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Abstract

We study multi-agent reinforcement learning (MARL) in a stochastic network of1

agents. The objective is to find localized policies that maximize the (discounted)2

global reward. In general, scalability is a challenge in this setting because the size3

of the global state/action space can be exponential in the number of agents. Scalable4

algorithms are only known in cases where dependencies are static, fixed and local,5

e.g., between neighbors in a fixed, time-invariant underlying graph. In this work,6

we propose a Scalable Actor Critic framework that applies in settings where the7

dependencies can be non-local and stochastic, and provide a finite-time error bound8

that shows how the convergence rate depends on the speed of information spread9

in the network. Additionally, as a byproduct of our analysis, we obtain novel10

finite-time convergence results for a general stochastic approximation scheme and11

for temporal difference learning with state aggregation, which apply beyond the12

setting of MARL in networked systems.13

1 Introduction14

Multi-Agent Reinforcement Learning (MARL) has achieved impressive performance in a wide15

array of applications including multi-player game play [41, 31], multi-robot systems [13], and16

autonomous driving [25]. In comparison to single-agent reinforcement learning (RL), MARL poses17

many challenges, chief of which is scalability [56]. Even if each agent’s local state/action spaces are18

small, the size of the global state/action space can be large, potentially exponentially large in the19

number of agents, which renders many RL algorithms such as Q-learning not applicable.20

A promising approach for addressing the scalability challenge that has received attention in recent21

years is to exploit application-specific structures, e.g., [18, 35, 38]. A particularly important example22

of such a structure is a networked structure, e.g., applications in multi-agent networked systems23

such as social networks [7, 27], communication networks [59, 50], queueing networks [34], and24

smart transportation networks [58]. In these networked systems, it is often possible to exploit static,25

local dependency structures [16, 17, 1, 32], e.g., the fact that agents only interact with a fixed set of26

neighboring agents throughout the game. This sort of dependency structure often leads to scalable,27

distributed algorithms for optimization and control [16, 1, 32], and has proven effective for designing28

scalable and distributed MARL algorithms, e.g. [35, 38].29

However, many real-world networked systems have inherently time-varying, non-local dependencies.30

For example, in the context of wireless networks, each node can send packets to other nodes within a31

fixed transmission range. However, the interference range, in which other nodes can interfere the32

transmission, can be larger than the transmission range [52]. As a result, due to potential collisions,33

the local reward of each node not only depends on its own local state/action, but also depends on34

the actions of other nodes within the interference range, which may be more than one-hop away. In35

addition, a node may be able to observe other nodes’ local states before picking its local action [33].36
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Things become even more complex when mobility and stochastic network conditions are considered.37

These lead to dependencies that are both stochastic and non-local. Although one can always fix and38

localize the dependence model, this leads to considerably reduced performance. Beyond wireless39

networks, similar stochastic and non-local dependencies exists in epidemics [30], social networks40

[7, 27], and smart transportation networks [58].41

A challenging open question in MARL is to understand how to obtain algorithms that are scalable in42

settings where the dependencies are stochastic and non-local. Prior work considers exclusively static43

and local dependencies, e.g., [35, 38]. It is clear that hardness results apply when the dependencies44

are too general [24]. Further, results in the static, local setting to this point rely on the concept of45

exponential decay [35, 16], meaning the agents’ impact on each other decays exponentially in their46

graph distance. This property relies on the fact that the dependencies are purely local and static, and47

it is not clear whether it can still be exploited when the interactions are more general. This motivates48

an important open question: Is it possible to design scalable algorithms for stochastic, non-local49

networked MARL?50

Contributions. In this paper, we introduce a class of stochastic, non-local dependency structures51

where every agent is allowed to depend on a random subset of agents. In this context, we propose52

and analyze a Scalable Actor Critic (SAC) algorithm that provably learns a near-optimal local policy53

in a scalable manner (Theorem D.2). This result represents the first provably scalable method for54

stochastic networked MARL. Key to our approach is that the class of dependencies we consider leads55

to a µ-decay property (Definition 4.1). This property generalizes the exponential decay property56

underlying recent results such as [35, 16], which does not apply to stochastic non-local dependencies,57

and enables the design of an efficient and scalable algorithm for settings with stochastic, non-local58

dependencies. Our analysis of the algorithm reveals an important trade-off: as deeper interactions59

appear more frequently, the “information” can spread more quickly from one part of the network to60

another, which leads to the efficiency of the proposed method to degrade. This is to be expected,61

as when the agents are allowed to interact globally, the problem becomes a single-agent tabular62

Q-learning problem with an exponentially large state space, which is known to be intractable since63

the sample complexity is polynomial in the size of the state/action space [12, 24].64

