
Towards a Standardised Performance Evaluation
Protocol for Cooperative MARL

Rihab Gorsane1∗ Omayma Mahjoub12∗† Ruan de Kock1∗ Roland Dubb13†

Siddarth Singh1 Arnu Pretorius1

1InstaDeep
2National School of Computer Science, Tunisia

3University of Cape Town, South Africa

Abstract

Multi-agent reinforcement learning (MARL) has emerged as a useful approach
to solving decentralised decision-making problems at scale. Research in the field
has been growing steadily with many breakthrough algorithms proposed in recent
years. In this work, we take a closer look at this rapid development with a focus on
evaluation methodologies employed across a large body of research in cooperative
MARL. By conducting a detailed meta-analysis of prior work, spanning 75 papers
accepted for publication from 2016 to 2022, we bring to light worrying trends
that put into question the true rate of progress. We further consider these trends
in a wider context and take inspiration from single-agent RL literature on similar
issues with recommendations that remain applicable to MARL. Combining these
recommendations, with novel insights from our analysis, we propose a standardised
performance evaluation protocol for cooperative MARL. We argue that such a
standard protocol, if widely adopted, would greatly improve the validity and
credibility of future research, make replication and reproducibility easier, as well
as improve the ability of the field to accurately gauge the rate of progress over
time by being able to make sound comparisons across different works. Finally, we
release our meta-analysis data publicly on our project website for future research
on evaluation 3 accompanied by our open-source evaluation tools repository4.

1 Introduction

Empirical evaluation methods in single-agent reinforcement learning (RL)5 have been closely scruti-
nised in recent years (Islam et al., 2017; Machado et al., 2017; Henderson, 2018; Zhang et al., 2018;
Henderson et al., 2018; Colas et al., 2018a, 2019; Chan et al., 2020; Jordan et al., 2020; Engstrom
et al., 2020; Agarwal et al., 2022). In this context, the impact of a lack of rigour and methodological
standards has already been observed. Fortunately, just as these issues have arisen and been identified,
they have also been accompanied by suggested solutions and recommendations from these works.

∗Equal contribution. Corresponding author: r.gorsane@instadeep.com
†Work done during an internship at InstaDeep.
3https://sites.google.com/view/marl-standard-protocol
4https://github.com/instadeepai/marl-eval
5In this paper, we use the term "RL" to exclusively refer to single-agent RL, as opposed to RL as a field of

study, of which MARL is a subfield.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/marl-standard-protocol/
https://github.com/instadeepai/marl-eval

Multi-agent reinforcement learning (MARL) extends RL with capabilities to solve large-scale de-
centralised decision-making tasks where many agents are expected to coordinate to achieve a shared
objective (Foerster, 2018; Oroojlooyjadid and Hajinezhad, 2019; Yang and Wang, 2020). In this
cooperative setting, where there is a common goal and rewards are shared between agents, sensible
evaluation methodology from the single-agent case often directly translates to the multi-agent case.
However, despite MARL being far less developed and entrenched than RL, arguably making adoption
of principled evaluation methods easier, the field remains affected by many of the same issues as
found in RL. Implementation variance, inconsistent baselines, and insufficient statistical rigour still
affect the quality of reported results. Although work specifically addressing these issues in MARL
have been rare, there have been recent publications that implicitly observe some of the aforementioned
issues and attempt to address their symptoms but arguably not their root cause (Yu et al., 2021a;
Papoudakis et al., 2021; Hu et al., 2022). These works usually attempt to perform new summaries of
performance or look into the code-level optimisations used in the literature to provide insight into the
current state of research.

In this paper, we argue that to facilitate long-term progress in future research, MARL could benefit
from the literature found in RL on evaluation. The highlighted issues and recommendations from RL
may serve as a guide towards diagnosing similar issues in MARL, as well as providing scaffolding
around which a standardised protocol for evaluation could be developed. In this spirit, we survey key
works in RL over the previous decade, each relating to a particular aspect of evaluation, and use these
insights to inform potential standards for evaluation in MARL.

For each aspect of evaluation considered, we provide a detailed assessment of the corresponding
situation in MARL through a meta-analysis of prior work. In more detail, our meta-analysis involved
manually annotating MARL evaluation methodologies found in research papers published between
2016 to 2022 from various conferences including NeurIPS, ICML, AAMAS and ICLR, with a focus
on deep cooperative MARL (see Figure 1). In total, we collected data from 75 cooperative MARL
papers accepted for publication. Although we do not claim our dataset to comprise the entire field
of modern deep MARL, to the best of our knowledge, our data includes all popular and recent deep
MARL algorithms and methodologies from seminal papers. We believe this dataset is the first of its
kind and we have made it publicly available for further analysis.

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

pu
bl

is
he

d

Figure 1: Recorded papers by year in the meta-
analysis on evaluation methodologies in coopera-
tive MARL.

By mining the data on MARL evaluation from
prior work, we highlight how certain trends, wor-
rying inconsistencies, poor reporting, a lack of
uncertainty estimation, and a general absence of
proper standards for evaluation, is plaguing the
current state of MARL research, making it dif-
ficult to draw sound conclusions from compara-
tive studies. We combine these findings with the
earlier issues and recommendations highlighted
in the literature on RL evaluation, to propose
a standardised performance evaluation protocol
for cooperative MARL research.

In addition to a standardised protocol for eval-
uation, we expose trends in the use of bench-
mark environments and suggest useful standards
for environment designers that could further im-
prove the state of evaluation in MARL. We touch upon aspects of environment bias, manipulation,
level/map cherry picking as well as scalability and computational considerations. Our recommen-
dations pertain to designer specified standards concerning the use of a particular environment, its
agreed upon settings, scenarios and version, as well as improved reporting by authors and preferring
the use of environments designed to test generalisation.

There are clear parallels between RL and MARL evaluation, especially in the cooperative setting.
Therefore, we want to emphasise that our contribution in this work is less focused on innovations in
protocol design (of which much can be ported from RL) and more focused on data-driven insights on
the current state of MARL research and a proposal of standards for MARL evaluation.

2

(a)

QMIX
MADDPGVDN

COMA IQL
QPLEX

MAPPO
QTRAN

CENTRAL-V IAC

Algorithm name

0

5

10

15

20

25

30

35

Nu
m

be
r o

f p
ap

er
s

(b)

2s
3z

M
M

M
2c

_v
s_

64
zg

ba
ne

_v
s_

ba
ne

M
M

M
2

27
m

_v
s_

30
m

1c
3s

5z
5m

_v
s_

6m
3s

5z
_v

s_
3s

6z
10

m
_v

s_
11

m
1c

3s
8z

_v
s_

1c
3s

9z
2s

_v
s_

1s
c

3s
5z

3s
_v

s_
5z

5s
10

z
6h

_v
s_

8z
7s

7z
C

or
rid

or 3m 8m
2m

_v
s_

1z
2s

_v
s_

1z
3s

_v
s_

3z
15

m
so

_m
an

y_
ba

ne
lin

g
8m

_v
s_

9m
m

ic
ro

_f
oc

us
1c

3s
5z

_v
s_

1c
3s

6z
3c

_v
s_

10
0z

g
M

M
M

3
3s

_v
s_

4z
6z

_v
s_

24
zg

1o
10

b_
vs

_1
r

1o
2r

_v
s_

4r
3b

_v
s_

1h
1m

5z
_v

s_
1u

l

0

20

40

60

80

100

W
in

 ra
te

 (%
)

(c)

Samvelyan et al. (2
019)

Zhou et al. (2
020)

Böhmer et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Papoudakis e
t al. (2

020)

Peng et al. (2
021)

Zheng et al. (2
021)

Pan et al. (2
021)

Xu et al. (2
021)

Chenghao et al. (2
021)

Sun et al. (2
021)

Paper

40

50

60

70

80

90

W
in

 R
at

e
(%

)

SMAC Version
SC2.4.6
SC2.4.10
Unknown
Training Timesteps [Millions]
2.0
4.0
5.0
8.0
60.0

(d)

2016 2017 2018 2019 2020 2021 2022
Year

0

2

4

6

8

10

12

14

16

N
um

be
r o

f p
ap

er
s

Contains ablation study
No
Yes

Figure 2: Inconsistencies in performance reports and a lack of ablation studies. (a) MARL algorithms
ranked by popularity. (b) Historical performance of QMIX on different SMAC maps across papers.
(c) Performance of QMIX on the MMM2 SMAC map as reported in different papers. (d) A count
of papers over the years containing any type of ablation study as part of their evaluation of a newly
proposed algorithm.

2 From RL to MARL evaluation: lessons, trends and recommendations

In this section, we provide a list of key lessons from RL that are applicable to MARL evaluation. We
highlight important issues identified from the literature on RL evaluation, and for each issue, provide
an assessment of the corresponding situation and trends in MARL. Finally, we conclude each lesson
with recommendations stemming from our analysis and the literature.

2.1 Lesson 1: Know the true source of improvement and report everything

Issue in RL – Confounding code-level optimisations and poor reporting: It has been shown empiri-
cally that across some RL papers there is considerable variance in the reported results for the same
algorithms evaluated on the same environments (Henderson et al., 2018; Jordan et al., 2020). This
variance impedes the development of novel algorithmic developments by creating misleading perfor-
mance comparisons and making direct comparisons of results across papers difficult. Implementation
and code-level optimisation differences can have a significant impact on algorithm performance and
may act as confounders during performance evaluation (Engstrom et al., 2020; Andrychowicz et al.,
2020). It is rare that these implementation and code-level details are reported, or that appropriate
ablations are conducted to pinpoint the true source of performance improvement.

The situation in MARL – Similar inconsistencies and poor reporting but a promising rise in
ablation studies: There already exist some work in MARL showing the effects of specific code-
level optimisations on evaluation performance (Hu et al., 2021). Employing different optimisers,
exploration schedules, or simply setting the number of rollout processes to be different, can have
a significant effect on algorithm performance. To better understand the variance in performance
reporting across works in MARL, we focused on QMIX (Rashid et al., 2018a), the most popular
algorithm in our dataset (as shown in Figure 2 (a)). In Figure 2 (b), we plot the performance of
QMIX tested on different maps from the StarCraft multi-agent challenge (SMAC) environment
(Samvelyan et al., 2019a), a popular benchmark in MARL. On several maps, we find wildly different
reported performances with large discrepancies across papers. Although it is difficult to pin down the
exact source of these differences in reports, we zoom in with our analysis to only consider a single

3

environment, in this case MMM2. We find that some of the variance is explained by differences in
the environment version as well as the length of training time, as shown in Figure 2 (c). However,
even when both of these aspects are controlled for, as well as any implementation or evaluation
details mentioned in each paper, differences in performance are still observed (as seen by comparing
orange and blue circles, respectively). This provides evidence that unreported implementation details,
or differences in evaluation methodology account for some of the observed variance and act as
confounders when comparing performance across papers (similar inconsistencies in other maps are
shown in the Appendix). We finally consider studying the explicit attempts in published works
at understanding the sources of algorithmic improvement through the use of ablation studies. We
find that very few of these studies were performed in the earlier years of MARL (see Figure 2 (d)).
However, even though roughly 40% of papers in 2021 still lacked any form of ablation study, we
find a promising trend showing that ablation studies have become significantly more prevalent in
recent years.

Recommendations – Report all experimental details, release code and include ablation studies:
Henderson et al. (2018) emphasise that for results to be reproducible, it is important that papers report
all experimental details. This includes hyperparameters, code-level optimisations, tuning procedures,
as well as a precise description of how the evaluation was performed on both the baseline and novel
work. It is also important that code be made available to easily replicate findings and stress test claims
of general performance improvements. Furthermore, Engstrom et al. (2020) propose that algorithm
designers be more rigorous in their analysis of the effects of individual components and how these
impact performance through the use of detailed ablation studies. It is important that researchers
practice diligence in attributing how the overall performance of algorithms and their underlying
algorithmic behavior are affected by different proposed innovations, implementation details and
code-level optimisations. In the light of our above analysis, we argue that the situation is no different
in MARL, and therefore suggest the field adopt more rigorous reporting and conduct detailed ablation
studies of proposed innovations.

2.2 Lesson 2: Use standardised statistical tooling for estimating and reporting uncertainty

Issue in RL – Results in papers do not take into account uncertainty: We have discussed how different
implementations of the same algorithm with the same set of hyperparameters can lead to drastically
different results. However, even under such a high degree of variability, typical methodologies often
ignore the uncertainty in their reporting (Colas et al., 2018a, 2019; Jordan et al., 2020; Agarwal
et al., 2022). Furthermore, most published results in RL make use of point estimates like the mean or
median performance and do not take into account the statistical uncertainty arising from only using a
finite number of testing runs. For instance, Agarwal et al. (2022) found that the current norm of using
only a few runs to evaluate the performance of an RL algorithm is insufficient and does not account
for the variability of the point estimate used. Furthermore, Agarwal et al. (2022) also revealed that the
manner in which point estimates are chosen varies between authors. This inconsistency invalidates
direct comparison between results across papers.

The situation in MARL – A lack of shared standards for uncertainty estimation and concerning
omissions in reporting: In Figure 3 (a)-(c), we investigate the use of statistical aggregation and
uncertainty quantification methods in MARL. We find considerable variability in the methods used,
with little indication of standardisation. Perhaps more concerning is a complete absence of proper
uncertainty quantification from one third of published papers. On a more positive note, we observe an
upward trend in the use of standard deviation as an uncertainty measure in recent years, particularly
in 2021. Furthermore, it has become fairly standard in MARL to evaluate algorithms at regular
intervals during the training phase by conducting a certain number of independent evaluation runs in
the environment using the current set of learned parameters. This procedure is then followed for each
independent training run and results are aggregated to assess final performance. In our analysis, we
find that key aspects of this procedure are regularly omitted during reporting, as shown in Figure 3
(d)-(e). Specifically, in (d), we find many papers omit details on the exact evaluation interval used,
and in (e), a similar trend in omission regarding the exact number of independent evaluation runs
used. Finally, in Figure 3 (f), we plot the number of independent runs used during training, showing
no clear standard. Given the often high computational requirements of MARL research, it is not
surprising that most works opt for a low number of independent training runs, however this remains
of concern when making statistical claims.

4

(a)

Mean None Maximum Median
Aggregate function

0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f p
ap

er
s

50.6%

26.6%

3.8%

19.0%

(b)

ST
D

95
%

 C
I

N
on

e

IQ
R

99
.5

%
 C

I0

5

10

15

20

25

30

N
um

be
r o

f p
ap

er
s

31.2%

20.8%

33.8%

13.0%

1.3%

(c)

2016 2017 2018 2019 2020 2021 2022
Year

0

2

4

6

8

10

12

N
um

be
r o

f p
ap

er
s

Uncertainty quantification
Standard Deviation
95% Confidence Interval
None
Inter-Quartile Range
99.5% Confidence Interval

(d)

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

N
um

be
r o

f p
ap

er
s

Reported evaluation intervals
No
Yes

(e)

2016 2017 2018 2019 2020 2021 2022
Year

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r o

f p
ap

er
s

Reported number of evaluation runs
No
Yes

(f)

3.0 5.0 6.0 7.0 8.0 10.0 12.0 13.0 15.0 20.0 35.0 100.0
Number of independent runs

0

10

20

30

40

Nu
m

be
r o

f p
ap

er
s

Figure 3: Trends in performance aggregation, uncertainty quantification and omissions in reporting
on key aspects of evaluation methodology. (a) Distribution of performance aggregation metrics. None
means that the aggregation metric was not specified in the paper. (b) Distribution of uncertainty
methods: α% confidence interval (CI), standard deviation (STD) and interquartile range (IQR). (c)
Trends in uncertainty quantification over time. (d) Reporting of the evaluation interval used. (e)
Reporting on the number of evaluation runs used. (f) Number of independent runs used in published
work.

