̂W − Φ̂W ?‖22

holds some constant γ > 0.

29

Under review as a conference paper at ICLR 2022

Proof. By using Eq. (9) and Eq. (11), we can express dW
dt as

dW

dt
= −∇WLk(W) = −(Φ̂>Φ̂W − Φ̂>Y + λΨ̂W). (12)

Then we have

d‖Φ̂W − Φ̂W ?‖22
dt

=
d‖Φ̂W − Φ̂W ?‖22

dW
· dW

dt

= 2(Φ̂W − Φ̂W ?)>Φ̂ · (−(Φ̂>Φ̂W − Φ̂>Y + λΨ̂W))

= − 2(Φ̂W − Φ̂W ?)>Φ̂(Φ̂>Φ̂W − Φ̂>Y + λΨ̂W)

= − 2(Φ̂W − Φ̂W ?)>Φ̂(Φ̂>Φ̂W − Φ̂>Φ̂W ? − λΨ̂W ? + λΨ̂W)

= − 2(Φ̂W − Φ̂W ?)>Φ̂Φ̂>(Φ̂W − Φ̂W ?)− 2λ(Φ̂W − Φ̂W ?)>Φ̂(Ψ̂W − Ψ̂W ?)

≤ − 2λ0‖Φ̂W − Φ̂W ?‖22 − 2λ(W −W ?)>Φ̂>Φ̂Ψ̂(W −W ?) (13)

where the second step follows from Eq. (12), the fourth step follows from Eq. (10), and the last step
follows from the definition that λ0 = λmin(G) = λmin(Φ̂Φ̂>).

As for the second term in the Eq. (13), we have

2λ(W −W ?)>Φ̂>Φ̂Ψ̂(W −W ?)

= 2λ(W Φ̂>Φ̂−W ?Φ̂>Φ̂)>Ψ̂(W −W ?)

≥ 2λΛ0(W −W ?)>Φ̂>Φ̂(W −W ?)

= 2λΛ0‖Φ̂W − Φ̂W ?‖22 (14)

Thus by Eq. (13) and Eq. (14) we have

d‖Φ̂W − Φ̂W ?‖22
dt

≤ −(2λ0 + 2λΛ0)‖Φ̂W − Φ̂W ?‖22.

By letting γ = 2λ0 + 2λΛ0 we finish the proof.

For convenience, we denote u(t) = Φ̂(t) ·W (t) ∈ Rn. Then it is easy to verify that

ui(t) =
1√
m

m∑
r=1

arφ(w>r xi) = f(W (t), xi), ∀i ∈ [n],

showing that u(t) is the prediction in time t.

Lemma H.4 (Convergence rate). If we assume λmin(G(s)) ≥ λ0

2 holds for 0 ≤ s ≤ t, then we have

1. ‖u(t)− Y ‖22 ≤ e−(λ0+2λ/m)t‖u(0)− Y ‖22;

2. ∀r ∈ [m], ‖wr(t)− wr(0)‖2 ≤
√
n‖u(0)−Y ‖2
λ0
√
m

.

Proof. From Eq. (9), we can express the dynamics by using u(t) as

du(t)

dt
= − Φ̂(Φ̂>Φ̂W − Φ̂>Y + λΨ̂W)

= G(t)(Y − u(t))− λΦ̂Ψ̂W. (15)

Thus we have
d‖u(t)− Y ‖22

dt
= 2(u(t)− Y)>

(
G(t)(Y − u(t))− λΦ̂Ψ̂W

)
= − 2(u(t)− Y)>G(t)(u(t)− Y)− 2λ(u(t)− Y)>Φ̂Ψ̂W

≤ − λ0‖u(t)− Y ‖22 − 2λ(u(t)− Y)>Φ̂Ψ̂W. (16)

30

Under review as a conference paper at ICLR 2022

As for the second term, we have

2λ(u(t)− Y)>Φ̂Ψ̂W =
2λ

m
(u(t)− Y)>Φ̂ · [ψ̂1 · w1, · · · , ψ̂m · wm]>

=
2λ

m
(u(t)− Y)>Φ̂ · [

n∑
i=1

xiφ(w>1 xi), · · · ,
n∑
i=1

xiφ(w>mxi)]
>

=
2λ

m
(u(t)− Y)> · [U1(t), · · · , Un(t)]> (17)

where for j ∈ [n], Uj(t) ∈ R can be expressed as

Uj(t) =
1√
m

m∑
r=1

(
ar1〈wr,xj〉≥0x

>
j ·

n∑
i=1

xiφ(w>r xi)
)

=
1√
m

m∑
r=1

n∑
i=1

arx
>
j (xix

>
i)wr · 1〈wr,xi〉≥0,〈wr,xj〉≥0

=
1√
m

m∑
r=1

(
arx
>
j wr · 1〈wr,xj〉≥0 ·

n∑
i=1

1〈wr,xi〉≥0

)
.