The key technical result underlying our analysis of the Scalable Actor Critic algorithm is a finite-time65

analysis of a general stochastic approximation scheme featuring infinite-norm contraction and state66

aggregation (Theorem 2.1). We apply this result to networked MARL using the local neighborhood of67

each agent to provide state aggregation (SA). This result also applies beyond MARL. Specifically, we68

show that it yields finite-time bounds on Temporal Difference (TD)/Q learning with state aggregation69

(Theorem 3.1). To the best of our knowledge the resulting bound is the first finite-time bound on70

asynchronous Q-learning with state aggregation. Additionally, it yields a novel analysis for TD-71

learning with state aggregation (the first error bound in the infinity norm) that sheds new insight72

into how the error depends on the quality of state abstraction. These two results are important73

contributions in their own right. Due to space constraints, we discuss asynchronous Q-learning with74

state aggregation in Appendix C.4.75

Related literature. The prior work that is most related to our paper is [38], which also studies76

MARL in a networked setting. The key difference is that we allow the dependency structure among77

agents to be non-local and stochastic, while [38] requires the dependency structure to be local and78

static. The generality of setting means techniques from [38] do not apply and adds considerable79

complexity to the proof in two aspects. First, instead of analyzing the algorithm directly like [38],80

we derive a finite-time error bound for TD learning with state aggregation (Section 2 and 3), and81

then establish its connection with the algorithm (Section 4.3). Second, we need a more general decay82

property (Definition 4.1) than the exponential one used in [38]. Defining and establishing this general83

decay property for the non-local and stochastic setting is highly non-trivial (Section 4.1).84

More broadly, MARL has received considerable attention in recent years, see [56] for a survey. The85

line of work most relevant to the current paper focuses on cooperative MARL. In the cooperative86

setting, each agent can decide its local actions but share a common global state with other agents.87

The objective is to maximize a global reward by working cooperatively. Notable examples of this88

approach include [6, 10] and the references therein. In contrast, we study a situation where each89

agent has its own state that it acts upon. Despite the differences, like our situation, cooperative90

MARL problems still face scalability issues since the joint-action space is exponentially large. A91

variety of methods have been proposed to deal with this, including independent learners [8, 29],92
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where each agent employs a single-agent RL policy. Function approximation is another approach93

that can significantly reduce the space/computational complexity. One can use linear functions94

[57] or neural networks [28] in the approximation. A limitation of these approaches is the lack of95

theoretical guarantees on the approximation error. In contrast, our technique not only reduces the96

space/computational complexity significantly, but also has theoretical guarantees on the performance97

loss in settings with stochastic and non-local dependencies.98

The mean-field approach [44, 55, 19] provides another way to address the scalability issue, but under99

very different settings compared to ours. Specifically, the mean-field approach typically assumes100

homogeneous agents with identical local state/action space and policies, and each agent depends101

on other agents through their population or “mean” behavior. In contrast, our approach considers a102

local-interaction model, where there is an underlying graph and each agent depends on neighboring103

agents in the graph. Further, our approach allows heterogeneous agents, which means that the local104

state/action spaces and policies can differ among the agents.105

Another related line of work uses centralized training with decentralized execution, e.g., [28, 15],106

where there is a centralized coordinator that can communicate with all the agents and keep track of107

their experiences and policies. In contrast, our work only requires distributed training, where we108

constrain the scale of communication in training within the -hop neighborhood of each agent.109

More broadly, this paper contributes to a growing literature that uses exponential decay to derive110

scalable algorithms for learning in networked systems. The specific form of exponential decay that111

we generalize is related to the idea of “correlation decay” studied in [16, 17], though their focus is on112

solving static combinatorial optimization problems whereas ours is on learning policies in dynamic113

environments. Most related to the current paper is [38], which shows an exponential decay property114

in a restricted networked MARL model with purely local dependencies. In contrast, we show a more115

general µ-decay property holds for a general form of stochastic, non-local dependencies.116

The technical work in this paper contributes to the analysis of stochastic approximation (SA), which117

has received considerable attention over the past decade [53, 43, 11, 54]. Our work is most related118

to [37], which uses an asynchronous nonlinear SA to study the finite-time convergence rate for119

asynchronous Q-learning on a single trajectory. Beyond [37], there are many other works that use120

SA schemes to study TD learning and Q-learning, e.g. [43, 51, 20]. The finite-time error bound for121

TD learning with state aggregation in our work is most related to the asymptotic convergence limit122

given in [48] and the application of SA scheme to asynchronous Q-learning in [37]. Beyond these123

papers, other related work in the broader area of RL with state aggregation includes [26, 23, 22, 9, 42].124

We add to this literature with a novel finite-time convergence bound for a general SA with state125

aggregation. This result, in turn, yields the first finite-time error bound in the infinity norm for both126

TD learning with state aggregation and Q-learning with state aggregation.127

2 Stochastic Approximation128

In this section, we present the key technical innovation underlying our results on MARL: a new129

finite-time analysis of a general asynchronous stochastic approximation (SA) scheme. This analysis130

underlies our approach for MARL in networked systems (presented in Section 4). Further, this SA131

scheme is of interest more broadly, e.g., to the settings of TD learning with state aggregation (Section132