Recommendations – Standardised statistical tooling and uncertainty estimation including detailed
reporting: As mentioned before, the computational requirements in MARL research often make it
prohibitively difficult to run many independent experiments to properly quantify uncertainty. One
approach to make sound statistical analysis more tractable, is to pool results across different tasks
using the bootstrap (Efron, 1992). In particular, for RL, Agarwal et al. (2022) recommend computing
stratified bootstrap confidence intervals, where instead of only using the original set of data to
calculate confidence intervals, the data is resampled with replacement from M tasks, each having N
runs. This process is repeated as many times as needed to approximate the sampling distribution of
the statistic being calculated. Furthermore, when making a summary of overall performance across
tasks it has been shown that the mean and median are insufficient, the former being dominated by
outliers and the latter having higher variance. Instead, Agarwal et al. (2022) propose the use of the
interquartile mean (IQM) which is more robust to outlier scores than the mean and more statistically
efficient than the median. Finally, Agarwal et al. (2022) propose the use of probability of improvement
scores, sample efficiency curves and performance profiles, which are commonly used to compare the
performance of optimization algorithms (Dolan and Moré, 2001). These performance profiles are
inherently robust to outliers on both ends of the distribution tails and allow for the comparison of
relative performance at a glance. In the shared reward setting, where it is only required to track a
single return value, we argue that these tools fit the exact needs of cooperative MARL, as they do in
RL. Furthermore, in light of our analysis, we strongly recommend a universal standard in the use, and
reporting of, evaluation parameters such as the number of independent runs, evaluation frequency,
performance metrics and statistical tooling, to make comparisons across different works easier and
more fair.

2.3 Lesson 3: Guard against environment misuse and overfitting

Issue in RL – Over-tuning algorithms to perform well on a specific environment: As early as 2011
issues with evaluation in RL came to the foreground in the form of environment overfitting. Whiteson
et al. (2011) raised the concern that in the context of RL, researchers might over-tune algorithms to
perform well on a specific benchmark at the cost of all other potential use cases. More specifically,
Whiteson et al. (2011) define environment overfitting in terms of a desired target distribution. When
an algorithm performs well in a specific environment but lacks performance over a target distribution
of environments, it can be deemed to have overfit that particular environment.

5

(a)

2016 2017 2018 2019 2020 2021 2022
0

2

4

6

8

10

12

14

16

18

N
um

be
r o

f p
ap

er
s

Environment:
MazeBase
Custom
MPE
Starcraft
Matrix Games
SMAC
LBF
MAMuJoCo
RWARE
GRF

(b)

1 2 3 4
Number of environments (e.g. SMAC/MPE)
0

10

20

30

40

Nu
m

be
r o

f p
ap

er
s

(c)

1 4 7 10 13 16 19 22
Number of environment scenarios/maps

(e.g. 2s3z/predator-prey)

0

2

4

6

8

10

12

Nu
m

be
r o

f p
ap

er
s

(d)

Easy Hard Super Hard
SMAC map difficulty

0

100

200

300

400

500

C
ol

le
ct

ed
 d

at
a

38.0%

25.2%

36.7% (e)

2017 2018 2019 2020 2021
Year

0

20

40

60

80

100

To
p

wi
n

ra
te

 (%
)

Scenario:
environment
3m
1c3s5z
2s3z
3s5z
8m
bane_vs_bane
MMM2
Corridor
6h_vs_8z
5m_vs_6m
3s_vs_5z
3s5z_vs_3s6z
2c_vs_64zg
27m_vs_30m
Aggregation
Mean
Median

Figure 4: Environment popularity, usage trends in papers and potential evidence of overfitting on
SMAC. (a) Environment adoption over time. (b) Number of environments used in papers. (c) Number
of scenarios/tasks/maps used in papers. (d) Distribution of task difficulty of SMAC maps used in
papers. (e) Performance trends on popular SMAC maps: Aggregation is the aggregate function used
for the different reported values.

The situation in MARL – One environment to rule them all – on the use and misuse of SMAC: The
StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019a) has quickly risen to prominence as
a key benchmark for MARL research since it’s release in 2019, rivaled only in use by the multi-agent
particle environment (MPE) introduced by Lowe et al. (2017a) (see Figure 4 (a)). SMAC and its
accompanied MARL framework PyMARL (introduced in the same paper), fulfills several desirable
properties for benchmarking: offering multiple maps of various difficulty that test key aspects of
MARL algorithms and providing a unified API for running baselines as well as state-of-the-art
algorithms on SMAC. Unfortunately, the wide-spread adoption of SMAC has also caused several
issues, relating to environment overfitting and cherry picking of results, putting into question the
credibility of claims made while using it as a benchmark.

To illustrate the above point, we start by highlighting that many MARL papers use only a single
environment (e.g. SMAC or MPE) for evaluation, as shown in Figure 4 (b). This is often deemed
acceptable since both SMAC and MPE provide many different tasks, or maps. For instance, in SMAC,
there are 23 different maps providing a wide variety in terms of the number of agents, agent types and
game dynamics. However, there is no standard, or agreed upon set of maps to use for benchmarking
novel work, which makes it easy for authors to selectively subsample maps post-experiment based
on the outcomes of their proposed algorithm. As shown in Figure 4 (c), although environments like
SMAC and MPE offer many different testing scenarios, it is typical for papers to only use a small
number of these in their reported experiments.

To concretely expose the potential danger in this author map selection bias, we redo the original
analysis performed by Samvelyan et al. (2019a), using the authors’ exact experimental data that was
made publicly available6, containing five independent runs for IQL (Tampuu et al., 2015a), COMA
(Foerster et al., 2018a), VDN (Sunehag et al., 2017) and QMIX (Rashid et al., 2018a) on 14 SMAC
maps.7 The top row of Figure 5 shows the results of this analysis performed using the statistical
tools recommended by Agarwal et al. (2022), including the probability of improvement between
algorithms, performance profiles and sample efficiency curves. The results support the original claims
made by Samvelyan et al. (2019a), namely that QMIX is a superior algorithm to that of VDN, COMA

6We applaud the authors for making their raw evaluation data publicly available. This data can be found here:
https://github.com/oxwhirl/smac.

7The maps chosen were: 1c3s5z, 2c_vs_64zg, bane_vs_bane, MMM2, 10m_vs_11m, 27m_vs_30m,
5m_vs_6m, 2s3z, 2s_vs_1sc, s5z, 3s_vs_5z, 6h_vs_8z, 3s5z_vs_3s6z and corridor

6

https://github.com/oxwhirl/smac

0.2 0.4 0.6 0.8
P(X > Y)

IQL
IQL
IQL

COMA
COMA

VDN
Algorithm X

COMA
VDN
QMIX
VDN
QMIX
QMIX

Algorithm Y

0.0 0.2 0.4 0.6 0.8 1.0
Test battle win rate ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
COMA
VDN
QMIX

0.0 0.5 1.0 1.5
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

Te
st

 b
at

tle
 w

in
 ra

te

IQL
COMA
VDN
QMIX

0.2 0.4 0.6 0.8
P(X > Y)

IQL
IQL
IQL

COMA
COMA

VDN
Algorithm X

COMA
VDN
QMIX
VDN
QMIX
QMIX

Algorithm Y

0.0 0.2 0.4 0.6 0.8 1.0
Test battle win rate ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
COMA
VDN
QMIX

0.0 0.5 1.0 1.5
Timesteps (in millions)

0.0

0.2

0.4

0.6

Te
st

 b
at

tle
 w

in
 ra

te

IQL
COMA
VDN
QMIX

Figure 5: Reanalysis of original SMAC experiments conducted by Samvelyan et al. (2019a) including
probability of improvement, performance profiles and sample efficiency curves. Top row: All 14
SMAC maps used in the original analysis. Bottom row: Subset of 6 maps, including 2 easy, 2
medium and 2 hard: 2s_vs_1sc, 3s_vs_5z, bane_vs_bane, 5m_vs_6m, 6h_vs_8z and corridor

and IQL, both in terms of performance and sample efficiency. However, by simply sampling a smaller
set of two easy, medium and hard maps (a common spread in the literature, see Figure 4 (d)), from
the original 14, giving 6 maps in total (a reasonable number according to prior work, see Figure 4
(c)), we are able to change the outcome of the analysis in support of no difference in performance
between VDN and QMIX, as well as finding VDN to be more sample efficient. This is shown in the
bottom row of Figure 5 and highlights the danger of a lack of standards regarding which fixed set of
maps should be used for benchmarking.

We end our investigation into SMAC (and refer the reader to the Appendix for additional discrepancies
uncovered), by looking at historical performance trends. In Figure 4 (e), we show the top win rate
achieved by an algorithm in a specific year for 14 of the most popular maps used in prior work. We
find that by 2021, most of these maps have converged to a win rate close or equal to 100%, while
only a few maps are still situated around 80-90%. Given that many of these maps repeatedly feature
across papers, and will likely be used in future work, it begs the question to what extent the MARL
community has already overfit to SMAC as an evaluation benchmark.

Recommendations – Standardised environment sets and testing for generalisation: To solve the
issue of environment overfitting, Whiteson et al. (2011) propose the use of a generalised evaluation
methodology. In this approach, environments (for tuning algorithms) are freely sampled from some
generalised environment set. Separately, algorithm evaluation is performed on a second set of sampled
environments from the same generalised environment set, acting as a test set analogous to that used
in supervised learning. Recent work in this direction include benchmarks such as Procgen (Cobbe
et al., 2020), which use procedural generation to implicitly construct a distribution from which to
sample test tasks. In SMAC and other environments, it is common practice to only evaluate on the
exact map the algorithm was trained on, under that exact same conditions, and to not specifically test
for generalisation across unseen tasks. However, many MARL algorithms are still highly sensitive to
small changes in the environment and often fail to generalise to new unseen tasks (Carion et al., 2019a;
Zhang et al., 2020a; Mahajan et al., 2022). This calls for more work on MARL generalisation and we
recommend a stronger focus on benchmarks designed specifically to test generaliation. However, it
has been noted that procedurally generated benchmarks may reduce the precision of research (Kirk
et al., 2021), making it more difficult to track progress. Furthermore, MARL exibits several unique
and challenging difficulties when it comes to building algorithms able to generalise, likely requiring
many years of future work to surmount (Mahajan et al., 2022). Therefore, in certain cases, it might
make more sense for researchers to take smaller and more precise steps towards key innovations in
algorithm design by still relying on traditional environment sets. In this setting, we strongly advocate

7

using fixed environment sets, where ideally these are selected by the designers of each environment
and are accompanied by exact instruction for their configuration, so as to be consistent across papers.

3 Towards a standardised evaluation protocol for MARL

In this section, we pool together the observations and recommendations from the previous section to
provide a standardised performance evaluation protocol for cooperative MARL. We are realistic in our
efforts, knowing that a single protocol is unlikely to be applicable to all MARL research. However,
echoing recent work on evaluation (Ulmer et al., 2022), we stress that many of the issues highlighted
previously stem from a lack of standardisation. Therefore, we believe a default "off-the-shelf"
protocol that is able capture most settings, could provide great value to the community. If widely
adopted, such a standardised protocol would make it easier and more accurate to compare across
different works and remove some of the noise in the signal regarding the true rate of progress in
MARL research. A summarised version of our protocol is given in the blue box at the end of this
section and a concrete demonstration of its usage can be found in the Appendix.

Benchmarks and Baselines. Before giving details on the proposed protocol, we first briefly
comment on benchmarks and baselines used in experiments. These choices often depend on the
research question of interest, the novel work being proposed and key algorithmic capabilities to
be tested. However, as alluded to in our analysis, we recommend that environment designers take
full ownership regarding how their environments are to be used for evaluation. For example, if
an environment has several available static tasks, the designers should specify a fixed compulsory
minimum set for experiments to avoid biased subsampling by authors. It could also be helpful if
designers keep track of state-of-the-art (SOTA) performances on tasks from published works and
allow authors to submit these for vetting. We also strongly recommend using more than a single
environment (e.g. SMAC) and preferring environments that test generalisation. Regarding baselines,
we recommend that at minimum the published SOTA contender to novel work should be included.
For example, if the novel proposal is a value-based off-policy algorithm for discrete environments, at
minimum, it must be compared to the current SOTA value-based off-policy algorithm for discrete
environments. Finally, all baselines must be tuned fairly with the same compute budget.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of papers

Each 100 E for 200 E
Each 40000 T for 32 E

Each 200 E for 20 E
Each 1 E for 100 E

Each 10000 T for 32 E
Each 4000 T for 10 E

Each 1 E for 8 T
Each 320000 T for 32 E

Each 50 E for 100 E
Each 100 E for 10 E

Each 100000 T for 32 E
Each 1 E for 1000 E
Each 100 E for 20 E

Each 20000 T for 24 E
Each 500 E for 20 E
Each 1 E for 5000 E

M
et

ho
do

lo
gy

0.
00

01
0.

01
5

0.
05 0.

2
0.

25 0.
4

0.
5

0.
6

1.
0

1.
4

2.
0

2.
5

3.
0

4.
0

5.
0

7.
5

8.
0

9.
0

10
.0

15
.0

18
.0

20
.0

25
.0

30
.0

40
.0

60
.0

18
0.

0
23

0.
0

Training timesteps (million)

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

1.0 2.0 4.0 10.0 30.0 60.0
Training timesteps (million)

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Figure 6: Top: Evaluation methodologies in pa-
pers: how frequent and for how many runs to
do evaluation. “E” refers to episode and “T”
to timestep. Bottom: Number of total training
timesteps used in papers (left) and win rates per
training timesteps on 2s3z (right).

Evaluation parameters. In Figure 6, we
show the evaluation parameters for the num-
ber of evaluation runs, the evaluation interval
(top) and the training time (bottom left) used
in papers. We find it is most common to use
32 evaluation episodes at every 10000 timesteps
(defined as the steps taken by agents when act-
ing in the environment) and to train for 2 million
timesteps in total. We note that these numbers
are skewed towards earlier years of SMAC evalu-
ation and that recent works have since explored
far longer training times. However, we argue
that these longer training times are not always
justified (e.g. see the bottom right of Figure
6). Furthermore, SMAC is one of the most ex-
pensive MARL environments (Appendix A.7
in Papoudakis et al. (2021)) and for the future
accessibility of research in terms of scale and
for fair comparisons across different works, we
recommend the above commonly used values
as reasonable starting defaults and support the
view put forward by Dodge et al. (2019) that
results should be interpreted as a function of the
compute budget used. We of course recognise that these evaluation parameters can be very specific
to the environment, or task, and again we urge environment designers to play a role in helping the
community develop and adopt sensible standards. Finally, as done by Papoudakis et al. (2021), we
recommend treating off-policy and on-policy algorithms differently and train on-policy algorithms
for a factor of 10 more timesteps than off-policy algorithms due to differences in sample efficiency.

8

As argued by Papoudakis et al. (2021), with modern simulators, the wall-clock time of on-policy
training done in this way is typically not much slower than off-policy training.

Performance and uncertainty quantification. To aggregate performance across evaluation intervals,
we recommend using the absolute performance metric proposed by Colas et al. (2018b), computed
using the best average (over training runs) joint policy found during training. Typically, practitioners
checkpoint the best performing policy parameters to use as the final model, therefore it makes sense
to do evaluation in a similar way. However, to account for not averaging across different evaluation
intervals, Colas et al. (2018b) recommend increasing the number of independent evaluation runs
using the best policy by a factor of 10 compared to what was used at other intervals. To quantify
uncertainty, we recommend using the mean with 95% confidence intervals (CIs) at each evaluation
interval (computed over independent evaluation runs), and when aggregating across tasks within an
environment, we recommend using the tools proposed by Agarwal et al. (2022), in particular, the
inter-quartile mean (IQM) with 95% stratified Bootstrap CIs.

Reporting. We strongly recommend reporting all relevant experimental details including: hyper-
parameters, code-level optimisations, computational requirements and frameworks used. Taking
inspiration from model cards (Mitchell et al., 2019), we provide templates for reporting in the Ap-
pendix. Furthermore, we recommend providing experimental results in multiple formats, including
plots and tables per task and environment as well as making all raw experimental data and code
publicly available for future analysis and easy comparison. Finally, we encourage authors to include
detailed ablation studies in their work, so as to be able to accurately attribute sources of improvement.

A Standardised Performance Evaluation Protocol for Cooperative MARL

Input: Environments with tasks t from a set T . Algorithms a ∈ A, including baselines and novel work.

1. Evaluation parameters – defaults
• Number of training timesteps, T = 2 million (off-policy), T = 20 million (on-policy).

• Number of independent training runs, R = 10 (from Agarwal et al. (2022))

• Number of independent evaluation episodes per interval, E = 32.

• Evaluation intervals, i ∈ I, at every 10000 timesteps.

