
Subquadratic Kronecker Regression with
Applications to Tensor Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Kronecker regression is a highly-structured least squares problem minxkKx�bk22,1

where the design matrix K = A(1) ⌦ · · ·⌦A(N) is a Kronecker product of factor2

matrices. This regression problem arises in each step of the widely-used alternating3

least squares (ALS) algorithm for computing the Tucker decomposition of a tensor.4

We present the first subquadratic-time algorithm for solving Kronecker regression5

to a (1+ ")-approximation that avoids the exponential term O("�N) in the running6

time. Our techniques combine leverage score sampling and iterative methods. By7

extending our approach to block-design matrices where one block is a Kronecker8

product, we also achieve subquadratic-time algorithms for (1) Kronecker ridge9

regression and (2) updating the factor matrix of a Tucker decomposition in ALS,10

which is not a pure Kronecker regression problem, thereby improving the running11

time of all steps of Tucker ALS. We demonstrate the speed and accuracy of this12

Kronecker regression algorithm on synthetic data and real-world image tensors.13

1 Introduction14

Tensor decomposition has a rich multidisciplinary history with countless applications in data mining,15

machine learning, and signal processing [34, 54, 56, 30]. The most widely-used tensor decom-16

positions are the CP decomposition and the Tucker decomposition. Similar to the singular value17

decomposition of a matrix, both decompositions have natural analogs of low-rank structure. Unlike18

matrix factorization, however, computing the rank of a tensor is NP-hard [26]. Therefore, most low-19

rank tensor decomposition algorithms decide on the rank structure in advance, and then optimize the20

variables of the decomposition to fit the data. While conceptually simple, this approach is extremely21

effective in many applications.22

The alternating least squares (ALS) algorithm is the main workhorse for low-rank tensor decompo-23

sition (e.g., it is the first algorithm mentioned in the MATLAB Tensor Toolbox [7]). For both CP24

and Tucker decompositions, ALS cyclically optimizes disjoint blocks of variables while keeping all25

others fixed. As the name suggests, each step solves a linear regression problem. The core tensor26

update step in ALS for Tucker decompositions is notoriously expensive but highly structured. In fact,27

the design matrix of this regression problem is the Kronecker product of the factor matrices of the28

Tucker decomposition K = A(1) ⌦ · · ·⌦A(N). Our work builds on a line of Kronecker regression29

algorithms [17, 18, 46] to give the first subquadratic-time algorithm for solving Kronecker regression30

to a (1 + ")-approximation while avoiding an exponential term of O("�N) in the running time.31

We combine leverage score sampling with iterative methods to fully exploit the Kronecker structure32

of the design matrix. We also extend our approach to block-design matrices where one block is a33

Kronecker product, achieving subquadratic-time algorithms for (1) Kronecker ridge regression and34

(2) updating the factor matrix of a Tucker decomposition in ALS, which is not a pure Kronecker35

regression problem. Putting everything together, this work improves the running time of all steps of36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

ALS for Tucker decompositions and runs in time that is sublinear in the size of the input tensor, linear37

in the error parameter "�1, and subquadratic in the number of columns of the design matrix in each38

step. Our algorithms support L2 regularization in the Tucker loss function, so the decompositions39

can readily be used in downstream learning tasks (e.g., using the factor matrix rows as embeddings40

for clustering [65]). Regularization also plays a critical role in the more general tensor completion41

problem to prevent overfitting when data is missing and has applications in differential privacy [10, 8].42

The current fastest Kronecker regression algorithm of Diao et al. [18] solves this problem by leverage43

score sampling and achieves the following running times for A(n) 2 RIn⇥Rn with In � Rn, for all44

n 2 [N], where R =
QN

n=1 Rn and ! < 2.3728596 denotes the matrix multiplication exponent [4]:45

1. Õ(
PN

n=1(nnz(A(n))+R
!
n)+R

!
"
�1) by sampling Õ(R"

�1) rows of K by their leverage46

scores.47

2. Õ(
PN

n=1(nnz(A(n)) +R
!
n"

�1) +R"
�N) by sampling Õ(Rn"

�1) rows from each factor48

matrix A(n) and taking the Kronecker product of the sampled factor matrices.49

Note that the second approach is linear in R, but the error parameter has an exponential cost in the50

number of factor matrices. In this paper, we show that the running time of the first approach can be51

improved to subquadratic in R without increasing the running time dependence on " in the dominant52

term, simultaneously improving on both approaches.53

Theorem 1.1. For n 2 [N], let A(n) 2 RIn⇥Rn , In � Rn, and b 2 RI1···In . There is a (1 + ")-54

approximation algorithm for solving argminxk(A(1) ⌦ · · · ⌦ A(N))x � bk22 that runs in time55

56

Õ

0

@
NX

n=1

⇣
nnz(A(n)) +R

!
nN

2
"
�2
⌘
+ min

S✓[N]
MM

0

@
Y

n2S

Rn, R"
�1

,

Y

n2[N]\S

Rn

1

A

1

A, (1)

where MM(a, b, c) is the running time of multiplying an a⇥ b matrix with a b⇥ c matrix.57