We denote U(t) = [U1(t), · · · , Un(t)]> ∈ Rn and have

2λ(u(t)− Y)>Φ̂Ψ̂W =
2λ

m
(u(t)− Y)> · U(t) (18)

and our dynamics becomes

d‖u(t)− Y ‖22
dt

≤ − λ0‖u(t)− Y ‖22 −
2λ

m
(u(t)− Y)> · U(t)

≤ − (λ0 +
2λ

m
)‖u(t)− Y ‖22 (19)

showing that d
dt

(
e(λ0+2λ/m)t‖u(t)−Y ‖22

)
≤ 0. Thus e(λ0+2λ/m)t‖u(t)−Y ‖22 is a decreasing function

with respect to t, and we have

‖u(t)− Y ‖22 ≤ e−(λ0+2λ/m)t‖u(0)− Y ‖22.

As for bounding ‖wr(t)−wr(0)‖2, we use the same method as in Lemma 3.3 of Du et al. (2019). Thus
we complete the proof.

Finally, by combining Lemma H.1, H.2, H.3 and H.4, we have the following convergence result.
Theorem H.5 (Convergence of gradient flow). Suppose λ0 > 0, m = poly(n, 1/λ0, 1/δ), then with
probability at least 1− δ over the randomness of initialization, we have

‖u(t)− Y ‖22 ≤ e−(λ0+2λ/m)t‖u(0)− Y ‖22.

The above theorem shows that in the over-parameterized setting (when m is large enough), the train-
ing loss of the kernel ridge regression problem define in Eq. (8) converges to 0 in a linear rate. By
comparing our Theorem H.5 with Theorem 3.2 in Du et al. (2019), we can find that the introducing of
regularization term makes the convergence speed faster, though the improvement is limited. Further
notice that in Section G we prove the equivalence between minimizing the dropout loss and the kernel
ridge regression problem. So we conclude our results as:

The introducing of sparsity into neural network makes the convergence speed faster, but the
improvement is limited due to the over-parameterized scheme.

31

Under review as a conference paper at ICLR 2022

I METHOD DETAILS

We describe some details of our method.

I.1 COMPUTE BUDGET ALLOCATION

We describe here a procedure to compute the budget allocation based on our cost model. This procedure
is more complicated than our simple rule of thumb in Section 3.3, and tend to produce the same
allocation. For completeness, we include the procedure here for the interested reader.

Given a parameter budgetB, we find the density of each layer type that minimize the models’ total cost
of matrix multiplication. For example, in Transformers, let da and dm be the density of the attention
and the MLP layers. Let s be the sequence length and d be the feature size. The attention layer with
density da will cost da(n2 +nd), and the fully connected layers with density dm will cost 2dmnd. We
then set da and dm to minimize the total cost while maintaining the parameter budget:

minimizeδa,δmδa(n2 + nd) + 2δmnd subject to # of trainable parameters ≤ B. (20)

As this is a problem with two variables, we can solve it in closed form.

I.2 LOW-RANK IN ATTENTION

In Section 3.3, we describe how to use the sparsity pattern from flat block butterfly and the low-rank
term for weight matrices. This applies to the linear layer in MLP and the projection steps in the
attention.

We also use the sparse + low-rank structure in the attention step itself. Chen et al. (2021) describes
a general method to combine sparse and low-rank attention, where one uses the sparse component
to discount the contribution from the low-rank component to ensure accurate approximation of the
attention matrix.

We follow a simpler procedure, which in practice yields similar performance. We use a restricted
version of low-rank of the form a “global” sparsity mask (as shown in Fig. 12). Indeed, a sparse matrix
whose sparsity pattern follows the “global” pattern is a sum of two sparse matrices, one containing the
“horizontal” global components and one containing the “vertical” components. Let w be the width of
each of those components, then each of them has rank at most w. Therefore, this sparse matrix has
rank at most 2w, and is low-rank (for small w).

We also make the global component block-aligned (i.e., setw to be a multiple of the smallest supported
block size such as 32) for hardware efficiency.

I.3 COMPARISON TO OTHER SPARSITY PATTERNS FOR ATTENTION

In the context of sparse attention, other sparsity patterns such as BigBird and Longformer also contain
a “global” component, analogous to our low-rank component. Their “local” component is contained in
the block diagonal part of the flat block butterfly sparsity pattern.

The main difference that we do not use the random components (e.g., BigBird), and the diagonal strides
from flat block butterfly are not found in BigBird or Longformer. Moreover, we apply the same sparsity
pattern (+ low-rank) to the linear layers in the MLP and the projection step in attention as well, allowing
our method to target most neural network layers, not just the attention layer.

I.4 SPARSITY MASK FOR RECTANGULAR MATRICES

We have described the sparsity masks from flat block butterfly for square matrices. For rectangular
weight matrices, we simply “stretch” the sparsity mask. The low-rank component applies to both
square and rectangular matrices (as shown in Fig. 10). We have found this to work consistently well
across tasks.