2. Performance and uncertainty quantification
1. Performance metric: Always use returns G (applicable to all environments), and the environ-

ment specific metric (e.g. Win rate).

2. Per task evaluation: Compute the mean Ga
t over E episodes at each evaluation interval i,

where Ga
t is the return of algorithm a on task t, with 95% CI, for all a.

3. Per environment evaluation:

• Compute the normalised absolute return (Colas et al., 2018b) as the mean return of
10×E = 320 evaluation episodes using the best joint policy found during training and
normalising the return to be in the range [0, 1] using (Ga

t −min(Gt))/(max(Gt) −
min(Gt)), where Gt is the return for all algorithms on task t.

• For each algorithm a, form an evaluation matrix with shape (R, |T |) where each entry
is the normalised absolute return for a specific training run on a specific task.

• Compute the IQM and optimality gap with 95% stratified Bootstrap CIs, probability
of improvement scores and performance profiles, to compare the algorithms, using the
tools proposed by Agarwal et al. (2022).a Sample efficiency curves can be computed by
using normalised returns at each evaluation interval.

3. Reporting
• Experiments: All hyperparameters, code-level optimisations, computational requirements and

framework details.

• Plots: All task and environment evaluations as well as ablation study results.

• Tables: Normalised absolute performance per task with 95% CI for all tasks, IQM with 95%
stratified Bootstrap CIs per environment for all environments.

• Public repository: Raw evaluation data and code implementations.

aThese can be found in the rliable library: https://github.com/google-research/rliable

9

https://github.com/google-research/rliable

4 Conclusion and future work

In this work, we argue for the power of standardisation. In a fast-growing field such as MARL, it
becomes ever more important to be able to dispel illusions of rapid progress, potentially misleading
the field and resulting in wasted time and effort. We hope to break the spell by proposing a sensible
standardised performance evaluation protocol, motivated in part by the literature on evaluation in
RL, as well as by a meta-analysis of prior work in MARL. If widely adopted, such a protocol could
make comparisons across different works much faster, easier and more accurate. However, certain
aspects of evaluation are better left standardised outside of the control or influence of authors, such as
protocols pertaining to the use of benchmark environments. We believe this is an overlooked issue
and an important area for future work by the community, and specifically environment designers,
to jointly establish better standards and protocols for evaluation and environment use. Finally, we
encourage the community to move beyond the use of only one or two environments with static task
sets (e.g. MPE and SMAC) and focus more on building algorithms, environments and tools for
improving generalisation in MARL.

A clear limitation of our work is our focus on the cooperative setting. Interesting works have
developed protocols and environments for evaluation in both the competitive and mixed settings
(Omidshafiei et al., 2019; Rowland et al., 2019; Leibo et al., 2021). We find this encouraging and
argue for similar efforts in the adoption of proposed standards for evaluation.

Acknowledgments and Disclosure of Funding

The authors would like to kindly thank the following people for useful discussions and feedback on
this work: Jonathan Shock, Matthew Morris, Claude Formanek, Asad Jeewa, Kale-ab Tessera, Sinda
Ben Salem, Khalil Gorsan Mestiri, Chaima Wichka and Sasha Abramowitz.

10

References
R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of benchmarked

deep reinforcement learning tasks for continuous control,” 2017. [Online]. Available:
https://arxiv.org/abs/1708.04133

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling,
“Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents,” 2017. [Online]. Available: https://arxiv.org/abs/1709.06009

P. Henderson, “Reproducibility and reusability in deep reinforcement learning,” Master’s thesis,
McGill University, 2018.

A. Zhang, N. Ballas, and J. Pineau, “A dissection of overfitting and generalization in continuous
reinforcement learning,” 2018. [Online]. Available: https://arxiv.org/abs/1806.07937

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep Reinforcement
Learning that Matters,” 2018.

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “How Many Random Seeds? Statistical Power Analysis in
Deep Reinforcement Learning Experiments,” 2018.

——, “A Hitchhiker’s Guide to Statistical Comparisons of Reinforcement Learning Algorithms,”
2019.

S. C. Y. Chan, S. Fishman, J. Canny, A. Korattikara, and S. Guadarrama, “Measuring the Reliability
of Reinforcement Learning Algorithms,” 2020.

S. M. Jordan, Y. Chandak, D. Cohen, M. Zhang, and P. S. Thomas, “Evaluating the Performance of
Reinforcement Learning Algorithms,” 2020.

L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph, and A. Madry, “Implementation
matters in deep policy gradients: A case study on ppo and trpo,” 2020.

R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare, “Deep Reinforcement
Learning at the Edge of the Statistical Precipice,” 2022.

J. N. Foerster, “Deep multi-agent reinforcement learning,” Ph.D. dissertation, University of Oxford,
2018.

A. Oroojlooyjadid and D. Hajinezhad, “A review of cooperative multi-agent deep reinforcement
learning,” CoRR, vol. abs/1908.03963, 2019. [Online]. Available: http://arxiv.org/abs/1908.03963

Y. Yang and J. Wang, “An Overview of Multi-Agent Reinforcement Learning from
Game Theoretical Perspective,” CoRR, vol. abs/2011.00583, 2020. [Online]. Available:
https://arxiv.org/abs/2011.00583

C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The surprising effectiveness
of MAPPO in cooperative, multi-agent games,” CoRR, vol. abs/2103.01955, 2021. [Online].
Available: https://arxiv.org/abs/2103.01955

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Benchmarking multi-agent deep
reinforcement learning algorithms in cooperative tasks,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021. [Online]. Available:
http://arxiv.org/abs/2006.07869

J. Hu, S. Jiang, S. A. Harding, H. Wu, and S. wei Liao, “Rethinking the implementation tricks and
monotonicity constraint in cooperative multi-agent reinforcement learning,” 2022.

M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot, M. Geist,
O. Pietquin, M. Michalski et al., “What matters in on-policy reinforcement learning? a large-scale
empirical study,” arXiv preprint arXiv:2006.05990, 2020.

J. Hu, S. Jiang, S. A. Harding, H. Wu, and S. wei Liao, “Rethinking the implementation tricks and
monotonicity constraint in cooperative multi-agent reinforcement learning,” 2021.

11

https://arxiv.org/abs/1708.04133
https://arxiv.org/abs/1709.06009
https://arxiv.org/abs/1806.07937
http://arxiv.org/abs/1908.03963
https://arxiv.org/abs/2011.00583
https://arxiv.org/abs/2103.01955
http://arxiv.org/abs/2006.07869

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix: Mono-
tonic value function factorisation for deep multi-agent reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2018, pp. 4295–4304.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. Foerster, and S. Whiteson, “The StarCraft Multi-Agent Challenge,” CoRR, vol.
abs/1902.04043, 2019.

B. Efron, Bootstrap Methods: Another Look at the Jackknife. New York, NY: Springer New York,
1992, pp. 569–593. [Online]. Available: https://doi.org/10.1007/978-1-4612-4380-9_41

E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,” 2001.
[Online]. Available: https://arxiv.org/abs/cs/0102001

S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone, “Protecting against evaluation overfitting in
empirical reinforcement learning,” in 2011 IEEE symposium on adaptive dynamic programming
and reinforcement learning (ADPRL). IEEE, 2011, pp. 120–127.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for
mixed cooperative-competitive environments,” Advances in neural information processing systems,
vol. 30, 2017.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente,
“Multiagent cooperation and competition with deep reinforcement learning,” 2015.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy
gradients,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot, N. Son-
nerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative multi-agent
learning,” arXiv preprint arXiv:1706.05296, 2017.

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedural generation to benchmark
reinforcement learning,” in International conference on machine learning. PMLR, 2020, pp.
2048–2056.

N. Carion, N. Usunier, G. Synnaeve, and A. Lazaric, “A structured prediction approach for gen-
eralization in cooperative multi-agent reinforcement learning,” Advances in neural information
processing systems, vol. 32, 2019.

T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez, and Y. Tian, “Multi-agent collaboration
via reward attribution decomposition,” arXiv preprint arXiv:2010.08531, 2020.

A. Mahajan, M. Samvelyan, T. Gupta, B. Ellis, M. Sun, T. Rocktäschel, and S. Whiteson, “General-
ization in cooperative multi-agent systems,” arXiv preprint arXiv:2202.00104, 2022.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A survey of generalisation in deep reinforce-
ment learning,” arXiv preprint arXiv:2111.09794, 2021.

D. Ulmer, E. Bassignana, M. Müller-Eberstein, D. Varab, M. Zhang, C. Hardmeier, and B. Plank,
“Experimental standards for deep learning research: A natural language processing perspective,”
arXiv preprint arXiv:2204.06251, 2022.

J. Dodge, S. Gururangan, D. Card, R. Schwartz, and N. A. Smith, “Show your work: Improved
reporting of experimental results,” arXiv preprint arXiv:1909.03004, 2019.

C. Colas, O. Sigaud, and P.-Y. Oudeyer, “Gep-pg: Decoupling exploration and exploitation in deep
reinforcement learning algorithms,” in International conference on machine learning. PMLR,
2018, pp. 1039–1048.

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
and T. Gebru, “Model cards for model reporting,” in Proceedings of the conference on fairness,
accountability, and transparency, 2019, pp. 220–229.

12

https://doi.org/10.1007/978-1-4612-4380-9_41
https://arxiv.org/abs/cs/0102001

S. Omidshafiei, C. Papadimitriou, G. Piliouras, K. Tuyls, M. Rowland, J.-B. Lespiau, W. M. Czarnecki,
M. Lanctot, J. Perolat, and R. Munos, “α-rank: Multi-agent evaluation by evolution,” Scientific
reports, vol. 9, no. 1, pp. 1–29, 2019.

M. Rowland, S. Omidshafiei, K. Tuyls, J. Perolat, M. Valko, G. Piliouras, and R. Munos,
“Multiagent evaluation under incomplete information,” 2019. [Online]. Available: https:
//arxiv.org/abs/1909.09849

J. Z. Leibo, E. Duéñez-Guzmán, A. S. Vezhnevets, J. P. Agapiou, P. Sunehag, R. Koster, J. Matyas,
C. Beattie, I. Mordatch, and T. Graepel, “Scalable Evaluation of Multi-Agent Reinforcement
Learning with Melting Pot,” 2021.

S. Sukhbaatar, a. szlam, and R. Fergus, “Learning multiagent communication with backpropagation,”
in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016. [Online]. Available:
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf

J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with deep
multi-agent reinforcement learning,” in Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran
Associates, Inc., 2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task multi-agent
reinforcement learning under partial observability,” in ICML, 2017, pp. 2681–2690. [Online].
Available: http://proceedings.mlr.press/v70/omidshafiei17a.html

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive environments,”
in NIPS, 2017, pp. 6382–6393. [Online]. Available: http://papers.nips.cc/paper/
7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. S. Torr, P. Kohli, and S. Whiteson, “Stabilising
experience replay for deep multi-agent reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 1146–1155. [Online].
Available: https://proceedings.mlr.press/v70/foerster17b.html

E. Wei, D. Wicke, D. Freelan, and S. Luke, “Multiagent soft q-learning,” in 2018 AAAI Spring
Symposia, Stanford University, Palo Alto, California, USA, March 26-28, 2018. AAAI Press,
2018. [Online]. Available: https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17508

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent
policy gradients,” in AAAI. AAAI Press, 2018, pp. 2974–2982.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks for cooperative
multi-agent learning based on team reward,” in Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018, E. André, S. Koenig, M. Dastani, and G. Sukthankar, Eds. International Foundation for
Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018, pp. 2085–2087.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3238080

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “QMIX:
Monotonic value function factorisation for deep multi-agent reinforcement learning,” in
Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp.
4295–4304. [Online]. Available: https://proceedings.mlr.press/v80/rashid18a.html

A. Singh, T. Jain, and S. Sukhbaatar, “Learning when to communicate at scale in multiagent
cooperative and competitive tasks,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=rye7knCqK7

13

https://arxiv.org/abs/1909.09849
https://arxiv.org/abs/1909.09849
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
http://proceedings.mlr.press/v70/omidshafiei17a.html
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
http://papers.nips.cc/paper/7217-multi-agent-actor-critic-for-mixed-cooperative-competitive-environments
https://proceedings.mlr.press/v70/foerster17b.html
https://aaai.org/ocs/index.php/SSS/SSS18/paper/view/17508
http://dl.acm.org/citation.cfm?id=3238080
https://proceedings.mlr.press/v80/rashid18a.html
https://openreview.net/forum?id=rye7knCqK7

S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,” in Proceedings of
the 36th International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp.
2961–2970. [Online]. Available: https://proceedings.mlr.press/v97/iqbal19a.html

S. Q. Zhang, Q. Zhang, and J. Lin, “Efficient communication in multi-agent reinforcement
learning via variance based control,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https:
//proceedings.neurips.cc/paper/2019/file/14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf

A. Malysheva, D. Kudenko, and A. Shpilman, “Magnet: Multi-agent graph network for deep multi-
agent reinforcement learning,” in 2019 XVI International Symposium "Problems of Redundancy in
Information and Control Systems" (REDUNDANCY), 2019, pp. 171–176.

H. Mao, Z. Zhang, Z. Xiao, and Z. Gong, “Modelling the dynamic joint policy of teammates with
attention multi-agent DDPG,” in AAMAS. International Foundation for Autonomous Agents and
Multiagent Systems, 2019, pp. 1108–1116.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung,
P. H. S. Torr, J. N. Foerster, and S. Whiteson, “The starcraft multi-agent challenge,” in AAMAS,
2019, pp. 2186–2188. [Online]. Available: http://dl.acm.org/citation.cfm?id=3332052

N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. Ortega, D. Strouse, J. Z. Leibo, and N. De Freitas,
“Social influence as intrinsic motivation for multi-agent deep reinforcement learning,” in
Proceedings of the 36th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15
Jun 2019, pp. 3040–3049. [Online]. Available: https://proceedings.mlr.press/v97/jaques19a.html

Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao, “Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/07a9d3fed4c5ea6b17e80258dee231fa-Paper.pdf

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven: Multi-agent variational
exploration,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
f816dc0acface7498e10496222e9db10-Paper.pdf

C. Schroeder de Witt, J. Foerster, G. Farquhar, P. Torr, W. Boehmer, and S. Whiteson,
“Multi-agent common knowledge reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/f968fdc88852a4a3a27a81fe3f57bfc5-Paper.pdf

N. Carion, N. Usunier, G. Synnaeve, and A. Lazaric, “A structured prediction approach for
generalization in cooperative multi-agent reinforcement learning,” in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf

A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and J. Pineau, “TarMAC:
Targeted multi-agent communication,” in Proceedings of the 36th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 1538–1546. [Online]. Available:
https://proceedings.mlr.press/v97/das19a.html

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “QTRAN: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning,” in Proceedings of the 36th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 5887–5896.
[Online]. Available: https://proceedings.mlr.press/v97/son19a.html

14

https://proceedings.mlr.press/v97/iqbal19a.html
https://proceedings.neurips.cc/paper/2019/file/14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/14cfdb59b5bda1fc245aadae15b1984a-Paper.pdf
http://dl.acm.org/citation.cfm?id=3332052
https://proceedings.mlr.press/v97/jaques19a.html
https://proceedings.neurips.cc/paper/2019/file/07a9d3fed4c5ea6b17e80258dee231fa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f968fdc88852a4a3a27a81fe3f57bfc5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3c3c139bd8467c1587a41081ad78045e-Paper.pdf
https://proceedings.mlr.press/v97/das19a.html
https://proceedings.mlr.press/v97/son19a.html

T. Wang, J. Wang, Y. Wu, and C. Zhang, “Influence-based multi-agent exploration,”
in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=BJgy96EYvr

Y. Liu, W. Wang, Y. Hu, J. Hao, X. Chen, and Y. Gao, “Multi-agent game abstraction
via graph attention neural network,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, pp. 7211–7218, Apr. 2020. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/6211

J. Ma and F. Wu, “Feudal multi-agent deep reinforcement learning for traffic signal control,” in
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’20. Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2020, p. 816–824.