3) and asynchronous Q-learning with state aggregation (Appendix C.4).133

Consider a finite-state Markov chain whose state space is given by N = {1, 2, · · · , n}. Let {it}1t=0134

be the sequence of states visited by this Markov chain. Our focus is generalizing the following135

asynchronous stochastic approximation (SA) scheme, which is studied in [47, 40, 51]: Let parameter136

x 2 RN , and F : RN ! RN be a �-contraction in the infinity norm. The update rule of the SA137

scheme is given by138

xit(t+ 1) = xit(t) + ↵t(Fit(x(t))� xit(t) + w(t)),

xj(t+ 1) = xj(t) for j 6= it, j 2 N ,
(1)

where w(t) is a noise sequence. It is shown in [37] that parameter x(t) converges to the unique fixed139

point of F at the rate of O
�
1/
p
t
�
.140

While general, in many cases, including networked MARL, we do not wish to calculate an entry for141

every state in N in parameter x, but instead, wish to calculate “aggregated entries.” Specifically, at142
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each time step, after it is generated, we use a surjection h to decide which dimension of parameter x143

should be updated. This technique, referred to as state aggregation, is one of the easiest-to-deploy144

schemes for state space compression in the RL literature [21, 42]. In the generalized SA scheme, our145

objective is to specify the convergence point as well as obtain a finite-time error bound.146

Formally, to define the generalization of (1), let N = {1, · · · , n} be the state space of {it} and147

M = {1, · · · ,m}, (m  n) be the abstract state space. The surjection h : N ! M is used148

to convert every state in N to its abstraction in M. Given parameter x 2 RM and function149

F : RN ! RN , we consider the generalized SA scheme that updates x(t) 2 RM starting from150

x(0) = 0,151

xh(it)(t+ 1) = xh(it)(t) + ↵t

�
Fit(�x(t))� xh(it)(t) + w(t)

�
,

xj(t+ 1) = xj(t) for j 6= h(it), j 2 M,
(2)

where the feature matrix � 2 RN⇥M is defined as152

�ij =

⇢
1 if h(i) = j
0 otherwise

, 8i 2 N , j 2 M. (3)

In order to state our main result characterizing the convergence of (2), we must first state a few153

definitions and assumptions. To begin, we define the weighted infinity norm as in [37], except that154

we extend its definition so as to define the contraction of function F . The reason we use the weighted155

infinity norm as opposed to the standard infinity norm is that its generality can be used in certain156

settings for undiscounted RL, as shown in [47, 2].157

Definition 2.1 (Weighted Infinity Norm). Fix a positive vector v 2 RM
. For x 2 RM

, we define158

kxk
v
:= sup

i2M
|xi|
vi

. For x 2 RN
, we define kxk

v
:= sup

i2N
|xi|
vh(i)

.159

Next, we state our assumption on the mixing rate of the Markov chain {it}, which is common in the160

literature [49, 43]. It holds for any finite-state Markov chain which is aperiodic and irreducible [5].161

Assumption 2.1 (Stationary Distribution and Geometric Mixing Rate). {it} is an aperiodic and162

irreducible Markov chain on state space N with stationary distribution d = (d1, d2, · · · , dn). Let163

d0
j
=

P
i2h�1(j) di and �0 = infj2M d0

j
. There exists positive constants K1,K2 which satisfy that164

supS✓N
��P

i2S di �
P

i2S P(it = i | i0 = j)
��  K1 exp(�t/K2), 8j 2 N , 8t � 0 and K2 � 1.165

Our next assumption ensures contraction of F . It is also standard, e.g., [47, 51, 37], and ensures that166

F has a unique fixed point y⇤.167

Assumption 2.2 (Contraction). Operator F is a � contraction in k·k
v
, i.e., for any x, y 2 RN

, we168

have kF (x)� F (y)k
v
 �kx� yk

v
. Further, there exists some constant C > 0 such that for any169

x 2 RN
, we have kF (x)k

v
 �kxk

v
+ C.170

In Assumption 2.2, notice that the first sentence directly implies the second with C = (1 + �)ky⇤k
v
,171

where y⇤ 2 RN is the unique fixed point of F . Further, while Assumption 2.2 implies that F has172

a unique fixed point y⇤, we do not expect our stochastic approximation scheme to converge to it.173

Instead, we show that the convergence is to the unique x⇤ that solves174

⇧F (�x⇤) = x⇤, where ⇧ :=
�
�>D�

��1
�>D. (4)

Here D = diag(d1, d2, · · · , dn) denotes the steady-state probabilities for the process {it}. Note that175

x⇤ is well-defined because the operator ⇧F (�·), which defines a mapping from RM to RM, is also176

a contraction in k·k
v
. We state and prove this as Proposition B.1 in Appendix B.1.177

Our last assumption is on the noise sequence w(t). It is also standard, e.g., [40, 37].178

Assumption 2.3 (Martingale Difference Sequence). wt is Ft+1 measurable and satisfies Ew(t) |179

Ft = 0. Further, |w(t)|  w̄ almost surely for constant w̄.180

We are now ready to state our finite-time convergence result for stochastic approximation.181

Theorem 2.1. Suppose Assumptions 2.1, 2.2, 2.3 hold. Further, assume there exists constant182

x̄ � kx⇤k
v

such that 8t, kx(t)k
v
 x̄ almost surely.