32

Under review as a conference paper at ICLR 2022

Square Flat Block Butterfly

+ +

+ +

Rectangular Flat Block Butterfly

Figure 10: Sparsity Mask for Rectangular Matrices.

J BENCHMARKING OF BUTTERFLY MULTIPLY

We validate that flat butterfly matrices (sum of factors) can speed up multiplication on GPUs compared
to butterfly matrices (products of factors).

Consider the matrix M ∈ Rn×n that can be written as products of butterfly factors of strides of up k (a
power of 2), with residual connection:

M = (I + λB
(n)
k)(I + λB

(n)
k/2) . . . (I + λB

(n)
2).

The first-order approximation of M has the form of a flat butterfly matrix with maximum stride k
(Section 3.2):

Mflat = I + λ(B
(n)
2 + · · ·+ B

(n)
k/2 + B

(n)
k).

Notice that M is a product of log2 k factors, each has 2n nonzeros, so multiplying M by a input vector
x costs O(n log k) operations (by sequentially multiplying x by the factors of M). The flat version
Mflat is a sparse matrix with O(n log k) nonzeros as well, and the cost of multiplying Mflatx is also
O(n log k). However, in practice, multiplyingMflatx is much more efficient on GPUs than multiplying
Mx because of the ease of parallelization.

We measure the total time of forward and backward passes of multiplying either Mflatx and compare
to that of multiplying Mx for different maximum strides, as shown in Fig. 11. We see that “flattening”
the products brings up to 3× speedup.

2 4 8 16 32
Maximum stride

1

2

3

Sp
ee

du
p

(x
)

Figure 11: Speedup of multiplyingMflatx compared to multiplyingMx. Flattening the products yields
up 3× speedup.

We use matrix size 1024 × 1024 with block size 32. The input batch size is 2048. We use the
block sparse matrix multiply library from https://github.com/huggingface/pytorch_
block_sparse. The speed measurement is done on a V100 GPU.

33

https://github.com/huggingface/pytorch_block_sparse
https://github.com/huggingface/pytorch_block_sparse

Under review as a conference paper at ICLR 2022

Local Global (Low-rank) Butterfly Random

Figure 12: Sparsity pattern candidate components: Local corresponds to local interaction of neigh-
boring elements; Global (low-rank) involves the interaction between all elements and a small subset
of elements; Butterfly captures the interaction between elements that are some fixed distance apart;
Random is common in the pruning literature.

K EXHAUSTED SEARCHING SPARSITY PATTERNS FOR EFFICIENT SPARSE
TRAINING

We describe here our early exploration of searching among different sparsity patterns that has been
proposed in the literature. We use a metric derived from the NTK, which has emerged as one of the
standard metric to predict the training and generalization of the model. We consistently found the
butterfly + low-rank pattern to perform among the best.

In Appendix K.1, we describe the challenges of selecting sparsity patterns for every model components
using the a metric derived from the NTK, followed by our approaches. Then in , we describe details of
empirical NTK computation, which is an important step in our method implementation. Last, in Ap-
pendix K.3, we highlight important properties of our method – it rediscovers several classical sparsity
patterns, and the sparse models can inherit the training hyperparamters of the dense models, reducing
the need for hyperparameters tuning.

K.1 CHALLENGES AND APPROACHES

Challenge 1: We seek sparsity patterns for each model components that can closely mimic the training
dynamics of the dense counterpart. As mentioned in Theorem D.9, it is NP-hard to find the optimal
sparse matrix approximation. Although NTK provides insights and measurement on the “right” sparse
model, bruteforcely computing NTK for one-layer models with all sparsity patterns is still infeasible.

Approach 1: Sparsity Pattern Candidates. To address the above challenge, we design our search
space to be a limited set of sparsity pattern candidates, each is either a component visualized in Fig. 12
or the combination of any two of them. These components encompass the most common types of
sparsity pattern used, and can express We provide the intuition behind these sparsity components:

• Local: this block-diagonal component in the matrix corresponds to local interaction of neighboring
elements. This has appeared in classical PDE discretization (Collins and Angel, 1971), and has been
rediscovered in Longformer and BigBird attention patterns.

• Global: this component involves interaction between all elements and a small subset of elements
(i.e., “global” elements). This global pattern is low-rank, and this sparse + low-rank structure is
common in data science (Udell and Townsend, 2019), and rediscovered in Longformer and BigBird
patterns as well.

• Butterfly: this component corresponds to interaction between elements that are some fixed distance
apart. The many divide-and-conquer algorithms, such as the classical fast Fourier transform (Cooley
and Tukey, 1965), uses this pattern at each step. Butterfly matrices reflects this divide-and-conquer
structure, and hence this sparsity component. The sparse transformer (Child et al., 2019) also found
this pattern helpful for attention on image data.

• Random: this component is a generalization of sparsity patterns found in one-shot magnitude, gra-
dient, or momentum based pruning (Lee et al., 2018). Note that at network initialization, they are
equivalent to random sparsity.