I.-J. Liu, R. A. Yeh, and A. G. Schwing, “Pic: Permutation invariant critic for multi-agent
deep reinforcement learning,” in Proceedings of the Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura,
Eds., vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 590–602. [Online]. Available:
https://proceedings.mlr.press/v100/liu20a.html

W. Wang, T. Yang, Y. Liu, J. Hao, X. Hao, Y. Hu, Y. Chen, C. Fan, and Y. Gao, “Action semantics
network: Considering the effects of actions in multiagent systems,” in ICLR, 2020. [Online].
Available: https://openreview.net/forum?id=ryg48p4tPH

S. Q. Zhang, Q. Zhang, and J. Lin, “Succinct and robust multi-agent communication with temporal
message control,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 17 271–17 282. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
c82b013313066e0702d58dc70db033ca-Paper.pdf

J. Xu, F. Zhong, and Y. Wang, “Learning multi-agent coordination for enhancing
target coverage in directional sensor networks,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 10 053–10 064. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/7250eb93b3c18cc9daa29cf58af7a004-Paper.pdf

T. Wang, J. Wang, C. Zheng, and C. Zhang, “Learning nearly decomposable value functions via
communication minimization,” in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=HJx-3grYDB

J. Roy, P. Barde, F. Harvey, D. Nowrouzezahrai, and C. Pal, “Promoting coordination through
policy regularization in multi-agent deep reinforcement learning,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 15 774–15 785. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/b628386c9b92481fab68fbf284bd6a64-Paper.pdf

J. Wang, Y. Zhang, T.-K. Kim, and Y. Gu, “Shapley q-value: A local reward approach
to solve global reward games,” in AAAI, 2020, pp. 7285–7292. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/6220

W. Boehmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 980–991. [Online]. Available:
https://proceedings.mlr.press/v119/boehmer20a.html

Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolutionary population curriculum for
scaling multi-agent reinforcement learning,” in ICLR, 2020.

F. Christianos, L. Schäfer, and S. Albrecht, “Shared experience actor-critic for multi-agent
reinforcement learning,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 10 707–10 717. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf

15

https://openreview.net/forum?id=BJgy96EYvr
https://ojs.aaai.org/index.php/AAAI/article/view/6211
https://ojs.aaai.org/index.php/AAAI/article/view/6211
https://proceedings.mlr.press/v100/liu20a.html
https://openreview.net/forum?id=ryg48p4tPH
https://proceedings.neurips.cc/paper/2020/file/c82b013313066e0702d58dc70db033ca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c82b013313066e0702d58dc70db033ca-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7250eb93b3c18cc9daa29cf58af7a004-Paper.pdf
https://openreview.net/forum?id=HJx-3grYDB
https://proceedings.neurips.cc/paper/2020/file/b628386c9b92481fab68fbf284bd6a64-Paper.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/6220
https://proceedings.mlr.press/v119/boehmer20a.html
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf

C. Wen, X. Yao, Y. Wang, and X. Tan, “Smix(λ): Enhancing centralized value functions for
cooperative multi-agent reinforcement learning,” in The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 2020,
pp. 7301–7308. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6223

A. Agarwal, S. Kumar, K. P. Sycara, and M. Lewis, “Learning transferable cooperative behavior in
multi-agent teams,” in AAMAS. International Foundation for Autonomous Agents and Multiagent
Systems, 2020, pp. 1741–1743.

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht, “Comparative evaluation of
multi-agent deep reinforcement learning algorithms,” vol. abs/2006.07869, 2020. [Online].
Available: https://arxiv.org/abs/2006.07869

Z. Ding, T. Huang, and Z. Lu, “Learning individually inferred communication for multi-
agent cooperation,” in Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc.,
2020, pp. 22 069–22 079. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf

H. Hu and J. N. Foerster, “Simplified action decoder for deep multi-agent reinforcement
learning,” in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=B1xm3RVtwB

M. Zhou, Z. Liu, P. Sui, Y. Li, and Y. Y. Chung, “Learning implicit credit assignment
for cooperative multi-agent reinforcement learning,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 11 853–11 864. [Online]. Available:
https://proceedings.neurips.cc/paper/2020/file/8977ecbb8cb82d77fb091c7a7f186163-Paper.pdf

J. Chen, Y. Zhang, Y. Xu, H. Ma, H. Yang, J. Song, Y. Wang, and Y. Wu, “Variational automatic
curriculum learning for sparse-reward cooperative multi-agent problems,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 9681–9693. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/503e7dbbd6217b9a591f3322f39b5a6c-Paper.pdf

M. Chen, Y. Li, E. Wang, Z. Yang, Z. Wang, and T. Zhao, “Pessimism meets invariance:
Provably efficient offline mean-field multi-agent rl,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 17 913–17 926. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/9559fc73b13fa721a816958488a5b449-Paper.pdf

S. Li, J. K. Gupta, P. Morales, R. Allen, and M. J. Kochenderfer, “Deep implicit coordination graphs
for multi-agent reinforcement learning,” in Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, ser. AAMAS ’21. Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2021, p. 764–772.

W.-F. Sun, C.-K. Lee, and C.-Y. Lee, “Dfac framework: Factorizing the value function via quantile
mixture for multi-agent distributional q-learning,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 9945–9954. [Online]. Available:
https://proceedings.mlr.press/v139/sun21c.html

F. Christianos, G. Papoudakis, M. A. Rahman, and S. V. Albrecht, “Scaling multi-agent
reinforcement learning with selective parameter sharing,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 1989–1998. [Online]. Available:
https://proceedings.mlr.press/v139/christianos21a.html

J. Wang, Z. Ren, B. Han, J. Ye, and C. Zhang, “Towards understanding cooperative
multi-agent q-learning with value factorization,” in Advances in Neural Information Processing

16

https://ojs.aaai.org/index.php/AAAI/article/view/6223
https://arxiv.org/abs/2006.07869
https://proceedings.neurips.cc/paper/2020/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://openreview.net/forum?id=B1xm3RVtwB
https://proceedings.neurips.cc/paper/2020/file/8977ecbb8cb82d77fb091c7a7f186163-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/503e7dbbd6217b9a591f3322f39b5a6c-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9559fc73b13fa721a816958488a5b449-Paper.pdf
https://proceedings.mlr.press/v139/sun21c.html
https://proceedings.mlr.press/v139/christianos21a.html

Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 29 142–29 155. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/f3f1fa1e4348bfbebdeee8c80a04c3b9-Paper.pdf

K. M. Lee, S. G. Subramanian, and M. Crowley, “Investigation of independent reinforcement
learning algorithms in multi-agent environments,” in Deep RL Workshop NeurIPS 2021, 2021.
[Online]. Available: https://openreview.net/forum?id=8MkKGZ2AlmJ

L. Chenghao, T. Wang, C. Wu, Q. Zhao, J. Yang, and C. Zhang, “Celebrating diversity in
shared multi-agent reinforcement learning,” in Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 3991–4002. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/20aee3a5f4643755a79ee5f6a73050ac-Paper.pdf

T. Wang, T. Gupta, A. Mahajan, B. Peng, S. Whiteson, and C. Zhang, “Rode:
Learning roles to decompose multi-agent tasks,” in ICLR, 2021. [Online]. Available:
https://openreview.net/forum?id=TTUVg6vkNjK

Y. Xiao, X. Lyu, and C. Amato, “Local advantage actor-critic for robust multi-agent deep reinforce-
ment learning,” in MRS. IEEE, 2021, pp. 155–163.

Z. Xu, D. Li, Y. Bai, and G. Fan, “MMD-MIX: value function factorisation with maximum mean
discrepancy for cooperative multi-agent reinforcement learning,” in International Joint Conference
on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–7.
[Online]. Available: https://doi.org/10.1109/IJCNN52387.2021.9533636

J. Jiang and Z. Lu, “The emergence of individuality,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 18–24 Jul 2021, pp. 4992–5001. [Online]. Available:
https://proceedings.mlr.press/v139/jiang21g.html

P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli, “QVMix and
QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative
Multi-Agent Reinforcement Learning,” in Proceedings of the AAAI-21 Workshop on Reinforcement
Learning in Games, 2021. [Online]. Available: https://arxiv.org/abs/2012.12062

T. Rashid, G. Farquhar, B. Peng, and S. Whiteson, “Weighted qmix: Expanding monotonic value
function factorisation for deep multi-agent reinforcement learning.” NeurIPS, 2021.

J. Su, S. C. Adams, and P. A. Beling, “Value-decomposition multi-agent actor-critics,”
in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021. AAAI Press, 2021, pp. 11 352–11 360. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17353

L. Pan, T. Rashid, B. Peng, L. Huang, and S. Whiteson, “Regularized softmax deep
multi-agent q-learning,” in Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates,
Inc., 2021, pp. 1365–1377. [Online]. Available: https://proceedings.neurips.cc/paper/2021/file/
0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf

I.-J. Liu, U. Jain, R. A. Yeh, and A. Schwing, “Cooperative exploration for multi-agent deep
reinforcement learning,” in Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR,
18–24 Jul 2021, pp. 6826–6836. [Online]. Available: https://proceedings.mlr.press/v139/liu21j.html

I. Saeed, A. C. Cullen, S. M. Erfani, and T. Alpcan, “Domain-aware multiagent reinforcement
learning in navigation,” in International Joint Conference on Neural Networks, IJCNN
2021, Shenzhen, China, July 18-22, 2021. IEEE, 2021, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/IJCNN52387.2021.9533975

17

https://proceedings.neurips.cc/paper/2021/file/f3f1fa1e4348bfbebdeee8c80a04c3b9-Paper.pdf
https://openreview.net/forum?id=8MkKGZ2AlmJ
https://proceedings.neurips.cc/paper/2021/file/20aee3a5f4643755a79ee5f6a73050ac-Paper.pdf
https://openreview.net/forum?id=TTUVg6vkNjK
https://doi.org/10.1109/IJCNN52387.2021.9533636
https://proceedings.mlr.press/v139/jiang21g.html
https://arxiv.org/abs/2012.12062
https://ojs.aaai.org/index.php/AAAI/article/view/17353
https://proceedings.neurips.cc/paper/2021/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/0a113ef6b61820daa5611c870ed8d5ee-Paper.pdf
https://proceedings.mlr.press/v139/liu21j.html
https://doi.org/10.1109/IJCNN52387.2021.9533975

B. Guresti and N. K. Ure, “Evaluating generalization and transfer capacity of multi-agent
reinforcement learning across variable number of agents,” CoRR, vol. abs/2111.14177, 2021.
[Online]. Available: https://arxiv.org/abs/2111.14177

L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and C. Zhang, “Episodic
multi-agent reinforcement learning with curiosity-driven exploration,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 3757–3769. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/1e8ca836c962598551882e689265c1c5-Paper.pdf

E. Marchesini and A. Farinelli, “Centralizing state-values in dueling networks for multi-robot
reinforcement learning mapless navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - Oct. 1, 2021. IEEE,
2021, pp. 4583–4588. [Online]. Available: https://doi.org/10.1109/IROS51168.2021.9636349

J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang, “{QPLEX}: Duplex dueling multi-agent
q-learning,” in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=Rcmk0xxIQV

J. G. Kuba, M. Wen, L. Meng, s. gu, H. Zhang, D. Mguni, J. Wang, and Y. Yang,
“Settling the variance of multi-agent policy gradients,” in Advances in Neural Information
Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 13 458–13 470. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/6fe6a8a6e6cb710584efc4af0c34ce50-Paper.pdf

B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr, W. Boehmer, and
S. Whiteson, “Facmac: Factored multi-agent centralised policy gradients,” in Advances in Neural
Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 12 208–12 221. [Online]. Available:
https://proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf

L. Yuan, J. Wang, F. Zhang, C. Wang, Z. Zhang, Y. Yu, and C. Zhang, “Multi-agent incentive
communication via decentralized teammate modeling,” 2022.

D. H. Mguni, T. Jafferjee, J. Wang, N. Perez-Nieves, O. Slumbers, F. Tong, Y. Li, J. Zhu,
Y. Yang, and J. Wang, “LIGS: Learnable intrinsic-reward generation selection for multi-agent
learning,” in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=CpTuR2ECuW

Y. Wang, fangwei zhong, J. Xu, and Y. Wang, “Tom2c: Target-oriented multi-agent communication
and cooperation with theory of mind,” in International Conference on Learning Representations,
2022. [Online]. Available: https://openreview.net/forum?id=2t7CkQXNpuq

J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang, “Trust region policy
optimisation in multi-agent reinforcement learning,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/forum?id=EcGGFkNTxdJ

S. A. Stavroulakis and B. Sengupta, “Reinforcement learning for location-aware warehouse
scheduling,” in ICLR 2022 Workshop on Generalizable Policy Learning in Physical World, 2022.
[Online]. Available: https://openreview.net/forum?id=Bt-gaVaVJ-9

A. Castagna and I. Dusparic, “Multi-agent transfer learning in reinforcement learning-based
ride-sharing systems,” in Proceedings of the 14th International Conference on Agents and
Artificial Intelligence, ICAART 2022, Volume 2, Online Streaming, February 3-5, 2022, A. P.
Rocha, L. Steels, and H. J. van den Herik, Eds. SCITEPRESS, 2022, pp. 120–130. [Online].
Available: https://doi.org/10.5220/0010785200003116

M. Zawalski, B. Osinski, H. Michalewski, and P. Milos, “Off-policy correction for multi-agent
reinforcement learning,” in AAMAS. International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), 2022, pp. 1774–1776.

R. Avalos, M. Reymond, A. Nowé, and D. M. Roijers, “Local advantage networks for cooperative
multi-agent reinforcement learning,” in AAMAS. International Foundation for Autonomous
Agents and Multiagent Systems (IFAAMAS), 2022, pp. 1524–1526.

18

https://arxiv.org/abs/2111.14177
https://proceedings.neurips.cc/paper/2021/file/1e8ca836c962598551882e689265c1c5-Paper.pdf
https://doi.org/10.1109/IROS51168.2021.9636349
https://openreview.net/forum?id=Rcmk0xxIQV
https://proceedings.neurips.cc/paper/2021/file/6fe6a8a6e6cb710584efc4af0c34ce50-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/65b9eea6e1cc6bb9f0cd2a47751a186f-Paper.pdf
https://openreview.net/forum?id=CpTuR2ECuW
https://openreview.net/forum?id=2t7CkQXNpuq
https://openreview.net/forum?id=EcGGFkNTxdJ
https://openreview.net/forum?id=Bt-gaVaVJ-9
https://doi.org/10.5220/0010785200003116

Y. X. Xueguang Lyu, “A deeper understanding of state-based critics in multi-agent reinforcement
learning,” Proceedings of the AAAI Conference on Artificial Intelligence, 2022. [Online]. Available:
https://par.nsf.gov/biblio/10315765

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016. [Online].
Available: https://arxiv.org/abs/1602.01783

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and R. Vicente,
“Multiagent cooperation and competition with deep reinforcement learning,” PLOS ONE, vol. 12,
11 2015.

C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in
cooperative, multi-agent games,” 2021. [Online]. Available: https://arxiv.org/abs/2103.01955

Y. J. Park, Y. J. Lee, and S. B. Kim, “Cooperative multi-agent reinforcement learning with approximate
model learning,” IEEE Access, vol. 8, pp. 125 389–125 400, 2020.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare, “Deep reinforcement
learning at the edge of the statistical precipice,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller, N. Bhattacharya, J. Watson, A. Egli,
C. Eichenberger, C. Baumberger et al., “Flatland-rl: Multi-agent reinforcement learning on trains,”
arXiv preprint arXiv:2012.05893, 2020.

19

https://par.nsf.gov/biblio/10315765
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/2103.01955

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We did this both in our introduci-

ton and conclusion.
(c) Did you discuss any potential negative societal impacts of your work? [No] We did not

find this necessary given the nature of the work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [No]
(b) Did you include complete proofs of all theoretical results? [No]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See supplementary material.
(c) Did you report error bars (e.g., with respect to the random seed after running exper-

iments multiple times)? [Yes] In main text and for experiments in supplementary
material.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] Links to repositories were given where

the license can be found.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [No] All collected data is publicaly available, accesilble via
open-access publication.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] The meta-analysis data contains information
typical to any research meta-analysis, including author information, paper titles and
information extracted from each paper.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

20

A Data collection and annotation methodology

This section outlines the search methodology and data recording practices used to collect the dataset
of algorithm performance and evaluation methodologies for the field of cooperative MARL.8 The
dataset used in the main body of this paper reflects the algorithm evaluation practices of published
cooperative MARL papers only. We note that the original data collection was not restricted to
accepted publications and cooperative MARL, as it instead attempts to incorporate all prominent
and contemporary deep MARL algorithms and approaches from all available studies. This is
reflected in this appendix, where we refer to data collected from all recorded papers (published,
rejected, unknown, and non-cooperative) as all papers. Similarly, we refer to the data collected from
cooperative published papers (which were used in the main body of this work) as the main papers.
The non-published papers and non-cooperative published papers are referred to as the other papers.