1
Let the step size be ↵t = H

t+t0
with t0 =183

1The assumption on x̄ follows from Assumptions 2.2 and 2.3. See Proposition B.2 in Appendix B.3.
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max(4H, 2K2 log T ), and H � 2
�0(1��) . Let x⇤

be the unique solution of equation ⇧F (�x⇤) = x⇤
,184

and define constants C1 := 2x̄+C+ w̄

v
, C2 := 4x̄+2C+ w̄

v
, C3 := 2K1(2x̄+C)(1+2K2+4H).185

Then, with probability at least 1� �,186

kx(T )� x⇤k
v
 Cap

T + t0
+

C0
a

T + t0
= Õ

✓
1p
T

◆
,

where the constants are given by Ca = 4HC2
1��

q
K2 log T

�
log

�
4mK2T

�

�
+ log log T

�
and C 0

a
=187

4max{ 48K2C1H log T+�
0
C3

(1��)�0 , 2x̄(2K2 log T+t0)
1��

}.188

A proof of Theorem 2.1 can be found in Appendix B.2. Compared with Theorem 4 in [37], Theorem189

2.1 holds for a more general SA scheme where state aggregation is used to reduce the dimension190

of the parameter x. The proof technique used in [37] does not apply to our setting because our191

stationary point x⇤ has a more complex form (3). To do the generalization, we need to use a different192

error decomposition method compared to [37] that leverages the stationary distribution D rather than193

the distribution of it condition on it�⌧ (see Appendix B.2 for details). Because of this generality,194

Theorem 2.1 requires a stronger but standard assumption on the mixing rate of the Markov chain195

{it}.196

3 State Aggregation197

Before applying our analysis of SA (Theorem 2.1) in the network setting, we first illustrate its198

importance via a simpler application to the cases of TD-learning and Q-learning with state aggregation.199

Understanding state aggregation methods is a foundational goal of analysis in the RL literature and it200

has been studied in many previous works, e.g., [26, 23, 22, 9, 42]. Further, the result is extremely201

useful in the analysis in networked MARL that follows since the µ-decay property we introduce202

(Definition 4.1) provides a natural state aggregation in the network setting (see Corollary 4.4). Due203

to space constraints, in this section we only introduce the results on TD-learning; the results on204

Q-learning are given in Appendix C.4.205

In TD learning with state aggregation [42, 48], given the sequence of states visited by the Markov206

chain is {it}, the update rule of TD(0) is given by207

✓h(it)(t+ 1) = ✓h(it)(t) + ↵t

�
rt + �✓h(it+1)(t)� ✓h(it)(t)

�
,

✓j(t+ 1) = ✓j(t) for j 6= h(it), j 2 M,
(5)

where h : N ! M is a surjection that maps each state in N to an abstract state in M and rt is the208

reward at time step t such that E[rt] = r(it, it+1).209

Taking F as the Bellman Policy Operator, i.e., the i’th dimension of function F is given by210

Fi(V ) = Ei0⇠P(·|i)[r(i, i
0) + �Vi0 ], 8i 2 N , V 2 RN .

The value function (vector) V ⇤ is defined as V ⇤
i
= E[

P1
t=0 �

tr(it, it+1) | i0 = i], i 2 N [48]. By211

defining the feature matrix � as (3) and the noise sequence as212

w(t) = rt + �✓h(it+1)(t)� Ei0⇠P(·|it)[r(it, i
0) + �✓h(i0)(t)],

we can rewrite the update rule of TD(0) in (5) in the form of an SA scheme (2). Therefore, we can213

apply Theorem 2.1 to obtain a finite-time error bound for TD learning with state aggregation. A proof214

of Theorem 3.1 can be found in Appendix C.2.215

Theorem 3.1. Let Assumption 2.1 hold for the Markov chain {it} and let the stage reward rt be216

upper bounded by r̄ almost surely. Assume that if h(i) = h(i0) for i, i0 2 N , we have |V ⇤
i
� V ⇤

i0 |  ⇣217

for a constant ⇣ . Consider TD(0) with the step size ↵t =
H

t+t0
, where t0 = max(4H, 2K2 log T ) and218

H � 2
�0(1��) . Define constant C4 := 4K1(1 + 2K2 + 4H). Then, with probability at least 1� �,219