Challenge 2: Even with a fixed pool of sparsity patterns for each layer, if the model has many layers,
the number of possible layer-pattern assignments is exponentially large.

34

Under review as a conference paper at ICLR 2022

Algorithm 2 Model Sparsification
1: Input: model schema Ω, compute budget B, dataset subset X , sparsity mask candidate set C.
2: Kdense ← NTK(fθ, X). . Eq. (22)
3: output sparsity mask assignment sout, dmin ← inf

4: for M1, . . . ,M|Ω| ∈ C|Ω| do . Enumerate all sparsity mask candidate combinations
5: Let s be the sparsity mask assignment (ti, ri,mi, ni)→Mi.
6: if TotalCompute(s) < B then . Eq. (21), Check if masks satisfy budget constraint
7: Let Ms be the flattened sparse masks
8: Ksparse ← NTK(fθ◦Ms , X)
9: ds ← DISTANCE(Kdense,Ksparse) . Eq. (22)

10: if dmin > ds then
11: dmin ← ds, sout ← s
12: end if
13: end if
14: end for
15: return sout . Return sparsity mask assignment

Approach 2: To further reduce the search space, we constrain each layer type (attention, MLP) to have
the same sparsity pattern. For example, if there are 10 patterns and 2 layer types, the candidate pool is
102 = 100 combinations.

Challenge 3: Computing the empirical NTK on the whole dataset is expensive in time and space, as it
scales quadratically in the dataset size.

Approach 3: We compute the empirical NTK on a randomly chosen subset of the data (i.e., a principal
submatrix of the empirical NTK matrix). In our experiments, we verify that increasing the subset size
beyond 1000 does not change the choices picked by the NTK heuristic. The subsampled empirical
NTK can be computed within seconds or minutes.

K.2 ALGORITHM DESCRIPTION

Our method targets GEMM-based neural networks, which are networks whose computation is domi-
nated by general matrix multiplies (GEMM), such as Transformer and MLP-Mixer. As a result, we can
view the network as a series of matrix multiplies. We first define:

• Model schema: a list of layer types t (e.g., attention, linear layers in MLP), number of lay-
ers r of that type, and dimension of the matrix multiplies m × n. We denote it as Ω =
{(t1, r1,m1, n1), . . . , (t|Ω|, r|Ω|,m|Ω|, n|Ω|)}.

• A mask M of dimension m × n is a binary matrix {0, 1}m×n. The compute of a mask is the total
number of ones in the matrix: compute(M) =

∑
i,jMij .

• A sparsity pattern Pm×n for matrix dimension m × n is a set of masks {M1, ...,M|P |}, each of
dimension m× n.

• A sparsity mask assignment is a mapping from a model schema Ω to masks M belonging to some
sparsity pattern P : s : (t, r,m, n)→M .

• Given a set of sparsity patterns P1, . . . , Pk, the set of sparsity mask candidate C is the union of
sparsity masks in each of Pi: C = ∪Pi

• A sparsity pattern assignment s satisfies the compute budget B if:

TotalCompute(s) :=
∑

layer type l

compute(s(t, r,m, n)) ≤ B. (21)

• Let θ be the flattened vector containing the model parameters, and let Ms be the flattened vector
containing the sparsity mask by the sparsity mask assignment s. Let fθ(x) be the output of the dense
network with parameter θ and input x. Then the output of the sparse network is fθ◦Ms

(x).
• The empirical NTK of a network fθ on a data subset X = {x1, . . . , x|X|} is a matrix of size |X| ×
|X|:

NTK(fθ, X)i,j =

〈
∂fθ(xi)

∂θ
,
∂fθ(xj)

∂θ

〉
. (22)

The formal algorithm to assign the sparsity mask to each layer type is described in Algorithm 2. The
main idea is that, as the set of sparsity mask candidate is finite, we can enumerate all possible sparsity
mask assignment satisfying the budget and pick the one with the smallest NTK distance to the dense
NTK. In practice, we can use strategies to avoid explicitly enumerating all possible sparsity mask, e.g.
for each sparsity pattern, we can choose the largest sparse mask that fits under the budget.

35

Under review as a conference paper at ICLR 2022

K.3 METHOD PROPERTIES: REDISCOVERING CLASSICAL SPARSITY PATTERNS, NO
ADDITIONAL HYPERPARAMETER TUNING

When applied to the Transformer architecture, among the sparsity components described in Ap-
pendix K.1, the NTK-guided heuristic consistently picks the local and global components for both
the attention and MLP layers. Moreover, the butterfly component is also consistently picked for image
data, reflecting the 2D inductive bias in this component8. While some of these patterns have been
proposed for sparse attention, it is surprising that they are also picked for the MLP layers. The most
popular type of sparsity pattern in MLP layers is top-k (in magnitude or gradient, which at initialization
is equivalent to random sparsity). We have proved that lower NTK difference results in better general-
ization bound for the sparse model. As expected, we observe that this allows the sparse model to use
the same hyperparamters (optimizer, learning rate, scheduler) as the dense model (Section 5).