A.1 Paper search strategy

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

Type of paper
Main
Other

Figure 7: Recorded papers by year

In order to gather data on MARL algorithm performance evaluation, we gathered relevant MARL
research papers which were published between the years 2016 and 2022. To identify relevant studies,
we searched for relevant research key terms, such as “Multi-agent RL”, “MARL evaluation” and
“Benchmarking MARL”. We searched the arXiv website for these terms in different combinations of
the title, abstract, and keywords. Additionally, several papers were included from the reference list
of other papers. Although we do not claim to have a dataset comprised of all modern deep MARL
algorithms, we strive to collect data on at least all of the most widely used deep MARL algorithms.
To our knowledge, all major deep MARL algorithms are represented in our dataset and this dataset
is the first of its kind. The search queries were finalized on the 8th of April 2022. The published
research papers that we recorded can be found in Table 1, where these were published at various
conferences including ICML, NeurIPS, ICLR, and others.

A.2 Filtering data to find relevant studies

Following the initial data collection, the dataset was refined to ensure relevance using the following
criteria:

• The papers must be either peer reviewed conference or journal papers, and published in the
English language.

• Papers were restricted to only those which focus exclusively on the cooperative MARL case.

8Meta-analysis dataset on MARL evaluation https://bit.ly/3LpxAMb

21

https://bit.ly/3LpxAMb

Table 1: Published cooperative MARL research papers collected and manually annotated for data
analysis of algorithm performance evaluation methods.
Title Authors Conference

Learning Multiagent Communication with Backpropagation Sukhbaatar et al. (2016) NeurIPS
Learning to Communication in Deep Multi-Agent Reinforcement Learning Foerster et al. (2016) NeurIPS
Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability Omidshafiei et al. (2017) ICML
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments Lowe et al. (2017b) NeurIPS
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning Foerster et al. (2017) ICML
MultiAgent Soft-Q Learning Wei et al. (2018) AAAI
Counterfactual Multi-Agent Policy Gradients Foerster et al. (2018b) AAAI
Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward Sunehag et al. (2018) AAMAS
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning Rashid et al. (2018b) ICML
Learning when to Communicate at Scale in Multiagent Cooperative and Competitive Tasks Singh et al. (2019) ICLR
Actor-Attention-Critic for Multi-Agent Reinforcement Learning Iqbal and Sha (2019) ICML
Efficient Communication in Multi-Agent Reinforcement Learning via Variance Based Control Zhang et al. (2019) NeurIPS
MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning Malysheva et al. (2019) IEEE
Modelling the Dynamic Joint Policy of Teammates with Attention Multi-agent DDPG Mao et al. (2019) AAMAS
The StarCraft Multi-Agent Challenge Samvelyan et al. (2019b) AAMAS
Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning Jaques et al. (2019) ICML
LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning Du et al. (2019) NeurIPS
MAVEN: Multi-Agent Variational Exploration Mahajan et al. (2019) NeurIPS
Multi-Agent Common Knowledge Reinforcement Learning Schroeder de Witt et al. (2019) NeurIPS
A Structured Prediction Approach for Generalization in Cooperative Multi-Agent Reinforcement Learning Carion et al. (2019b) NeurIPS
TarMAC: Targeted Multi-Agent Communication Das et al. (2019) ICML
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning Son et al. (2019) ICML
Influence-Based Multi-Agent Exploration Wang et al. (2020a) ICLR
Multi-Agent Game Abstraction via Graph Attention Neural Network Liu et al. (2020a) AAAI
Feudal Multi-Agent Hierarchies for Cooperative Reinforcement Learning Ma and Wu (2020) AAMAS
PIC: Permutation Invariant Critic for Multi-Agent Deep Reinforcement Learning Liu et al. (2020b) CoRL
Action Semantics Network: Considering the Effects of Actions in Multiagent Systems Wang et al. (2020b) ICLR
Succinct and Robust Multi-Agent Communication With Temporal Message Control Zhang et al. (2020b) NeurIPS
Learning Multi-Agent Coordination for Enhancing Target Coverage in Directional Sensor Networks Xu et al. (2020) NeurIPS
Learning Nearly Decomposable Value Functions Via Communication Minimization Wang et al. (2020c) ICLR
Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning Roy et al. (2020) NeurIPS
Shapley Q-value: A Local Reward Approach to Solve Global Reward Games Wang et al. (2020d) AAAI
Deep Coordination Graphs Boehmer et al. (2020) ICML
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning Long et al. (2020) ICLR
Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning Christianos et al. (2020) NeurIPS
SMIX(λ): Enhancing Centralized Value Functions for Cooperative Multi-Agent Reinforcement Learning Wen et al. (2020) AAAI
Learning Transferable Cooperative Behavior in Multi-Agent Teams Agarwal et al. (2020) AAMAS
Comparative Evaluation of Cooperative Multi-Agent Deep Reinforcement Learning Algorithms Papoudakis et al. (2020) AAMAS
Learning Individually Inferred Communication for Multi-Agent Cooperation Ding et al. (2020) NeurIPS
Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning Hu and Foerster (2020) ICLR
Learning Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement Learning Zhou et al. (2020) NeurIPS
Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems Chen et al. (2021a) NeurIPS
Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL Chen et al. (2021b) NeurIPS
Deep Implicit Coordination Graphs for Multi-agent Reinforcement Learning Li et al. (2021) AAMAS
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-
Learning Sun et al. (2021) ICML
Scaling Multi-Agent Reinforcement Learning with Selective Parameter Sharing Christianos et al. (2021) ICML
Towards Understanding Cooperative Multi-Agent Q-Learning with Value Factorization Wang et al. (2021a) NeurIPS
Investigation of Independent Reinforcement Learning Algorithms in Multi-Agent Environments Lee et al. (2021) NeurIPS
Celebrating Diversity in Shared Multi-Agent Reinforcement Learning Chenghao et al. (2021) NeurIPS
RODE: Learning Roles to Decompose Multi-Agent Tasks Wang et al. (2021b) ICLR
Local Advantage Actor-Critic for Robust Multi-Agent Deep Reinforcement Learning Xiao et al. (2021) IEEE MRS
MMD-MIX: Value Function Factorisation with Maximum Mean Discrepancy for Cooperative Multi-Agent
Reinforcement Learning Xu et al. (2021) IJCNN
The Emergence of Individuality Jiang and Lu (2021) ICML
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-
Agent Reinforcement Learning Leroy et al. (2021) AAAI
Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement
Learning Rashid et al. (2021) NeurIPS
Value-Decomposition Multi-Agent Actor-Critics Su et al. (2021) AAAI
Regularized Softmax Deep Multi-Agent Q-Learning Pan et al. (2021) NeurIPS
Cooperative Exploration for Multi-Agent Deep Reinforcement Learning Liu et al. (2021) ICML
Domain-Aware Multiagent Reinforcement Learning in Navigation Saeed et al. (2021) IJCNN
Evaluating Generalization and Transfer Capacity of Multi-Agent Reinforcement Learning Across Variable
Number of Agents Guresti and Ure (2021) AAAI
Episodic Multi-agent Reinforcement Learning with Curiosity-driven Exploration Zheng et al. (2021) NeurIPS
Benchmarking Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks Papoudakis et al. (2021) NeurIPS
Centralizing State-Values in Dueling Networks for Multi-Robot Reinforcement Learning Mapless Navigation Marchesini and Farinelli (2021) IROS
QPLEX: Duplex Dueling Multi-Agent Q-Learning Wang et al. (2021c) ICLR
Settling the Variance of Multi-Agent Policy Gradients Kuba et al. (2021) NeurIPS
FACMAC: Factored Multi-Agent Centralised Policy Gradients Peng et al. (2021) NeurIPS
Multi-Agent Incentive Communication via Decentralized Teammate Modeling Yuan et al. (2022) AAAI
LIGS: Learnable Intrinsic-Reward Generation Selection for Multi-Agent Learning Mguni et al. (2022) ICLR
ToM2C: Target-oriented Multi-agent Communication and Cooperation with Theory of Mind Wang et al. (2022) ICLR
Trust Region Policy Optimisation in Multi-Agent Reinforcement Learning Kuba et al. (2022) ICLR
Reinforcement Learning for Location-Aware Warehouse Scheduling Stavroulakis and Sengupta (2022) ICLR
Multi-agent Transfer Learning in Reinforcement Learning-based Ride-sharing Systems Castagna and Dusparic (2022) ICAART
Off-Policy Correction For Multi-Agent Reinforcement Learning Zawalski et al. (2022) AAMAS
Local Advantage Networks for Cooperative Multi-Agent Reinforcement Learning Avalos et al. (2022) AAMAS
A Deeper Understanding of State-Based Critics in Multi-Agent Reinforcement Learning Xueguang Lyu (2022) AAAI

22

A.3 Annotations

The collected dataset was manually annotated to record methods of algorithm performance evaluation.
The dataset records the algorithms, environments, and tasks used as well as all aspects relating to
the algorithm performance evaluation procedure that was available from the papers. The following
provides further details on the data annotation procedure:

A1. The names and dates of papers are recorded along with the conferences they are published
into and research labs associated with the authors.

A2. The algorithms being evaluated are recorded. In some cases the paper-specific names of algo-
rithms have been appropriately adapted. This is in cases where uniquely named algorithms
have only minor differences from their baselines. Further details of this standardisation
appear in subsection A.3.2. The algorithm libraries used are recorded when applicable (e.g.
EPyMARL Papoudakis et al. (2021)).

A3. We recorded the MARL environments, their sub-tasks/maps/scenarios and the choice of
version used for evaluation. Environment sub-tasks with different names, but which refer to
the identical sub-tasks were given standardised names (e.g. cooperative communication is
the second name for Speaker-Listener task in MPE).

A4. With regard to performance measurement, we recorded the aggregation functions across
runs or episodes (e.g. means) and, the metrics used (e.g. SMAC win rates or max rewards)
along with their measure of spread such as reported confidence interval values or standard
deviations. Additionally, to compare between cases of when win rates or rewards are
recorded, we report the general metric used.

A5. On occasion, data is only provided from performance plots and not from tables. Hence our
dataset records whether data is presented using plots or in tabular form. When data is only
provided by plots, we record the final value for a given metric as shown on a plot. For the
purpose of our records being as accurate as possible, we ensure these values are within 5%
of their true plotted value. Since we cannot exactly determine the confidence bounds from
plots alone we omit recording such values in these cases. However, we do still record the
type of uncertainty measure used, as presented by the author (and where available elsewhere,
the uncertainty values).

A6. The evaluation intervals (evaluation frequency) and independent evaluations per interval
(evaluation duration) were also recorded along with their units (e.g. episodes or timesteps).
This includes the number of training runs and number of random seeds used. Here, evaluation
intervals that refer to the same measurement across papers were standardized (e.g. rounds
are changed to episodes).

A7. We record whether reported results are from previous works, i.e. when reported results are
from other cited papers and are not reproduced in the particular paper being recorded.

A.3.1 Environment annotations

• All SMAC win rates are reported as percentages (out of 100) and not probabilities (out of 1).
• We record an environment as paper-specific if it is created by the authors of a particular

paper and is not utilized in any other article.

A.3.2 Algorithm annotations

In the process of collecting the data for this paper it came to our attention that several algorithms go by
slightly different names across multiple papers. For the purposes of our analysis we have standardised
these naming choices, based on algorithm descriptions made by authors in their respective papers, to
more standardised naming conventions. IAC-V is first mentioned in the paper that presents COMA
Foerster et al. (2018b). Due to the paper emerging very early into the growth of cooperative MARL
naming had not yet been normalised however, IAC-V is described as a standard advantage actor-critic
(AAC) algorithm using parameter sharing and can instead just be referred to as IAC. PSMADDPG
Mao et al. (2019) is a variant of MADDPG that makes use of parameter sharing which is the norm in
many other publications. Interestingly the original MADDPG paper Lowe et al. (2017b) does not
make use of this. PSMADDPG can be considered to be MADDPG with a different implementation
choice and is grouped with MADDPG as the underlying algorithm is not altered. Both A3C and A2C

23

are named in the publications used in this analysis Wang et al. (2020b); Jaques et al. (2019). A2C
and A3C refer to the method by which the AAC algorithm is implemented to run using multiple
parallel workers with A2C being the synchronous and A3C being the asynchronous variant Mnih
et al. (2016). Very early MARL papers referred to independent Q learning simply as Deep Q Network
Tampuu et al. (2015b). As MARL developed further it became more important to distinguish between
independent and centralised learners and DQN is commonly called IQL. Similarly DDPG can be
renamed to IDDPG to distinguish it as an independent learning algorithm. The centralised AAC
algorithm is also sometimes called a naive critic. Instead we refer to this method as central-V as
this is the first formalised name for this algorithm that we could find Foerster et al. (2016). Finally
MAPPO Yu et al. (2021b) is referred to as MAPPO-shared for MAPPO with parameter sharing.
However, parameter sharing if the norm amongst most cooperative MARL publications therefore,
MAPPO-shared is simply renamed to MAPPO.

Table 2: Algorithm annotations
Name from paper Standardised naming Our interpretation

IAC-V (Foerster et al., 2018b) IAC IAC-V is the same as IAC.
PSMADDPG (Mao et al. (2019)) MADDPG The PS denotes parameter sharing.
A3C (Wang et al., 2020b) IAC Asynchronous parallelization method for IAC.
A2C (Jaques et al., 2019) IAC Synchronous parallelization method for IAC.
MADQN (Tampuu et al., 2015b) IQL Old naming conventions.
Naïve critic (Su et al., 2021) Central-V Naïve critic is the same as central-v.
MAPPO-shared (Lee et al., 2021) MAPPO Parameter sharing is the norm.
MADR (Park et al., 2020) MADDPG MADDPG with recurrency.
DDPG (Lowe et al., 2017b) IDDPG Denote as independent learner.
DQN (Tampuu et al., 2015b) IQL Denote as independent learner.

24

B Additional Analysis

This section provides additional insights from further analysis on our dataset of performance evalua-
tion for cooperative MARL algorithms.

B.1 Environment

B.1.1 Most used settings

In this section, we are primarily interested in highlighting some of our further findings from the main
papers. We first illustrate some of the most widely used settings for the most popular environments as
illustrated in Table 3. It should be noted that this analysis was conducted over 29 unique environments
with 164 unique scenarios.

Table 3: Most applicable parameters in each environment for the main papers
Environment Metric R. Seed Aggregate Function Independent variable Maps/Tasks Mentions

SMAC Win Rate (83.3%) 5 (41.7%) Median (48.4%) Timestep (97.3%) 39 37
MPE Reward (40%) 5 (34.8%) Mean (85%) Episode (48%) 25 33
Matrix Games Return (100%) 5-10-100 Mean (100%) Timestep (98.7%) - 9
MazeBase Win Rate (87.5%) 5 (80%) Mean (100%) Episode (44.1%) 2 7

StarCraft Multi-Agent Challenge (SMAC): is a partially observable environment, with a diverse set
of sophisticated micro-actions that enable the learning of complex interactions amongst collaborating
agents, the fundamental concept of SMAC is a team of agents battling against another group of units.
SMAC is the most widely used environment in our analysis, since it is employed as the experimental
environment in 37 of the main papers presenting 46.9% of the collected evaluation data. This finding
is not surprising as we have recorded 39 unique SMAC scenarios with varying scales of difficulty.
Moreover, many authors agree that SMAC offers a fair comparison of different algorithms since it
provides an open-source Python-based implementation of numerous fundamental MARL algorithms.

Multi-Agent Particle Environment (MPE): is an environment that can be fully or partially ob-
servable, cooperative or competitive, and allow communication within some of its tasks. In this
environment the agents primarily interact with the landmarks and other entities to achieve various
goals. We discover that 33 of the 75 papers employ MPE for algorithm testing, accounting for
20.3% of the collected evaluation data. MPE, like SMAC, is a diversified environment with 25 tasks;
nevertheless, we observe a disparity in their utilization, with 27.3% of the main papers utilizing
Predator and Prey, followed by Spread which is used in 22.7% of the collected main papers which
use the MPE environment.