k� · ✓(T )� V ⇤k1  Cap
T + t0

+
C0

a

T + t0
+

⇣
1� �

,

where the constants are given by Ca = 40Hr̄

(1��)2

q
K2 log T

�
log

�
4mK2T

�

�
+ log log T

�
and C0

a =220

8r̄
(1��)2

max{ 144K2H log T

�0 + C4, 2K2 log T + t0}.221
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The most related prior results to Theorem 3.1 are [43, 4]. In contrast to these, Theorem 3.1 considers222

the infinity norm, which is more natural for measuring error when using state aggregation. Further, our223

analysis is different and extends to the case of Q-learning with state aggregation (see Appendix C.4),224

where we obtain the first finite-time error bound. Moreover, unlike [4], our TD-learning algorithm225

does not require a projection step.226

4 Networked MARL227

We now present our main results, which apply the results in the previous sections to a stochastic228

networked MARL setting. We consider a network of agents that are associated with an underlying229

undirected graph G = (N , E), where N = {1, 2, · · · , n} denotes the set of agents and E ✓ N ⇥N230

denotes the set of edges. The distance dG(i, j) between two agents i and j is defined as the number231

of edges on the shortest path that connects them on graph G. Each agent is associated with its local232

state si 2 Si and local action ai 2 Ai where Si and Ai are finite sets. The global state/action is233

defined as the combination of all local states/actions, i.e., s = (s1, · · · , sn) 2 S := S1 ⇥ · · ·⇥ Sn,234

and a = (a1, · · · , an) 2 A := A1 ⇥ · · · ⇥ An. We use N

i
to denote the -hop neighborhood of235

agent i on G, i.e., N

i
:= {j 2 N | dG(i, j)  }. Let f() := sup

i
|N

i
|. For a subset M ✓ N , we236

use sM/aM to denote the tuple formed by the states/actions of agents in M .237

Before we define the transitions and rewards, we first define the notion of active link sets, which are238

directed graphs on the agents N and they characterize the interaction structure among the agents.239

More specifically, an active link set is a set of directed edges that contains all self-loops, i.e., a subset240

of N ⇥N and a super set of {(i, i) | i 2 N}. Generally speaking, (j, i) 2 L means agent j can affect241

agent i in the active link set L. Given an active link set L, we also use Ni(L) := {j 2 N | (j, i) 2 L}242

to denote the set of all agents (include itself) who can affect agent i in the active link set L. In this243

paper, we consider a pair of active link sets (Ls

t
, Lr

t
) that is independently drawn from some joint244

distribution D at each time step t,2 where the distribution D will be defined using the underlying245

graph G later in Section 4.1. The role of Ls

t
/Lr

t
is that they define the dependence structure of state246

transition/reward at time t, which we detail below.247

Transitions. At time t, given the current state, action s(t), a(t) and the active link set Ls

t
, the next248

individual state si(t + 1) is independently generated and only depends on the state/action of the249

agents in Ni(Ls

t
). In other words, we have,250

P (s(t+ 1)|s(t), a(t), Ls

t
) =

Y

i2N
Pi(si(t+ 1)|sNi(Ls

t )
(t), aNi(Ls

t )
(t), Ls

t
). (6)

Rewards. Each agent is associated with a local reward function ri. At time t, it is a function of Lr

t
251

and the state/action of agents in Ni(Lr

t
): ri(Lr

t
, sNi(Lr

t )
(t), aNi(Lr

t )
(t)). The global reward r(t) is252

defined to be the summation of the local rewards ri(t).253

Policy. Each agent follows a localized policy that depends on its �-hop neighborhood, where � � 0254

is a fixed integer. Specifically, at time step t, given the global state s(t), agent i adopts a local policy255

⇣i parameterized by ✓i to decide the distribution of ai(t) based on the the states of agents in N�

i
.256

Our objective is for all the agents to cooperatively maximize the discounted global reward, i.e.,257

J(✓) = Es⇠⇡0

P1
t=0 �

tr(s(t), a(t)) | s(0) = s

�
, where ⇡0 is a given distribution on the initial258

global state, and we recall r(s(t), a(t)) is the global stage reward defined as the sum of all local259

rewards at time t.260

Examples. To highlight the applicability of the general model, we include two examples of networked261

systems that feature the dependence structure captured by our model in Appendix A: a wireless262

communication example and an example of controlling a process that spreads over a network.263