8Convolution (commonly used in image data) can be written in terms of the fast Fourier transform, which has
this same sparse pattern at each step of the algorithm

36

Under review as a conference paper at ICLR 2022

L EXPERIMENT DETAILS

L.1 DATASETS

• Cifar10 (Krizhevsky et al., 2009) consists of 60000 coloured images of resolution 32 × 32.
Each of them belong to one of 10 classes, including airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. Among these, 50000 images are allocated to be the training
set and 10000 images the testing set.

• Cifar100 (Krizhevsky et al., 2009) is similar to Cifar10. It also consists of images of resolu-
tion 32 × 32. In total, there are 60000 images, each of which belongs to one of 100 classes.
Each of the 100 classes has 500 images in training set and 100 images in testing set.

• ImageNet1K (Russakovsky et al., 2015) spans 1000 object classes, containing 1,281,167
training images, 50,000 validation images and 100,000 test images. Although images are
collected in different resolutions, in practice they are generally reshaped and cropped into 224
× 224.

• WikiText-103 (Merity et al., 2016) contains articles from the wikipedia page. It extracts
verified articles from Wikipedia, which add up to over 100 million tokens. Compared to
other datasets, such as Penn Treebank (PTB) (Taylor et al., 2003), WikiText features a larger
vocabulary and preserves original upper/lower cases, punctuation and numbers.

L.2 MODEL CONFIGURATIONS AND HYPERPARAMETER

We summarize the details required to replicate our experiments below.

Baseline Model: Except for dense model. We choose our baselines for each experiment base on the
following. RigL aims to sparsify model weights/parameters, so we use it as a baseline in MLP-based
models (Mixer). BigBird focuses on attention matrices, so we used it as a baseline in Transformer-
based models (ViT, GPT-2).

L.2.1 IMAGE CLASSIFICATION

Table 1: Configuration of the Cifar10 experiments.

Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Small AdamW 0.05 0.0005 0.1 5/300
Pixelfly-ViT-Small AdamW 0.05 0.0005 0 5/300
ViT-Base AdamW 0.05 0.0005 0.1 5/300
Pixelfly-ViT-Base AdamW 0.05 0.0005 0 5/300

Mixer-Small AdamW 0.1 0.0005 0.1 5/300
Pixelfly-Mixer-Small AdamW 0.1 0.0005 0 5/300
Mixer-Base AdamW 0.1 0.0005 0.1 5/300
Pixelfly-Mixer-Base AdamW 0.1 0.0005 0 5/300

Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Small AdamW 0.05 0.0005 0.1 5/300
Pixelfly-ViT-Small AdamW 0.05 0.0005 0 5/300
ViT-Base AdamW 0.05 0.0005 0.1 5/300
Pixelfly-ViT-Base AdamW 0.05 0.0005 0 5/300

Mixer-Small AdamW 0.1 0.0005 0.1 5/300
Pixelfly-Mixer-Small AdamW 0.1 0.0005 0 5/300
Mixer-Base AdamW 0.1 0.0005 0.1 5/300
Pixelfly-Mixer-Base AdamW 0.1 0.0005 0 5/300

Table 2: Configuration of the Cifar100 experiments

We report more details on the models, including number of parameters and FLOPs, in Table 4.

We follow the naming convention in the Vision Transformer paper and MLP-Mixer paper. In particular,
ViT-S and ViT-B refers to the small and base ViT models respectively, and 16 refers to the patch size
of 16x16. The MLP-Mixer models follows the same convention.

37

Under review as a conference paper at ICLR 2022

Model Optimizer Weight Decay Learning Rate Drop Path Warmup/Epoch

ViT-Small AdamW 0.05 0.001 0.1 5/300
Pixelfly-ViT-Small AdamW 0.05 0.001 0 5/300
ViT-Base AdamW 0.05 0.001 0.1 5/300
Pixelfly-ViT-Base AdamW 0.05 0.001 0 5/300

Mixer-Small AdamW 0.1 0.001 0.1 5/300
Pixelfly-Mixer-Small AdamW 0.1 0.001 0 5/300
Mixer-Base AdamW 0.1 0.001 0.1 5/300
Pixelfly-Mixer-Base AdamW 0.1 0.001 0 5/300

Table 3: Configuration of the ImageNet experiment

Table 4: The performance of Pixelfly and ViT or MLP-Mixer on the ImageNet benchmarks, including
the number of parameters and FLOPs. We measure the accuracy and the training time speedup (on
ImageNet) compared to the dense model.

Model ImageNet top-1 acc. Speedup Params FLOPs

Mixer-S/16 72.4 - 18.5M 3.8G
Pixelfly-Mixer-S/16 72.6 1.7× 5.9M 1.3G
Mixer-B/16 75.6 - 59.9M 12.6G
Pixelfly-Mixer-B/16 76.3 2.3× 17.4M 4.3G

ViT-S/16 77.7 - 48.8M 9.9G
Pixelfly-ViT-S/16 77.5 1.9× 16.9M 3.6G
ViT-B/16 78.5 - 86.6M 17.6G
Pixelfly-ViT-B/16 78.6 2.0× 28.2M 6.1G

L.2.2 LANGUAGE MODELING

We report more details on the models, including number of parameters and FLOPs, in Table 5 and
Table 6.