B.1.2 Evolution of environment usage in MARL

In the early years of MARL research there was a shortage of established multi-agent environments,
as shown in figure 8 9. Hence most publications tested their algorithms on environments created by
the authors (paper-specific environments) as well as MazeBase. Although MazeBase was developed
for single-agent environments, it is easily adaptable to the multi-agent case and was used to create
the traffic junction combat tasks. This adaptability drove its early adoption. The Figure depicts that,
since 2017, we can observe an increase in the use of MPE tasks like Predator-Prey and Spread, as
well as StarCraft unit micromanagement. MPE was the most used environment in 2019 and, since
2020, we see SMAC dominating the others.

B.2 Algorithms

B.2.1 Training schemes analysis

Independent Learning (IL or DTDE): is a method that extends single-agent RL algorithms to
the multi-agent space. Agents learn an independent policy based on their own local observations
and, in the cooperative case, learn a policy based on a shared global reward. This type of learning

9The plotted environments occur in at least two papers.

25

2016 2017 2018 2019 2020 2021 2022
Year

0

5

10

15

20

25

N
um

be
r o

f p
ap

er
s

Environment:
MazeBase
Custom
Starcraft
MPE
Matrix Games
SMAC
MA-gym
SISL
Hanabi
RWARE
MAMuJoCo
GRF
LBF
Butterfly
Hide-And-Seek

Figure 8: Evolution of environment usage in all the papers

has low convergence guarantees because the learning of other agents causes the environment to
appear non-stationary to each individual agent since the agents’ behavior changes the dynamics of
the environment.

2016 2017 2018 2019 2020 2021 2022
Year

0

20

40

60

80

100

N
um

be
r o

f a
lg

or
ith

m
s

Learning
DTDE
CTDE

Figure 9: Number of algorithms based on learning
schemes by years for all the papers

Centralised Training Decentralised Execu-
tion (CTDE): much like IL, CTDE learns decen-
tralised agent policies where agents act based
on local observations. However, in the CTDE
paradigm we can make use of additional infor-
mation at training time that is normally not avail-
able to agents during execution. Typically this is
done by using a centralised-critic or some mix-
ing network which is allowed to condition on
the global environment state information or, has
access to open communication channels with all
agents. The centralised-critic or mixing network
is only used during training time which aids in
finding better agent polices during training time
without increasing computational overheads dur-
ing execution time.

Is the decline in the use of IL over time a positive or negative sign? CTDE has been demonstrated
to be a powerful approach that outperforms decentralized training in many cases. Nevertheless, we
cannot assume that it is the optimal solution in all cooperative MARL cases, since many studies,
have shown that it is still hard for agents to act cooperatively during execution. This is because
partial observability and stochasticity can easily break the learned cooperative strategy, resulting in
miscoordination. Recently, we observe the increase of communication algorithms. These can make
use of graph neural networks as a communication channel to help agents obtain information during
both training and execution.

B.2.2 Benchmark algorithms

In our analysis, we examine 150 algorithms where 73.3% are used only once over the 75 main papers.
In this section, we provide additional insights from the analysis of our data on the most relevant
algorithms. We summarize the use of these algorithms in our dataset in Table 4.

We note that one can select approximately five of these widely used algorithms, from Table 4, as
baselines, against which one can evaluate the performance of a novel algorithm. As these algorithms
are well-studied they may provide a meaningful current set for comparison. Athough we list these
baselines, we do not consider this list to be exhaustive and researchers should strive to compare their

26

Table 4: Most used algorithms in the main papers
Algorithms Type of agent CTDE Policy Mentions

QMIX (Rashid et al., 2018b) Value-based Yes Off 35
MADDPG (Lowe et al., 2017b) Actor-critic Yes Off 25
VDN (Sunehag et al., 2018) Value-based Yes Off 23
COMA (Foerster et al., 2018b) Actor-critic Yes On 22
IQL (Tampuu et al., 2015b) Value-based No Off 20
MAPPO (Yu et al., 2021b) Actor-critic Yes On 10
QPLEX (Wang et al., 2021c) Value-based Yes Off 10
QTRAN (Son et al., 2019) Value-based Yes Off 08
IAC (Foerster et al., 2018b) Actor-critic No On 08
CommNet (Sukhbaatar et al., 2016) Policy optimization - - 06

algorithms to algorithms that are currently known to have state of the art (SOTA) performance. The
five baselines we choose for discussion encompass both the CTDE and IL paradigm for cooperative
MARL as well as policy gradient (PG) and Q-learning based methods. To meet these requirements
we discuss QMIX (Rashid et al., 2018b), MADDPG (Lowe et al., 2017b), COMA (Foerster et al.,
2018b), IQL (Tampuu et al., 2015b) and MAPPO (Yu et al., 2021b). QMIX is selected as it introduced
the concept of monotonic value-decomposition which formed the basis for the development of many
of the recent algorithmic developments. As shown by (Hu et al., 2021), fine-tuned implementations
of QMIX can still outperform newer methods that attempt to improve upon the original work. We
discuss MADPPG since it was introduced in the most widely cited MARL algorithm paper with 2070
citation at the time of writing. We also note that MADDPG provides a baseline for algorithms that
are used in mixed and competitive tasks. Although MADDPG was introduced as an algorithm to
be used on environments with continuous action spaces, the algorithm may also be adapted to the
discrete case. We discuss CommNet since it is a widely used algorithm, used in scenarios which
require agent communication in order to find optimal solutions. Furthermore we discuss MAPPO due
to recent work illustrating it’s effectiveness in cooperative MARL tasks (Yu et al., 2021b). Lastly,
we discuss COMA since it is a widely used actor-critic algorithm. Moreover, each of the algorithms
mentioned have open-sourced code implementations available (Samvelyan et al., 2019b; Papoudakis
et al., 2021; Hu et al., 2021) which serve to decrease the amount of time researchers have to spend on
implementing baselines to evaluate against.

QMIX: is a value-based algorithm introduced by (Rashid et al., 2018b) following on from the
success of VDN (Sunehag et al., 2018) in cooperative MARL tasks. Similarly to VDN, QMIX
makes use of a factorized joint Q-value function to train all agents. What differentiates QMIX from
VDN is that individual agents’ utilities are joined using a mixing network instead of only summing
them. Furthermore, the mixing network is constrained to having only positive weights, leading to
a monotonic factorisation of individual agent utilities, and is allowed to condition on the global
environment state during training time. QMIX follows the CTDE training paradigm and makes use
of recurrent neural networks for individual agent policies. This enables agents to learn joint policies
in partially observable settings. The initial performance of QMIX was illustrated by (Rashid et al.,
2018b) on the SMAC benchmark.

In our analysis of QMIX, variants of QMIX and algorithms building on QMIX feature most promi-
nently in the 2s3z (18), 3s vs 5z (14), 3s5z (14), MMM2 (13) and 6h vs 8z (11) SMAC scenarios.
With numbers in parenthesis denoting the number of papers in which a QMIX variant is benchmarked
on a particular scenario.

CommNet: (Sukhbaatar et al., 2016) seeks to address the issue of effective agent communication in
partially observable cooperative settings. What differentiated CommNet from previous communica-
tion works is that the communication protocol between agents is not fixed, but instead learnt as a
neural model alongside agent training. This is possible due to agent communication being modeled
using a continuous, differentiable vector which is output by each agent. We find that CommNET is
used, most widely, on the TrafficJunction suite of environments which we find to be one of the most
widely used communication benchmarks for MARL.

27

Multi-Agent Deep Deterministic Policy Gradient (MADDPG): introduced by (Lowe et al., 2017b),
is a multi-agent extension to the DDPG algorithm introduced by (Lillicrap et al., 2015). MADDPG
is an off-policy actor-critic type of algorithm. By default, each agent has a unique policy network
and Q-value critic network. Each agent’s policy is only allowed to condition on an agent’s partial
observation of the full environment state while, during training time, each critic conditions on the
actions selected by the policy networks of all other agents. MADDPG makes use of standard MLPs
for both the agent policy and critic networks but variations of MADDPG exist which make use of
recurrent neural networks (RNNs) for agent policies. Similarly, variations of MADDPG exist which
make use of weight sharing across agent networks to aid in speedups of algorithm training. An
advantage of MADDPG is that the algorithm is inherently applicable to both competitive, cooperative
and mixed environments. This versatility is displayed in the seminal paper by (Lowe et al., 2017b).
In our analysis, MADPPG is most widely used for benchmarking on the multi-agent particle environ-
ment suite (MPE) with the algorithm being most widely used on the Predator-Prey (12), Spread (10)
and Speaker-Listener (5) scenarios.

Multi-Agent Proximal Policy Optimization (MAPPO): is a multi-agent extension to the single-
agent Proximal Policy Optimization (PPO) algorithm and mentioned explicitly by (Yu et al., 2021b).
Similarly to PPO, MAPPO makes use of a value function, conditioned on the global environment
state, to serve as a baseline leading to reduced variance in policy-gradient optimization. Furthermore,
MAPPO may be implemented in the CTDE or IL paradigms depending on whether the value function
is allowed to condition on some representation of the global environment state or only on an agent’s
local observation of the environment.
In our analysis, we find that MAPPO is used an equal amount of times (4) on the corridor, (3) MMM2,
5m vs 6m, 3s5z SMAC scenarios as well as on (2) the spread MPE scenario.

Counterfactual Multi-Agent Policy Gradients (COMA): is an actor-critic algorithm the makes
use of the CTDE paradigm by using a centralized critic, which is allowed to condition on the full
environment state, with decentralized actors. This centralized critic is used during training time only
and foregone at execution time. The core contribution of COMA is through addressing the agent
credit assignment issue in MARL by utilizing a counterfactual advantage function that is unique to
each agent. In our analysis we find that COMA is used most frequently in the 2s3z (11), 3s5z (7),
1c3s5z (7) and the 3m (6) SMAC scenarios, as well (6) the Spread scenario from MPE.

B.3 Evaluation Settings

B.3.1 Metric

1 2 4 9
Number of used metrics

0

2

4

6

8

10

12

14

16

18

N
um

be
r o

f e
nv

iro
nm

en
ts

Figure 10: Number of metrics used per environ-
ment.

In general, metrics are used to monitor and quan-
tify a model’s performance. Through our anal-
ysis, we identify 25 unique metrics, and after
unifying the data, based on our annotations as
given in A4, we obtain 12 general metrics over
the published papers.

The most common three metrics, referred to in
our data are, Return, Reward and Win Rate
which are in 31.3%, 14.6% and 50% of the main
papers respectively. It is interesting to note that
Win Rate is such a widely used metric, espe-
cially since it is environment specific. We be-
lieve this high percentage is due to the high use
of the SMAC and Traffic junctions environments
which commonly use Win Rate.

We observe dependencies between the choice
of the environment and metrics. Out of the col-
lected SMAC data from the main papers 80.9%
use Win Rate as a metric, meanwhile in MPE,
out of the 720 rows of collected data related to the MPE environment, 35% use Return and 25.1% use
Reward. Moreover, out of 29 environments over the main papers, we find 19 use only one metric
type.

28

B.3.2 Independent runs

Independent training runs can take place across different random seeds. In some experiments
multiple runs are completed for each random seed, for a fixed set of random seeds. Fixing the random
seed is an attempt to control some of the experiment’s sources of randomness. The number of runs is
important in determining the reliability of the evaluation. More independent runs provide more data
which allows for authors to report more accurate measures of spread alongside the point estimates of
algorithm performance.
The authors used to employ 10 to 20 runs in the Unit Micromanagement version of the StarCraft
environment, but since StarCraft II (SMAC) emerged, authors tend to use only around 5 independent
runs. This decline may be due to the environment being more computationally expensive to run.
However, we argue, similarly to (Agarwal et al., 2021) for the importance of having 10 independent
training runs for reliable confidence intervals.

B.3.3 Aggregate function

An aggregate function, also known as a measure of central tendency, is a single value that intends to
portray information about multiple results by determining the central position among a group of vari-
ous results. For aggregations over algorithm performance, we differentiate between two aggregation
steps: the first, which we refer to as the local aggregate function, denotes how aggregation is done
across evaluation episodes/evaluation runs in a fixed training run. The second, is the global aggregate
function. This denotes how we aggregate across independent training runs.
The performance of MARL algorithms is often reported using a point estimate of some task perfor-
mance metric, such as the mean and median aggregated over the independent training runs. The
mean is the most frequently used aggregation function, accounting for over 41.7% of all data gathered
from the main papers. It was the only utilized aggregate function in the early years of our recorded
dataset. Since 2019, we have seen the introduction of the median as an aggregate function, with
the launch of SMAC, and it has became one of the most widely used aggregate functions in SMAC,
with some limited use in MPE. The widespread use of the median as an aggregate function can be
attributed to the evaluation guideline proposed by (Samvelyan et al., 2019b).

B.3.4 Measure of spread

The measure of spread plays an important role in delivering first hand information about the experi-
ment findings. It expresses how far apart values are in a distribution and it provides a measure of the
variability of values obtained across different random seeds or runs. It also serves as a basic way to
quantify the uncertainty in a reported point estimate.
In our study, we discovered that 26 out of 75 studies did not mention the measure of spread at all. In
some cases this resulted from when performance is only measured over one run, in other cases this is
due to a lack of reported details within a paper. In statistics, there are various fundamental measures
of spread, the following are the most frequently encountered in our MARL dataset:

Standard deviation: is a common measure of dispersion of a set of values from their mean. The
standard deviation will be modest if the values are clustered together. Widely dispersed values will
result in a larger standard deviation.

Confidence interval (CI): These provides an estimated possible range for an unknown value. We
can choose from a variety of confidence limitations, where some of the most frequent are a 95% or a
99.5% confidence interval.

Inter-quartile range: This is a measure of dispersion which has the advantage of not being impacted
by outliers and is important when the researchers want to know where the majority of the findings
fall. It is used in 10 papers out of the main ones and it is commonly used in SMAC presenting 41.1%
of the SMAC collected data over the published cooperative papers.

B.3.5 Time Measurement

Independent Variable: The training and evaluation time is a vital feature that must be stated by the
author for a fair comparison of studies. We identified 9 options to define the independent experiment
variable from the main papers, but the most commonly used measure is time-steps, which is employed
in 39 papers, followed by episodes, which accounts for 18 studies. We discover an imbalance where
the independent variable being used is strongly related to the environment, with 88.3% of SMAC

29

collected data using time-steps as an independent variable and 39.2% of MPE collected data using
episodes.

Evaluation intervals (evaluation frequency): is generally associated with the SMAC evaluation
protocol. It refers to the fixed number of time-steps T, after which training is suspended, to be able
to evaluate an algorithm for a fixed number of runs/epsiodes E. During these evaluation runs agents
are usually only allowed to act greedily and in a decentralized manner. The test win rate is the
percentage of episodes e, in E, for which the agents defeat all enemy units within the time limit.
Although this is predominantly employed in SMAC experiments, occurring in 13 out of the 37 main
papers that use SMAC, this evaluation approach is also used in the MPE and Level-Based Foraging
(LBF) environments, with 6 and 2 papers adopting this methodology in these cases, respectively. The
evaluation frequency must ideally be associated with a duration E which we record as the evaluation
duration.

Number of independent evaluations per interval (evaluation duration): as the name indicates,
this is the amount of evaluations that are performed at each evaluation interval. This detail is required
if an evaluation frequency is given, but it may also be provided by itself in the case evaluation is
performed of the entire duration of an experiment.

30

B.4 Evaluation procedure, best practices and guideline

In this section, we summarize, in Table 5, the number of papers that abide by the key practices that
are recommended in the main body of this paper. We also show what percentage of the main papers
and other papers include each specific practice in their evaluation and reporting protocol.

Table 5: Number and percentage of papers recorded that follow the details of the recommended
evaluation guideline.