Note that a limitation of our setting is that the dependence structure we consider is stationary, in the264

sense that dependencies are sampled i.i.d. from the distribution D. It is important to consider more265

general time-varying forms (e.g. Markovian) in future research.266

Background. Before moving on, we review a few key concepts in RL which will be useful in267

the rest of the section. We use ⇡✓

t
to denote the distribution of s(t) under policy ✓ given that268

2Here, correlations between Ls

t and Lr

t are possible
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s(0) ⇠ ⇡0. A well-known result [46] is that the gradient of the objective rJ(✓) can be computed269

by 1
1��

Es⇠⇡✓,a⇠⇣✓(·|s)Q
✓(s, a)r log ⇣✓(a | s), where distribution ⇡✓(s) = (1 � �)

P1
t=0 �

t⇡✓

t
(s)270

is the discounted state visitation distribution. Evaluating the Q-function Q✓(s, a) plays a key271

role in approximating rJ(✓). Local Q-function for agent i is the discounted local reward, i.e.272

Q✓

i
(s, a) = E⇣✓

P1
t=0 �

tri(t) | s(0) = s, a(0) = a

�
, where we use ri(t) to denote the local reward273

of agent i at time step t. Using local Q-functions, we can decompose the global Q-function as274

Q✓(s, a) = 1
n

P
n

i=1 Q
✓

i
(s, a), which allows each node to evaluate its local Q-function separately.275

A key challenge in our MARL setting is that directly estimating the Q-functions is not scalable since276

the size of the Q-functions is exponentially large in the number of agents. Therefore, in Section 4.1,277

we study structural properties of the Q-functions resulting from the dependence structure in the278

transition (6), which enables us to design a scalable RL algorithm in Section 4.2.279

4.1 µ-decay Property280

One of the core challenges for MARL is that the size of the Q function is exponentially large in the281

number of agents. The key to our algorithm and its analysis is the identification of a novel structural282

decay property for the Q-function, which says that the local Q-function of each agent i is mainly283

decided by the states of the agents who are near i. This property is critical for the design of scalable284

algorithms because it enables the agents to reduce the dimension of the Q-function by truncating285

its dependence of the states and actions of far away agents. Recently, exponential decay has been286

shown to hold in networked MARL when the network is static [38, 36], which is exploited to design a287

scalable RL algorithm. However, in stochastic network settings it is too much to hope for exponential288

decay in general [14], and so we introduce the more general notion of µ-decay here, where µ is a289

function that converges to 0 as  tends to infinity. The case of exponential decay that has been studied290

previously corresponds to µ() = �/(1 � �). The formal definition of µ-decay is given below,291

where for simplicity, we use i
L�! j to denote (i, j) 2 L and denote N

�i
:= N \N

i
.292

Definition 4.1. For a function µ : N ! R+
that satisfies lim!+1 µ() = 0, the µ-decay property293

holds if for any policy ✓ and any i 2 N , the local Q function Q✓

i
satisfies

��Q✓

i
(s, a)�Q✓

i
(s0, a0)

�� 294

µ() for any (s, a), (s0, a0) that are identical within N

i
, i.e. sN

i
= s0

N

i
, aN

i
= a0

N

i

.295

Intuitively, if the µ-decay property holds and µ() decays quickly as  increases, we can approxi-296

mately decompose the global Q function as Q✓(s, a) = 1
n

P
n

i=1 Q
✓

i
(s, a) ⇡ 1

n

P
n

i=1 Q̂
✓

i
(sN

i
, aN

i
),297

where Q̂i only depends on the states and actions within the -hop neighborhood of agent i. Before298

our work, [45] empirically showed that such a value decomposition allows efficient training of299

MARL. Under the assumption that such decomposition exists, [45] propose an approach to learn this300

decomposition. In contrast, as we prove in this section, the µ decay property holds provably and301

therefore, the global Q function can be directly decomposed in the networked MARL model and that302

the error of such decomposition is provably small.303

Our first result is Theorem 4.1 which shows the relationship between the random active link sets and304

the µ-decay property. The proof of Theorem 4.1 is deferred to Appendix D.1.305

Theorem 4.1. Define La
as the static active link set that contains all pairs (i, j) whose graph306

distance on G is less than or equal to �, which is the dependency of local policy. Let random variable307

Xi() denote the smallest t 2 N such that there exists a chain of agents308

ja0
L

s
0��! js1

L
a

��! ja1
L

s
1��! · · ·

L
s
t�1���! jst

L
a

��! jat ,

that satisfies ja0 2 N

�i
and ja

t

L
r
t��! i. The µ-decay property holds for µ() = 1

1��
E
⇥
�Xi()

⇤
.309

To make the µ-decay result more concrete, we provide several scenarios that yield different upper310

bounds on the term E
⇥
�Xi()

⇤
. In the first scenario, we study the case where long range links do311

not exist in Corollary 4.2. In this case, we obtain an exponential decay property that generalizes the312

result in [38]. A proof is in Appendix D.2.313

Corollary 4.2 (Exponential Decay). Consider a distribution D of active link sets that satisfies314

P(Ls,Lr)⇠D{(i, j) 2 Ls} = 0, for all i, j 2 N s.t. dG(i, j) � ↵1,

P(Ls,Lr)⇠D{(i, j) 2 Lr} = 0, for all i, j 2 N s.t. dG(i, j) � ↵2.
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Algorithm 1 Scalable Actor Critic
1: for m = 0, 1, 2, · · · do

2: Sample initial global state s(0) ⇠ ⇡0.
3: Each node i takes action ai(0) ⇠ ⇣✓i(m)

i
(· | s

N
�
i
(0)) to obtain the global state s(1).