Table 5: The performance of Pixelfly, BigBird and GPT-2-Small on WikiText-103, including the num-
ber of parameters and FLOPs. We measure the perplexity and the training speed up.

Model WikiText-103 (ppl) Speedup Params FLOPS
GPT-2-Small 22.2 - 117M 48.4G

BigBird 23.3 0.96× 117M 40.2G
Pixelfly 22.5 2.1× 68M 18.5G

GPT-2-Medium 20.9 - 345 M 168G
BigBird 21.5 1.1× 345 M 134G
Pixelfly 21.0 2.5× 68M 27G

Table 6: Configuration of the WikiText103 experiments

Model Optimizer Weight Decay Learning Rate Dropout Warmup/Epoch

GPT-2-Small Adam 0.1 0.0001 0.1 5/100
Pixelfly Adam 0.1 0.0001 0.1 5/100

38

Under review as a conference paper at ICLR 2022

L.3 MEASURING EMPIRICAL NTK

The Empirical NTK is a rough estimation of the real NTK, in which the width of the neural net goes
to infinity. As the width grows, the kernel gets closer to its infinite-width limit. Fortunately, both our
models of interest, MLP-Mixer and Vision Transformer, are wide and overly parameterized. Therefore
they are only one step away from the real NTK domain. This allows us to use the Empirical NTK to
approximately predict their training behaviors.

As described in equation 22, we first compute the gradient of each data sample, then we compute
pair-wise product to construct the Empirical NTK. Although we use a relatively small dataset, it’s still
expensive to build a kernel for large models, such as ViTs and MLP-Mixers. In practice, we find that
it’s sufficient to compute kernels for a subsampled dataset.

MLP-Mixer and Vision Transformer each represent one type of module of interest for our sparsifica-
tion. In MLP-Mixer, we study the sparse behavior of the Linear module, whereas, in Vision Trans-
former, we mainly focus on sparsifying attention. All models are first sparsified to around 10% of the
original dense compute. Then we compare their NTK kernels with their original dense kernel. We run
three random seeds to eliminate noise, i.e., three different initializations for each pair of configurations.
We report the mean relative difference between the kernels with respect to the norm of the dense kernel.

L.4 TRANSFER LEARNING EXPERIMENTS

We conduct extended experiments to test the generalization of our pretrained sparse models on down-
stream tasks. Specifically, we finetune Pixelfly pretrained model (ImageNet) on CIFAR-10 and show
that it get 99.03% accuracy compared to 98.77% on our pretrained dense ViT-B/16 model. In addition,
we see more than 2× speed up on downstream task fine-tuning process as well.

L.5 MICROBENCHMARKING

In this section, we perform microbenchmarking on a 4K× 4K sparse matrix multiplication. We aim to
show that Pixelfly patterns are far more hardware friendly than random patterns. For a 4K×4K matrix,
expected density is the number of non-zero entries/(4K×4K) ; actual density is the number of accessed
entries/(4K×4K), e.g. even if there is only one non-zero, 32×32 entries would be accessed because
the hardware block size is 32×32.

When random patterns are generated with small block size, (e.g 1 × 1, 2 × 2), the resources, such as
memory access and computes(denoted by Actual Density), required to compute a random sparse matrix
of density 1.25% are equivalent to computing a dense matrix multiplication. This is further reflected
in the latency: As pattern block size shrinks, deviating from the hardware block size of 32 × 32,
the random patterns’ latency worsens, whereas the Pixelfly remains efficient. Vanilla Butterfly is 5×
slower than Pixelfly as expected, because (1) it does not take advantage of the hardware property – not
structured sparsity(2) it is a series of products.

Pattern Block size Expected Density Actual Density Latency(ms)

1×1 1.25% 100% 9.4
2×2 2.5% 99.84% 9.3
4×4 5% 96.24% 9.04

Random 6×6 10% 93.66% 8.8
8×8 20% 81.89% 7.7

16×16 40% 34.52% 3.3
32×32 80% 10.15% 1.0

Butterfly 1×1 10% 62.50% 5.2
1×1 1.25% 4.62% 0.48
2×2 2.5% 5.38% 0.56
4×4 5% 6.13% 0.63

Pixelfly 6×6 10% 9.64% 0.96
8×8 10% 10.58% 1.05

16×16 10% 11.30% 1.12
32×32 10% 10.58% 1.04

Table 7: Microbenchmarking of different patterns. Given GPU processes the matrix block by block of
size 32× 32, random block pattern’s latency increases as the block size shrinks, while Pixelfly remains
efficient. We measure the latency by averaging 100 runs of batch size 4096 for each configuration.