Evaluation and Implementation details The main papers The other papers
Yes No % Yes No %

Experiment details
Evaluate on multiple Environments 38 37 50.7% 18 19 48.6%
Evaluate on multiple Scenarios 65 10 86.7% 36 01 97.3%
Evaluation procedure details
Report the training time 65 10 86.7% 26 11 70.3%
Report the independent runs 53 22 70.7% 26 11 70.3%
Report the global aggregate function 54 21 72.0% 30 07 81.1%
Report the measure of spread 49 26 65.3% 21 16 56.7%
Report the evaluation interval (evaluation frequency) 20 55 26.7% 09 28 24.3%
Report the number of evaluation runs (evaluation duration) 26 49 34.7% 16 11 43.2%
Use statistical tests 01 74 01.3% 00 37 -
Guideline & Best practices
Training for 2M timesteps 20 55 26.7% 07 30 18.9%
Train on-policy for 20M and off-policy for 2M timesteps 02 73 02.7% 00 37 -
Use independent evaluation episodes per interval with E = 32 04 71 05.3% 01 36 02.7%
Evaluation every 10000 timesteps 04 71 05.3% 03 34 08.1%
Use Mean Return metric 14 61 18.7% 05 32 13.5%
Use Absolute metric 02 73 02.7% 00 37 -
Use 95% CI as a measure of spread 16 59 21.3% 02 35 05.4%
Report plot results 71 04 94.7% 33 04 89.2%
Report tabular results 40 35 53.3% 27 10 73.0%
Ablation study 33 42 44.0% 18 19 48.6%
Same baseline algorithms over all the experiment’s environments 54 21 72.0% 27 10 73.0%
Aggregate over the different maps and/or environments 08 67 10,7% 02 35 05.4%
Public repository 36 39 48.0% 13 24 35.1%

B.5 About SMAC

1 3 4 5 6 7 8 9 14 15 17
Number of used scenarios

0

1

2

3

4

5

6

7

8

N
um

be
r o

f p
ap

er
s

Figure 11: Number of used SMAC scenarios per
paper

In this section we will raise challenges uncov-
ered in our analysis rather than provide answers.
All challenges that are highlighted will be ac-
companied by all of relevant facts, as found in
our dataset, and are from the SMAC benchmark.
We are not attempting to criticize the current
scenarios or the environment itself, but want to
emphasize the need of advocating for the use of
SMAC to be standardized such that algorithm
designers are limited to specified scenarios when
testing their algorithms. The reason for this is
to ensure fair comparison between works.
As we indicated in the environment section,
SMAC is a popular benchmarking environment
and we discovered that 13 publications out of
75 apply only SMAC to prove the trustworthiness of their experiment. We notice that, despite the fact
that SMAC provides many testing scenarios (39 used ones in the published papers), most publications
only employ a few of them in their reported trials, as seen in figure 11.

31

What are the features needed to define the difficulty of a scenario? After analyzing the win
rate distribution under various settings, we discovered that several scenarios that were thought to be
difficult turned out to be simple through using independent learning algorithms. A clear example of
this is illustrated in Figure 12 by the shift in the win rate distribution for CTDE and DTDE algorithms
evaluated on the corridor scenario.

2s
3z

M
M

M
2c

_v
s_

64
zg

ba
ne

_v
s_

ba
ne

M
M

M
2

27
m

_v
s_

30
m

1c
3s

5z
5m

_v
s_

6m
3s

5z
_v

s_
3s

6z
10

m
_v

s_
11

m
1c

3s
8z

_v
s_

1c
3s

9z
2s

_v
s_

1s
c

3s
5z

3s
_v

s_
5z

5s
10

z
6h

_v
s_

8z
7s

7z
C

or
rid

or 3m 8m
2m

_v
s_

1z
2s

_v
s_

1z
3s

_v
s_

3z
15

m
so

_m
an

y_
ba

ne
lin

g
8m

_v
s_

9m
m

ic
ro

_f
oc

us
3h

_v
s_

4z
3c

7z
3c

_v
s_

10
0z

g
1c

3s
5z

_v
s_

1c
3s

6z
M

M
M

3
6z

_v
s_

24
zg

3s
_v

s_
4z

5z
_v

s_
1u

l
1o

10
b_

vs
_1

r
3b

_v
s_

1h
1m

1o
2r

_v
s_

4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

CTDE

3m 8m

2s
3z

3s
5z

2s
_v

s_
1z

M
M

M

1c
3s

5z

3s
_v

s_
3z

2m
_v

s_
1z

C
or

rid
or

3s
_v

s_
5z

2s
_v

s_
1s

c

M
M

M
2

27
m

_v
s_

30
m

5m
_v

s_
6m

ba
ne

_v
s_

ba
ne

2c
_v

s_
64

zg

10
m

_v
s_

11
m

3s
5z

_v
s_

3s
6z

6h
_v

s_
8z

8m
_v

s_
9m

so
_m

an
y_

ba
ne

lin
g

0

20

40

60

80

100

W
in

 ra
te

 (%
)

DTDE

Figure 12: SMAC win rate distribution based on training schemes from the main papers

32

2s
3z

1c
3s

5z

10
m

_v
s_

11
m

2s
_v

s_
1s

c

3s
5z

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Easy Scenarios

2c
_v

s_
64

zg

ba
ne

_v
s_

ba
ne

5m
_v

s_
6m

3s
_v

s_
5z

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Hard Scenarios

M
M

M
2

27
m

_v
s_

30
m

3s
5z

_v
s_

3s
6z

6h
_v

s_
8z

C
or

rid
or

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Super Hard Scenarios

M
M

M
1c

3s
8z

_v
s_

1c
3s

9z
5s

10
z

7s
7z 3m 8m

2m
_v

s_
1z

2s
_v

s_
1z

3s
_v

s_
3z

15
m

so
_m

an
y_

ba
ne

lin
g

8m
_v

s_
9m

m
ic

ro
_f

oc
us

3h
_v

s_
4z

3c
7z

3c
_v

s_
10

0z
g

1c
3s

5z
_v

s_
1c

3s
6z

M
M

M
3

6z
_v

s_
24

zg
3s

_v
s_

4z
5z

_v
s_

1u
l

1o
10

b_
vs

_1
r

3b
_v

s_
1h

1m
1o

2r
_v

s_
4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Other Scenarios

Figure 13: SMAC win rate distribution based on difficulty from the main papers

33

Furthermore, figure 14 emphasizes the importance of training until 2M timesteps. It demonstrates
how the win rate, for even the easiest scenarios, has a wide spread when algorithms are trained for
less than 2 million time steps. It can also be noted that, when algorithms are trained up to 2 million
timesteps or more, that performance convergences to a higher win rates, not only for easy scenarios
but also for hard and even super hard ones.

3m 8m

2s
3z

3s
5z

2m
_v

s_
1z

2s
_v

s_
1z

3s
_v

s_
3z

1c
3s

5z

M
M

M

3s
_v

s_
5z

ba
ne

_v
s_

ba
ne

2s
_v

s_
1s

c

5m
_v

s_
6m

so
_m

an
y_

ba
ne

lin
g

0

20

40

60

80

100
W

in
 ra

te
 (%

)
Under 2M Timesteps

2s
3z

M
M

M

2c
_v

s_
64

zg

ba
ne

_v
s_

ba
ne

M
M

M
2

27
m

_v
s_

30
m

10
m

_v
s_

11
m

1c
3s

5z

1c
3s

8z
_v

s_
1c

3s
9z

2s
_v

s_
1s

c

3s
5z

3s
5z

_v
s_

3s
6z

3s
_v

s_
5z

5m
_v

s_
6m

5s
10

z

6h
_v

s_
8z

7s
7z

C
or

rid
or 8m 3m

3c
_v

s_
10

0z
g

1c
3s

5z
_v

s_
1c

3s
6z

M
M

M
3

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Equal 2M Timesteps

2s
3z

1c
3s

5z

5m
_v

s_
6m

2c
_v

s_
64

zg

M
M

M
2

3s
5z

_v
s_

3s
6z 3m 8m

3s
5z

C
or

rid
or

2s
_v

s_
1s

c

3s
_v

s_
5z

6h
_v

s_
8z

8m
_v

s_
9m

so
_m

an
y_

ba
ne

lin
g

m
ic

ro
_f

oc
us

27
m

_v
s_

30
m

2m
_v

s_
1z

M
M

M

3s
_v

s_
3z

6z
_v

s_
24

zg

3s
_v

s_
4z

5z
_v

s_
1u

l

1o
10

b_
vs

_1
r

3b
_v

s_
1h

1m

1o
2r

_v
s_

4r

0

20

40

60

80

100

W
in

 ra
te

 (%
)

Over 2M Timesteps

Figure 14: SMAC win rate distribution based on training time from The main papers

34

Which scenario to choose? The choice of the scenarios for an algorithm designer is a critical task,
considering the fact that each scenarios itself in SMAC has its own challenges, which can work in
the algorithm’s favor (e.g. IA2C in Corridor) or in its misfortune (e.g. IA2C in MMM2). Moreover,
50% of the scenarios were used in one or two papers only, some of these scenarios were used for
ablation studies or for a specific research direction like communication, nevertheless most of them do
not have prior justification.

MMM2 3s5z Corridor

0

20

40

60

80

W
in

 ra
te

 (%
)

algorithm
COMA
QMIX
IA2C

1c
3s

5z
2s

3z
2s

_v
s_

1s
c

3m
ba

ne
_v

s_
ba

ne 8m 15
m

3s
5z

3s
_v

s_
5z

C
or

rid
or

M
M

M
2

6h
_v

s_
8z

3s
5z

_v
s_

3s
6z

5m
_v

s_
6m

2m
_v

s_
1z

27
m

_v
s_

30
m

8m
_v

s_
9m

m
ic

ro
_f

oc
us

so
_m

an
y_

ba
ne

lin
g

M
M

M
6z

_v
s_

24
zg

3s
_v

s_
4z

7s
7z

5s
10

z
2c

_v
s_

64
zg

1c
3s

8z
_v

s_
1c

3s
9z

10
m

_v
s_

11
m

1o
10

b_
vs

_1
r

1o
2r

_v
s_

4r
3b

_v
s_

1h
1m

5z
_v

s_
1u

l
3c

_v
s_

10
0z

g
M

M
M

3
1c

3s
5z

_v
s_

1c
3s

6z
3s

_v
s_

3z
2s

_v
s_

1z
3h

_v
s_

4z
3c

7z

Scenarios

0

2

4

6

8

10

12

14

16

18

20

N
um

be
r o

f p
ap

er
s

Figure 15: Top: The performance of COMA, QMIX and IA2C in 3 different SMAC scenarios.
Bottom: Number of papers that use each scenario over the main papers

Is the inconsistency in performance inescapable? In Figure 16, we fixed the training steps to be
2 million for all recorded papers that use the bane vs bane, MMM2, 3m and 27m vs 30m SMAC
scenarios. We achieve this by reading algorithm performance from plots produced in all relevant
papers. It is known that the version of SMAC that is used can have an effect on algorithm performance,
but here we see that merely fixing the training time steps across multiple papers leads to even greater
performance discrepancies between papers than the SMAC version being used.

Samvelyan et al. (2
019)

Samvelyan et al. (2
019)

Yao et al. (2
019)

Du et al. (2
019)

Samvelyan et al. (2
019)

Schroeder de Witt e
t al. (2

019)

Wang et al. (2
020)

Leroy et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Böhmer et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Wang et al. (2
020)

Rashid et al. (2
020)

Zhou et al. (2
020)

Zheng et al. (2
021)

Xu et al. (2
021)

Chenghao et al. (2
021)

Xu et al. (2
021)

Peng et al. (2
021)

Peng et al. (2
021)

Sun et al. (2
021)

Zheng et al. (2
021)

Sun et al. (2
021)

Pan et al. (2
021)

Peng et al. (2
021)

Zheng et al. (2
021)

Yuan et al. (2
022)

Paper

20

40

60

80

100

W
in

 R
at

e
(%

)

Scenario
bane_vs_bane
MMM2
3m
27m_vs_30m
SMAC Version
SC2.4.6
SC2.4.10
SC2.3.16.1
Unknown

Figure 16: Performance of QMIX on different SMAC scenarios trained for 2M timesteps

35

C Guideline

C.1 Motivation

In the following section, we will demonstrate our evaluation guideline. We follow the steps as
outlined but omit ablation studies in our work since we are not trying to introduce a novel algorithm.
We also have not tuned any hyperparameters for any of the algorithms we consider. We wish to make
the reader purposefully aware that the primary goal of this experiment is to provide an illustration
of how to use our evaluation guideline and our experiment is not focused on the performance of the
chosen algorithms. As such we are not striving to achieve state of the art performance on the flatland
benchmark and will merely illustrate how results may be interpreted by a researcher.

Please note that, following our guideline, we make all raw data of our experiments available. Our
code will be made publicly available soon. We provide a LaTeX template for the proposed reporting
templates 6. We envision that such a template will make it easier for other authors to define and report
all details pertaining to their experiments. These include experimental details, evaluation protocols,
environment settings and all other details that authors wish to report. Of course, it’s up to the author
to choose the set of hyperparameters to be reported according to the algorithm class and its specific
hyperparameters.

C.2 Reporting templates

Here, we present an example of a template that can be used to summarise the important information
required to perform the evaluation of algorithms, see Table 6.

Firstly, we have to list all the algorithms we are comparing. For hyperparameters we suggest listing
all tunable parameters which are manually set by the researcher. Some parameters like the discount
factor are fairly consistent throughout published works and can easily be reused across papers. Other
parameters can vary through papers due to computational constraints like batch size which can be
limited by the available memory of the GPU used in training and sometimes needs to be adjusted
based on computational limitations and, replay buffer size which is limited by the available memory
of the training computers. Parameters like the target network update period and ϵ schedule are
required to replicate the training scheme used by an algorithm as when mistuned they greatly alter
results Rashid et al. (2021).

Network architecture is also an important consideration for MARL algorithms. QMIX is one of the
most popular value-decomposition methods in cooperative MARL and makes use of hypernetworks
to train the central value function. The parameterisation of these hypernetworks must also be noted as
their configurations have a strong effect on the effectiveness of the value function. The central value
function for QMIX inspired value-decomposition methods is commonly called a mixing network and
is responsible for performing multi-agent credit assignment during training. The mixing networks
can vary across different methods but, without knowing how they are parameterised it is possible for
networks to have a large variance in their complexity which makes direct comparisons difficult to
interpret Hu et al. (2021)

Additionally not all methods consistently make use of recurrency in their architecture which is
important for achieving high performance in partially observable settings. Parameter sharing is also
unique the cooperative MARL setting and is used in most publications, however, not all papers make
use of this paradigm.

Code-level optimisations consist of any parameters that can be included in algorithm implementations
for improving performance, but are not core components of the algorithm. Reward normalisation
is when the rewards over the episode are normalised which reduces variance and makes learning
easier Yu et al. (2021b). Not all settings make use of normalised rewards but they can be trivially
implemented at the code level. Death masking is important to note as different frameworks deal with
dead agents in different manners which can make direct comparisons difficult. Clipped updates are
used in some papers to prevent exploding gradients and can be trivially implemented in most deep
learning frameworks. Eligibility traces can be used to adjust the variance and bias trade off for return
calculations and are tuned using the λ parameter. Although using TD(λ) returns has been shown to
improve performance for MARL algorithms it is not universally used and must be taken into account
for evaluation. Optimiser choice has also been shown to have a large impact on the performance of
MARL algorithms and cannot be interchanged arbitrarily (Yu et al. (2021b)).

36

Computational resources, although not important for algorithmic development are still relevant to
research. Clarity of the resources required for a publication to be replicated provide an indication to
researchers as how feasible replication is and, how similarly optimised their own implementations
are. It also makes it clear where methods may perform better at the cost of compute.

Evaluation protocols need to be made clear in publications so that the results are easy to interpret.
By providing all evaluation in the template details readers do not need to pick through a paper to
determine how to interpret results. The evaluation framework and the version that is being used is
also of importance. Evaluation frameworks are frequently updated and results might be incomparable
in-between versions.

Finally it is important to provide the configurations of the environments being used to train and
evaluate the algorithm. On one hand, in sample evaluation allows to evaluate an algorithm’s perfor-
mance on an environment configuration similar to the configurations it was trained on. On the other
hand, out-of sample configurations help to test the ability of the algorithm to generalise to a different
configuration of the environment that was not seen in the training. It is obvious that there are many
standardised settings in MARL. There are also cases of publications using custom environments
which are non-standard when compared to existing publications. These non-standard settings require
a full detailing of specifications to make them easier to understand.