4: Each node i records sN
i
(0), aN

i
(0), ri(0) and initialize Q̂0

i
to be all zero vector.

5: for t = 1, · · · , T do

6: Each node i takes action ai(t) ⇠ ⇣✓i(m)
i

(· | s
N

�
i
(t)) to obtain the global state s(t+ 1).

7: Each node i update the local estimation Q̂i with step size ↵t�1 = H

t�1+t0
,

Q̂t

i

�
sN

i
(t� 1), aN


i
(t� 1)

�
=

(1� ↵t�1)Q̂
t�1
i

�
sN

i
(t� 1), aN


i
(t� 1)

�
+ ↵t�1

⇣
ri(t) + �Q̂t�1

i

�
sN

i
(t), aN


i
(t)

�⌘
,

Q̂t

i

�
sN

i
, aN


i

�
= Q̂t�1

i

�
sN

i
, aN


i

�
for

�
sN

i
, aN


i

�
6=

�
sN

i
(t� 1), aN


i
(t� 1)

�
.

8: Each node i approximate r✓iJ(✓) by
ĝi(m) =

P
T

t=0 �
t 1
n

P
j2N


i
Q̂T

j

�
sN

j
(t), aN


j
(t)

�
r✓i log ⇣

✓i(m)
i

�
ai(t) | s

N
�
i
(t)

�
.

9: Each node i conducts gradient ascent by ✓i(m+ 1) = ✓i(m) + ⌘mĝi(m).

Then, E
⇥
�Xi()

⇤
 C⇢, where ⇢ = �1/(↵1+�), C = ��↵2/(↵1+�)

.315

In the second scenario, long range active links can occur, but with exponentially small probability316

with respect to their distance. In this case, we can obtain a near-exponential decay property where317

µ() = O(⇢/ log )) for some ⇢ 2 (0, 1). A proof can be found in Appendix D.3.318

Theorem 4.3 (Near-Exponential Decay). Suppose the distribution D of active link sets satisfies319

P(Ls,Lr)⇠D{(i, j) 2 Ls [ Lr}  c�dG(i,j), for all i, j 2 N ,

where c � 1, 1 > � > 0 are constants. If the largest size of the  neighborhood in the underlying320

graph G can be bounded by a polynomial of , i.e., there exists some constants c0 � 1, n0 2 N such321

that |{j 2 N | dG(i, j) = }|  c0(+ 1)n0 holds for all i, then E
⇥
�Xi(�1)

⇤
 C⇢/(1+ln(+1))322

for some positive constant C and decay rate ⇢ < 1.
3323

It is interesting to compare the result above with models of the so-called “small world phenomena" in324

social networks, e.g., [14]. In these models, a link (i, j) occurs with probability 1/poly(dG(i, j)), as325

opposed to the exponential dependence in Lemma 4.3. In this case, one can see function µ is lower326

bounded by 1/poly(), which leads us to conjecture that µ is also upper bounded by O(1/poly()).327

Thus, when information spreads “slowly" it helps a localized algorithm to learn efficiently.328

4.2 A Scalable Actor Critic Algorithm329

Motivated by the µ-decay property of the Q-functions, we design a novel Scalable Actor Critic330

algorithm (Algorithm 1) for networked MARL problem, which exploits the µ-decay result in the331

previous section. The Critic part (from line 2 to line 7) uses the local trajectory {(sN
i
, aN

i
, ri)} to332

evaluate the local Q-functions under parameter ✓(m). Intuitively, the µ-decay property guarantees333

that we can achieve good approximation error even when  is not large. The Actor part (from line334

8 to line 9) computes the estimated partial derivative using the estimated local Q-functions, and335

uses the partial derivative to update local parameter ✓i. The step size sequence {⌘m} will be defined336

in Theorem D.2. Compared with the Scalable Actor Critic algorithm proposed in [38], Algorithm337

1 extends the policy dependency structure considered. No longer is the dependency completely338

local; it now extends to all agents within the �-hop neighborhood. Interestingly, the time-varying339

dependencies do not add complexity into the algorithm (though the analysis is more complex).340

Algorithm 1 is highly scalable. Each agent i needs only to query and store the information within its341

-hop neighborhood during the learning process. The parameter  can be set to balance accuracy and342

complexity. Specifically, as  increases, the error bound becomes tighter at the expense of increasing343

computation, communication, and space complexity.344

3The explicit expression of C and ⇢ can be found in Appendix D.3.
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4.3 Convergence345