39

Under review as a conference paper at ICLR 2022

L.6 EFFICIENT IMPLEMENTATION OF PIXELFLY

We run all of our experiments on V100 GPUs. We rely on efficient implementation of block sparse
matrix multiply and block sparse attention from the libraries Triton (https://github.com/
openai/triton) and https://github.com/huggingface/pytorch_block_sparse.
For the low-rank part, we rely on efficient (dense) matrix multiplies from cuBLAS. In particular, to
multiply the input x by the low-rank matrix UV >, we multiply U(V >x).

We keep the same number of training epochs as that of the dense models (e.g., on ImageNet, the dense
model and the Pixelfly model are trained for 300 epochs). The training speedup of the Pixelfly models
is due to faster time per epoch.

We do not use 2:4 sparsity (available on Ampere GPUs such as A100). Such fine-grained sparsity is
orthogonal to our approach, and we expect that future work incorporating both 2:4 sparsity and block
sparsity to yield further speedup.

L.7 ABLATION: SPEED-ACCURACY TRADEOFF OF PIXELFLY

We conduct an ablation experiment to examine the speed-accuracy trade of Pixelfly: on the ImageNet
dataset and the Mixer-B/16 model, we replace the dense matrices with flat block butterfly + low-rank
matrices, while varying the compute / parameter budget. We plot the speed-accuracy tradeoff in Fig. 13.

1.0 1.5 2.0 2.5
Training speedup compared to dense model

75.0

75.5

76.0

76.5

Im
ag

eN
et

1k
 to

p-
1

ac
cu

ra
cy

Mixer-B/16 (dense)
Pixelfly Mixer-B/16 (block sparse)

Figure 13: Speed-accuracy tradeoff of Pixelfly on ImageNet classification, with Mixer-B/16 as the
dense model. Pixelfly maintains or exceeds the accuracy of the dense model, up to around 2.3×
speedup (or around 30% of the number of parameters). Performance degrades when the Pixelfly model
has fewer than 30% of the number of parameters.

L.8 COMPARISON AGAINST ORIGINAL BUTTERFLY

We compare Pixelfly against original Butterfly matrices (Dao et al., 2020) on the ImageNet dataset
and Mixer-B/16 dense model. We present the results in Table 8. We notice another benefit of Pixelfly
compared to Butterfly: it trains more stably and requires less careful initialization. Since Butterfly is a
product of many factors, it requires careful initialization, otherwise the activation and gradient will be
very large or very small.

40

https://github.com/openai/triton
https://github.com/openai/triton
https://github.com/huggingface/pytorch_block_sparse

Under review as a conference paper at ICLR 2022

Table 8: The performance of Pixelfly and original Butterfly on MLP-Mixer on the ImageNet bench-
marks.

Model ImageNet top-1 acc. Speedup Params FLOPs

Mixer-B/16 75.6 - 59.9M 12.6G
Butterfly-Mixer-B/16 76.1 0.8× 17.4M 4.3G
Pixelfly-Mixer-B/16 76.3 2.3× 17.4M 4.3G

M EXTENDED RELATED WORK

In this section, we extend the related works referenced in the main paper and discuss them in detail.

M.1 NEURAL PRUNING

Our work is loosely related to neural network pruning. By iteratively eliminating neurons and
connections, pruning has seen great success in compressing complex models.Han et al. (2015a;b)
put forth two naive but effective algorithms to compress models up to 49x and maintain comparable
accuracy. Li et al. (2016) employ filter pruning to reduce the cost of running convolution models up
to 38 %, Lin et al. (2017) prunes the network at runtime, hence retaining the flexibility of the full
model. Dong et al. (2017) prunes the network locally in a layer by layer manner. Sanh et al. (2020)
prunes with deterministic first-order information, which is more adaptive to pretrained model weights.
Lagunas et al. (2021) prunes transformers models with block sparsity pattern during fine-tuning,
which leads to real hardware speed up while maintaining the accuracy. Zhu and Gupta (2017) finds
large pruned sparse network consistently outperform the small dense networks with the same compute
and memory footprints. Although both our and all the pruning methods are aiming to produce sparse
models, we differ in our emphasis on the overall efficiency, whereas pruning mostly focuses on
inference efficiency and disregards the cost in finding the smaller model.

M.2 LOTTERY TICKET HYPOTHESIS

Models proposed in our work can be roughly seen as a class of manually constructed lottery tickets.
Lottery tickets Frankle and Carbin (2018) are a set of small sub-networks derived from a larger
dense network, which outperforms their parent networks in convergence speed and potentially in
generalization. A huge number of studies are carried out to analyze these tickets both empirically
and theoretically: Morcos et al. (2019) proposed to use one generalized lottery tickets for all vision
benchmarks and got comparable results with the specialized lottery tickets; Frankle et al. (2019)
improves the stability of the lottery tickets by iterative pruning; Frankle et al. (2020) found that
subnetworks reach full accuracy only if they are stable against SGD noise during training; Orseau
et al. (2020) provides a logarithmic upper bound for the number of parameters it takes for the optimal
sub-networks to exist; Pensia et al. (2020) suggests a way to construct the lottery ticket by solving
the subset sum problem and it’s a proof by construction for the strong lottery ticket hypothesis.
Furthermore, follow-up works (Liu and Zenke, 2020; Wang et al., 2020; Tanaka et al., 2020) show that
we can find tickets without any training labels.