37

Table 6: Proposal for reporting experimental details

Experimental setup Algo 1 Algo 2 Algo 3
Hyperparameters
Discount factor
Batch size
Replay buffer size
Minimum replay buffer size before updating
N steps bootstrapping
Target network update period
ϵ schedule (Decay steps, ϵ start, ϵ min)
Value Network architecture
Value Network initializer
Value Network Layer size
Value Network Layer normalisation
Mixing network (architecture, size, activation)
Hypernetworks (size, activation)
Parameter sharing
Parallel workers
Seed range

Code-level optimisations
Optimiser (type, parameters)
Learning rate
Reward normalisation
Death masking
Clipped updates
Eligibility trace
TD(λ) value

Computational resources
Average Wall-clock time per algorithm
CPUs per experiment
GPU per experiment
RAM per experiment

Evaluation protocol
Total training (timesteps)
Evaluation interval (timesteps)
Independent evaluation episodes
Absolute metric (evaluation episodes, aggregation method)
Local aggregation method
Global aggregation method
Metrics [Environment 1 name]
Metrics [Environment 2 name]
Metrics [Environment 3 name]
Exploration behaviour

MARL Framework name (version)

Environment settings
Environment 1 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs

Environment 2 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs
Environment 3 name (version) Training In sample evaluation configs Out of sample evaluation configs
Env related configs

C.3 Experiment details

Firstly we note the algorithms used for the experiments. For illustration purposes we use IQL which
is an independent learning algorithm, VDN which is a linear value-decomposition method and finally
QMIX which is a value-decomposition method that makes use of a central value function. It is
important to note that not all parameters are applicable to all types of algorithms.

38

C.3.1 Environment

An environment can present various factors of variations forming two different context sets: the
first being the set of all supported random seeds which makes use of Procedural Content Generation
(PCG) and the second is the product of multiple factors of variations inside the environment. It has
been noted that procedurally generated environments may reduce the precision of research Kirk et al.
(2021) while being able to control a factor of variations in an environment offers more flexibility
to create environment configurations that match the evaluation of different algorithmic strengths.
Regardless of the context being used, we strongly advocate that researchers should report all the
environment settings used for training and for evaluation, see the environment settings section in
Table 6, as an example of reporting environment settings. Of course, all settings are environment
specific.

For our experiments, we make use of the Flatland benchmark environment Mohanty et al. (2020)
first introduced as a challenge in 2020 to investigate solutions to the vehicle rescheduling problem in
railway systems. At a high-level, Flatland is a highly customisable, simplified 2D grid environment
which aims to simulate the routing of trains from one city to another.

Figure 17: Flatland maps varying between consecutive environment episodes.

We particularly choose Flatland as a benchmarking environment due to the fact that the environment
may be set to be non-static allowing it to change after each completed episode during both training
and evaluation. This enables us to test the ability of algorithms to generalise outside of experience
that was encountered during training. Flatland offers a high level of customisability with regards to
this environment regeneration, but we opt for a relatively limited and simple approach. Once a map
has been generated, we keep the rails of the map fixed but we allow the number of stations on the
map to be randomly distributed at each new episode. This changes the location on the map where an
agent starts at each episode as well as the destination that each agent must reach. An example of how
the maps might change over 3 episodes is demonstrated in Figure 17.

Observation space. For the observations of each agent, we make use of what the Flatland authors
refer to as tree observations. For these observations, an agent is allowed to construct a tree in four
directions which follows permitted transitions. These trees are allowed to pass a fixed number of
points on the grid where more than one action is allowed with these points being referred to as
switches by the authors. Each agent is then allowed to observe the grid up to a fixed number of
switches (referred to as the maximum permitted tree depth) and then constructs local features based
on the observed tree. These features then inform the agent’s decision making.

For all algorithms, each agent only makes use of its own local tree observation to inform its action
selection. Since Flatland does not return a global state for the entire grid at each training time step,
on which QMIX can condition its mixing network during training time, we construct a simple global
state representation which is the concatenation of all agents’ local observations.

Action space. The action space in flatland is discrete(5) and consists of the following actions:

• Move forward,

• Select a left turn,

• Select a right turn,

39

• Halt on the current cell,

• Take no action.

Reward structure. At each environment time step each agent, i receives a reward calculated as:

ri(t) = αril(t) + βrg(t)

Here ril denotes an agent’s local reward which is −1 for all time steps until an agent reaches its
destination after which it is 0 until episode termination. rg denotes an additional team reward of 1
which is received by all agents when all agents have reached their destination during an episode. α
and β are adjustable parameters which govern agent cooperation.

After an episode is completed each agent receives a return gi which is computed as:

gi =

T∑
t=1

ri(t)

In order to keep track of team performance, we monitor and report the mean team episode return
which may be calculated for N agents as

gt =
1

N

N∑
i

gi

Aside from only keeping track of the team return, we also record the team completion rate which is
the proportion of agents that were able to reach their destination in a given episode.

C.4 Evaluation protocol and experimental procedure

Detailed flatland experiment settings are given in Table 7. We perform 10 independent runs, each with
a unique random seed for the initialization of the agent policy networks. For each independent run
we evaluate algorithm performance for 32 episodes at every 10000 environment time steps. During
these evaluation intervals we freeze training such that agent policy network weights remain fixed
and agents are only allowed to act greedily by selecting actions which an agent believes to have to
highest Q-values. In order to report the overall team performance, we report the mean return and
completion over of all agents in the environment at each episode. It should be noted that in Flatland
agents receive their reward at the end of an episode and therefore episode returns and rewards are
equivalent. In order to normalize the episode returns we keep track of the maximum and minimum
return obtained over all evaluation episodes done during training for a given independent run and then
normalize the mean episode return of each evaluation episode according to these global maximum
and minimum values. In order to obtain the per task results, we compute the mean and 95% CI
over all independent runs at each evaluation interval for both the normalised mean returns and the
completion rate. Additionally, for each independent training run, we keep track of both the maximum
mean return and maximum completion rate computed at each evaluation interval and use these values
to checkpoint the agent network parameters where performance for both these metrics are optimal.
Once an independent run is complete we then evaluate the algorithm greedily for 320 episodes using
the best model parameters found for both the mean episode return and completion rate and take the
mean over these roll outs to compute the absolute metrics for both the completion rate and the mean
episode return. In all cases we opt to use the mean instead of the inter-quartile mean since we assume
there to be relatively few outliers due to the fact that all results are generated using the same fixed
policy. For each independent run, we then normalise the absolute metrics across all algorithms that
were being tested such that all absolute metrics fall within the range [0, 1]. In all cases it should be
noted that, since the goal of normalisation is to constrain metrics to lie within the same [0, 1] interval
we omit normalising metrics that inherently lie on such a range, like the completion rate. Since we
have only one task, we then construct a (10× 1) vector per algorithm using the obtained normalised
metrics in order to make use of the tools provided by (Agarwal et al., 2021) and obtain the following
results.

40

Table 7: Reporting Flatland experimental details

Experimental setup IQL QMIX VDN
Hyperparameters
Discount factor 0.99 0.99 0.99
Batch size 32 32 32
Replay buffer size 5000 5000 5000
Minimum replay buffer size before updating 32 32 32
N steps bootstrapping 5 5 5
Target network update period 100 200 200
ϵ schedule (Decay steps, ϵ start, ϵ min) (100000,1.0,0.05) (100000,1.0,0.05) (100000,1.0,0.05)
Value Network architecture Recurrent Recurrent Recurrent
Value Network initializer Variance Scaling Variance Scaling Variance Scaling
Value Network Layer size [64,64] GRU [64,64] GRU [64,64] GRU
Value Network Layer normalisation True True True
Mixing network (architecture, size, activation) - Feedforward,[32], ReLU -
Hypernetworks (size, activation) - [64], ReLU -
Parameter sharing Yes Yes Yes
Parallel workers 8 8 8
Seed range {0..9} {0..9} {0..9}

Code-level optimisations
Optimiser (type, parameters) Adam Adam Adam
Learning rate 1e-4 1e-4 1e-4

Computational resources
Average Wall-clock time per algorithm 9h27m 9h36m 9h16m
CPUs per experiment 20
GPU per experiment 1
RAM per experiment 20 GB

Evaluation protocol
Total training (timesteps) 2000000
Evaluation interval (timesteps) 10000
Independent evaluation episodes 32
Absolute metric (evaluation episodes, aggregation method) 320, Mean with normal 95% CI
Local aggregation method Mean
Global aggregation method IQM with 95% stratified bootstrap CI
Metrics [Flatland] Return, Completion rate, Normalised score
Exploration behaviour Disabled

MARL Framework MAVA (0.1.2)

Environment settings

Flatland (3.0.15) Training 10 In sample evaluation
Number of agents 5 5
Grid size (width x height) 25x25 25x25
Maximum number of cities 4 4
Maximum rails between cities 2 2
Maximum rails in city 3 3
Malfunctioning rate 0 0
Observation (type, depth) TreeObservation, 2 TreeObservation, 2
Shortest Path Predictor max depth 30 30
Grid mode True True
Regenerate schedule on reset True True
Regenerate rail on reset True True
Seed 0 0

41

C.5 Results

All plots that are generated here are made using the tools provided by (Agarwal et al., 2021).

C.5.1 Sample efficiency curves

The sample efficiency curves serve as a way to asses an algorithm’s experience efficiency at improving
on a particular metric during training time. For two algorithms that achieve the same final performance
on some metric, the algorithm that does so with less environment steps could therefore be considered
to be more sample efficient. We compute the sample efficiency curves by making use of the
normalized mean return at each evaluation interval as well as the mean completion rate achieved at
each evaluation interval.

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

No
rm

al
ize

d
re

tu
rn

IQL
QMIX
VDN

(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of timesteps (Millions)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co
m

pl
et

io
n

ra
te

IQL
QMIX
VDN

Figure 18: Sample efficiency curves for experiments. (a) Normalized return. (b) Completion rate.

From Figure 18 it can be noted that no particular algorithm is more efficient than any other algorithm
and that all algorithms achieve relatively similar final performance. From Figure 18 (a) it can be
noted that IQL and QMIX do reach a slightly higher final mean return than VDN.

C.5.2 Aggregate score performance

All aggregated scores are done using the aggregation functions as shown in Figure 19. One aggregation
function to note is the Optimality Gap which may be thought of as the how far an algorithm is from
optimal performance at a given task. For this reason, a lower score is considered to be desirable. The
confidence intervals shown alongside the point estimates (black bars) are the 95% stratified bootstrap
confidence intervals.

0.2 0.4 0.6 0.8
IQL

QMIX
VDN

Median

0.00 0.25 0.50 0.75

IQM

0.2 0.4 0.6 0.8

Mean

0.2 0.4 0.6 0.8

Optimality Gap

Normalized return

0.08 0.16 0.24
IQL

QMIX
VDN

Median

0.00 0.08 0.16 0.24

IQM

0.08 0.16 0.24

Mean

0.80 0.88 0.96

Optimality Gap

Completion rate

Figure 19: Per task performance on a 25 × 25 flatland grid. (Top) Normalized return. (Bottom)
Completion rate.

One can note from the top and bottom figure in Figure 19 that there is large variance in algorithm
performance for both metrics used and it is hard to distinguish which algorithm has superior perfor-
mance, particularly between VDN and QMIX. A clear outlier is IQL which consistently performs
worse, across all metrics, than VDN and QMIX.

10Using same generator config from https://gitlab.aicrowd.com/flatland/
neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/
generator_configs/small_v0.yaml

42

https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml
https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml
https://gitlab.aicrowd.com/flatland/neurips2020-flatland-baselines/-/blob/flatland-paper-baselines/envs/flatland/generator_configs/small_v0.yaml

C.5.3 Performance profiles

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Normalized return ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
QMIX
VDN

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Completion rate ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

IQL
QMIX
VDN

Figure 20: Performance profiles for experiments. (a) Normalized return. (b) Completion rate.

From Figure 20 in can be noted that the performance profiles paint a similar picture to the sample
efficiency curves and the aggregated algorithm scores. IQL is consistently outperformed by VDN and
QMIX. The performance profiles also clearly illustrate the no algorithm achieves a particularly high
completion rate, highlighting the poor overall performance of all algorithms on the environment task.

C.5.4 Probability of improvement

Probability of improvement plots should be interpreted as the probability that an algorithm X has
superior performance than algorithm Y with a low score indicating that algorithm Y likely to be
better than algorithm X and vice versa for a high score.

(a)

0.2 0.4 0.6
P(X > Y)

IQL

IQL

VDN

Algorithm X

QMIX

VDN

QMIX

Algorithm Y (b)

0.2 0.4 0.6
P(X > Y)

IQL

IQL

VDN

Algorithm X

QMIX

VDN

QMIX

Algorithm Y

Figure 21: Probability of improvement plots. (a) Normalized return. (b) Completion rate.

From Figure 21 one can note again that IQL is outperformed by VDN and QMIX using both metrics
considered. It can also be noted again, that the performance of VDN and QMIX are relatively similar.

C.5.5 Tabular Results

We report the IQM aggregated over the task for all algorithms with the 95% stratified bootstrap CI as
well as the mean absolute performance of all algorithms on the task with the 95% CI. These scores
collectively, as well as the sample efficiency curves sketch a full picture of the performance for a given
algorithm. One can, at a glance, see the performance that the the best policy for a particular algorithm
is able to achieve from the tabular results, but one can also get a clear sense of the robustness of a
particular algorithm by considering the sample efficiency curves. This makes for transparent result
reporting.

The tabular results once again confirm all previous results in that IQL has inferior performance on
the task when compared to its value factorisation counterparts and that VDN and QMIX obtain very
similar performance. Due to the larger confidence intervals however, no clear conclusions can be
drawn since the performance of all algorithms overlap when taking the CIs into account. One can
also notice from Tables 8 & 9 that the absolute metric and IQM scores are very similar. The reason
from this is because we only consider a single task in our environment. The true power of the tools
that were used will be better illustrated when multiple tasks are considered.

C.5.6 Overall findings

Due to the large variance in algorithm performance, we cannot draw any strong conclusions regarding
algorithm performance from these experiments, but we have been able to illustrate to use of our
guideline and how it gives a full overview of both the absolute and overall performance of a set

43

Table 8: IQM of absolute metrics for experiments with 95% Stratified Bootstrap CIs
Algorithm Normalized Returns Completion Rate

IQL 0.307 (0.0, 0.799) 0.015 (0.0, 0.083)
QMIX 0.593 (0.189, 0.949) 0.158 (0.019, 0.304)
VDN 0.581 (0.131, 0.949 0.113 (0.035, 0.236)

Table 9: Mean per task absolute metrics with 95% CIs
Algorithm Normalized Returns Completion Rate

IQL 0.384 (0.08, 0.688) 0.048 (0.00, 0.109)
QMIX 0.556 (0.284, 0.828) 0.164 (0.066, 0.263)
VDN 0.548 (0.254, 0.842) 0.134 (0.05, 0.218)

of algorithms on a particular task. We will continually update our demonstration by adding more
flatland tasks, tuning algorithms and, ultimately, adding more environments to this experiment.

44

	Introduction
	From RL to MARL evaluation: lessons, trends and recommendations
	Lesson 1: Know the true source of improvement and report everything
	Lesson 2: Use standardised statistical tooling for estimating and reporting uncertainty
	Lesson 3: Guard against environment misuse and overfitting

	Towards a standardised evaluation protocol for MARL
	Conclusion and future work
	Data collection and annotation methodology
	Paper search strategy
	Filtering data to find relevant studies
	Annotations
	Environment annotations
	Algorithm annotations

	Additional Analysis
	Environment
	Most used settings
	Evolution of environment usage in MARL

	Algorithms
	Training schemes analysis
	Benchmark algorithms

	Evaluation Settings
	Metric
	Independent runs
	Aggregate function
	Measure of spread
	Time Measurement

	Evaluation procedure, best practices and guideline
	About SMAC

	Guideline
	Motivation
	Reporting templates
	Experiment details
	Environment

	Evaluation protocol and experimental procedure
	Results
	Sample efficiency curves
	Aggregate score performance
	Performance profiles
	Probability of improvement
	Tabular Results
	Overall findings