We now present our main result, a finite-time error bound for the Scalable Actor Critic algorithm346

(Algorithm 1) that holds under general (non-local) dependencies. To that end, we first describe the347

assumption needed in our result. It focuses on the Markov chain formed by the global state-action348

pair (s, a) under a fixed policy parameter ✓ and is standard for finite-time convergence results in RL,349

e.g., [43, 5, 37].350

Assumption 4.1. Under any fixed policy ✓, {z(t) := (s(t), a(t))} is an aperiodic and ir-351

reducible Markov chain on state space Z := S ⇥ A with a unique stationary distribution352

d✓ = (d✓
z
, z 2 Z), which satisfies d✓

z
> 0, 8z 2 Z . Define d✓(z0) =

P
z2Z:zN

i
=z0 d✓(z)353

and �0() := infz02ZN
i
d✓(z0). There exists positive constants K1,K2 such that K2 � 1 and354

8z0 2 Z, 8t � 0, supK✓Z
��P

z2K d✓
z
�
P

z2K P(z(t) = z | z(0) = z0)
��  K1e�t/K2 .355

Recall that in TD learning with state aggregation (Section 3), we defined a surjection h that maps a356

state to an abstract state. To have a good approximate equivalence, we need to find a good h, i.e.,357

if two states are mapped to the same abstract state, their value functions are required to be close358

(Theorem 3.1). In the context of networked MARL, the µ decay property (Definition 4.1) provides a359

natural mapping h for state aggregation. To see this, for each agent i, let h map the global state/action360

to the local states/actions in agent i’s -hop neighborhood, i.e., h(s, a) =
�
sN

i
, aN

i

�
. The µ-decay361

property guarantees that if h(s, a) = h(s0, a0), the difference in their Q-functions is upper bounded362

by µ(), which is vanishing as  increases. This idea leads to the following corollary by applying363

Theorem 3.1 to the networked MARL system.364

Corollary 4.4. Suppose Assumption 4.1 and µ-decay property (Definition 4.1) hold. Let the step365

size be ↵t = H

t+t0
with t0 = max(4H, 2K2 log T ), and H � 2

(1��)�0() . Define constant C3366

as in Theorem 3.1. Then, inside outer loop iteration m, for each i 2 N , with probability at367

least 1 � �, we have sup(s,a)2S⇥A

���Q✓(m)
i

(s, a)� Q̂T (sN
i
, aN

i
)
���  Cap

T+t0
+ C

0
a

T+t0
+ µ()

1��
,368

where the constants are given by Ca = 40H
(1��)2

r
K2 log T

⇣
log

⇣
4f()K2T

�

⌘
+ log log T

⌘
and369

C 0
a
= 8

(1��)2 max{ 144K2H log T

�0() + C3, 2K2 log T + t0}.370

The most related result in the literature to the above is Theorem 7 in [38]. In comparison, Corollary371

4.4 applies for more general, potentially non-local, dependencies and, also, improves the constant372

term by a factor of 1/(1� �).373

To analyze the Actor part of Algorithm 1, we make the following additional boundedness and374

Lipschitz continuity assumptions on the gradients. These are standard assumptions in the literature.375

Assumption 4.2. For any i, ai, sN�
i

and ✓i, we assume

���r✓i log ⇣
✓i
i
(ai | sN�

i
)
���  Wi. Then, for376

any La

t
,

��r✓ log ⇣✓(a | s)
��  W :=

pP
n

i=1 W
2
i

. We further assume rJ(✓) is W 0
-Lipschitz in ✓.377

Intuitively, since the quality of the estimated policy gradient depends on the quality of the estimation378

of Q-functions, if every agent i has learned a good approximation of its local Q-function in the Critic379

part of Algorithm 1, the policy gradient can be approximated well. Therefore, the Actor part can380

obtain a good approximation of a stationary point of the objective function. We state the sample381

complexity result in Theorem 4.5 and defer the detailed bounds and a proof to Appendix D.4.382

Theorem 4.5. Under Assumption 4.2, to reach an O(✏)-approximate stationary point with probability383

at least 1� �, we need to choose  such that µ() = O
�
W�2(1� �)4✏

�
. The number of required384

iterations of the outer loop should satisfy M = ⌦̃
�
✏�2poly(W,W 0, 1

1��
)
�

and the number of required385

iterations of the inner loop is T = ⌦̃
�
✏�2poly(W, 1

�0() ,K2,
1

1��
, log f(), log(1/�))

�
.386

Note that W scales with the number of agents n. Thus, Theorem 4.5 shows that the complexity of our387

algorithm scales with the largest state-action space size of any -hop neighborhood and the number388

of agents n, which avoids the exponential blowup in n when the graph is sparse and achieves scalable389

RL for networked agents even under stochastic, non-local settings.390
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