M.3 NEURAL TANGENT KERNEL

Our work rely heavily on neural tangent kernel in theoretical analysis. Neural Tangent Kernel Jacot
et al. (2018) is first proposed to analyse the training dynamic of infinitely wide and deep networks.
The kernel is deterministic with respect to the initialization as the width and depth go to infinity,
which provide an unique mathematical to analyze deep overparameterized networks. Couples of
theoretical works are built based upon this: Lee et al. (2019) extend on the previous idea and prove
that finite learning rate is enough for the model to follow NTK dynamic. Arora et al. (2019b)
points out that there is still a gap between NTK and the real finite NNs. Cao and Gu (2020) sheds
light on the good generalization behavior of overparameterized deep neural networks. Arora et al.
(2019a) is the first one to show generalization bound independent of the network size. Later, some
works reveal the training dynamic of models of finite width, pointing out the importance of width in
training: Hayou et al. (2019) analyzes stochastic gradient from the stochastic differential equations’
point of view; Based on these results, we formulate and derive our theorems on sparse network training.

41

Under review as a conference paper at ICLR 2022

M.4 OVERPARAMETERIZED MODELS

Our work mainly targets overparameterized models. In Nakkiran et al. (2019), the double descendent
phenomenon was observed. Not long after that, d’Ascoli et al. (2020) discover the triple descendent
phenomenon. It’s conjectured in both works that the generalization error improves as the parameter
count grows. On top of that, Arora et al. (2018) speculates that overparameterization helps model opti-
mization, and without "enough" width, training can be stuck at local optimum. Given these intuitions,
it’s not surprising that the practitioning community is racing to break the record of the largest parameter
counts: The two large language models, GPT-2 and GPT-3 (Radford et al., 2019; Brown et al., 2020),
are pushing the boundary on text generation and understanding; Their amazing zero-shot ability earn
them the title of foundation models (Bommasani et al., 2021). On the computer vision side, Dosovit-
skiy et al. (2020); Tolstikhin et al. (2021); Zhai et al. (2021) push the top-1 accuracy on various vision
benchmarks to new highs after scaling up to 50 times the parameters; Naumov et al. (2019) shows
impressive results on recommendation with a 21 billion large embedding; Jumper et al. (2021) from
DeepMind solve a 50 year old grand challenge in protein research with a 46-layer Evoformer. In our
work, we show that there is a more efficient way to scale up model training through sparsification and
double descent only implies the behavior of the dense networks.

42

	Introduction
	Problem Setting
	Butterfly matrices and Pixelated Butterfly
	Block Butterfly Matrices
	Flat butterfly matrices
	Pixelated Butterfly: Flat Block Butterfly + Low-rank for Efficient Sparse Training

	Theoretical analysis
	Expressiveness of Block Butterfly
	Expressiveness of Flat Butterfly
	Expressiveness of Flat Block Butterfly + Low-rank
	Convergence and Generalization of Sparse Networks

	Experiments
	Image Classification
	Language Modeling and Text Classification
	Ablation Study

	Related Work
	Conclusion
	Problem Formulation
	Analysis of Butterfly Variants
	Block Butterfly Analysis
	Flat Butterfly Analysis
	Flat Block Butterfly + Low-rank Analysis

	Notations
	Sparsity on hidden layer weights
	Applying masks before multiplication
	Applying Masks After Multiplication

	Gradient computation
	Neural Tangent Kernel, Convergence, and Generalization
	Dropout Neural Network and KRR
	Dynamics of Kernel Methods (Continuous Gradient Flow)
	Method Details
	Compute budget allocation
	Low-rank in Attention
	Comparison to Other Sparsity Patterns for Attention
	Sparsity Mask for Rectangular Matrices

	Benchmarking of Butterfly Multiply
	Exhausted Searching Sparsity Patterns for Efficient Sparse Training
	Challenges and Approaches
	Algorithm Description
	Method Properties: Rediscovering Classical Sparsity Patterns, No Additional Hyperparameter Tuning

	Experiment Details
	Datasets
	Model Configurations and Hyperparameter
	Image Classification
	Language Modeling

	Measuring Empirical NTK
	Transfer Learning Experiments
	Microbenchmarking
	Efficient Implementation of Pixelfly
	Ablation: Speed-Accuracy Tradeoff of Pixelfly
	Comparison Against Original Butterfly

	Extended Related Work
	Neural Pruning
	Lottery Ticket Hypothesis
	Neural Tangent Kernel
	Overparameterized Models