If we do not use the fast matrix multiplication of Gall and Urrutia [23] and Alman and Williams [4], the58

last term in (1) is Õ(R2
"
�1), which is already an improvement over the standard Õ(R3

"
�1) running59

time. With fast matrix multiplication, MM(
Q

n2S Rn, R"
�1

,
Q

n2[N]\S Rn) is subquadratic in R,60

for any nontrivial subset S 62 {;, [N]}, which is an improvement over Õ(R!
"
�1) ⇡ Õ(R2.373

"
�1).61

If there exists a “balanced” subset S such that
Q

n2S Rn =
p
R, our running time goes as low as62

Õ(R1.626
"
�1) using [23]. For ease of notation, we denote the subquadratic improvement by the63

constant ✓⇤ > 0, where R
2�✓⇤

= minS✓[N] MM(
Q

n2S Rn, R,
Q

n2[N]\S Rn).64

Although updating the core tensor in the ALS algorithm for Tucker decomposition is a pure Kronecker65

product regression as described in Theorem 1.1, updating the factor matrices is a regression problem66

of the form argminxkKMx� bk22, where K is a Kronecker product and M is a matrix without any67

particular structure. We show such problems can be converted to block regression problems where68

one of the blocks is K. We then design sublinear-time leverage score sampling techniques for these69

block matrices, which leads to the following theorem that accelerates all ALS steps.70

Theorem 1.2. There is an ALS algorithm for L2-regularized Tucker decompositions that takes a tensor71

X 2 RI1⇥···⇥IN and returns N factor matrices A(n) 2 RIn⇥Rn and a core tensor G 2 RR1⇥···⇥Rn72

such that each factor matrix and core update is a (1 + ")-approximation to the optimum with high73

probability. The running times of each step are:74

• Core tensor: Õ(
PN

n=1(nnz(A(n)) +R
!
nN

2
"
�2) +R

2�✓⇤
"
�1),75

• Factor matrix: Õ(
PN

n=1(nnz(A(n))+R
!
nN

2
"
�2)+ IkR

2�✓⇤

6=k "
�1+ IkR

PN
n=1 Rn+R

!
k),76

where R =
QN

n=1 Rn, R 6=k = R/Rk, and ✓
⇤
> 0 is a constant derived from fast rectangular matrix77

multiplication.78

Note that for tensors of relatively large order, the superlinear term in R is the bottleneck in many79

applications since R is exponential in the order of the tensor. Thus, our improvements are significant80

in both theory and practice as illustrated in our experiments in Section 6.81

2

1.1 Our Contributions and Techniques82

We present several new results about approximate Kronecker regression and the ALS algorithm for83

Tucker decompositions. Below is a summary of our contributions:84

1. Our main technical contribution is the algorithm FastKroneckerRegression in Section 4.85

This Kronecker regression algorithm builds on the block-sketching tools introduced in Sec-86

tion 3, and combines iterative methods with a fast novel Kronecker-matrix multiplication87

for sparse vectors and matrices and fast rectangular matrix multiplication to achieve a88

running time that is subquadratic in the number of columns in the Kronecker matrix. A key89

insight is to use the original (non-sketched) Kronecker product as the preconditioner in the90

Richardson iterations when solving the sketched problem. This allows us to fully exploit91

the Kronecker structure through fast Kronecker matrix-vector multiplications (Lemma 4.492

and Theorem 4.5), instead of computing the pseudoinverse of the sketched normal matrix as93

in Diao et al. [18].94

2. We generalize our Kronecker regression techniques to work for Kronecker ridge regression95

and the factor matrix updates in ALS for Tucker decomposition. We show that a factor96

matrix update is equivalent to solving an equality-constrained Kronecker regression problem97

with a low-rank update to the preconditioner in the Richardson iterations. We can implement98

these new matrix-vector products nearly as fast by using the Woodbury matrix identity. Thus,99

we provably speed up each step of Tucker ALS (i.e., the core tensor and factor matrices).100

3. We give a block-sketching toolkit in Section 3 that states we can sketch blocks of a matrix101

by their leverage scores (i.e., their leverage scores in isolation, not with respect to the entire102

block matrix). This is one of the ways we exploit the Kronecker product structure of the103

design matrix. This approach can be useful for constructing spectral approximations and104

for approximately solving block regression problems. One corollary is that we can use the105

“sketch-and-solve” method for any ridge regression problem (Corollary 3.5).106

4. We compare FastKroneckerRegression with Diao et al. [18, Algorithm 1] on a synthetic107

Kronecker regression task studied in [17, 18] and as a subroutine in ALS for computing the108

Tucker decomposition of the image tensors [43, 49, 50]. Our results highlight the importance109

of reducing the runtime dependency on the number of columns in the Kronecker product.110

1.2 Related Work111

Kronecker Regression. Diao et al. [17] recently gave the first Kronecker regression algorithm112

based on TensorSketch [52] that is faster than forming the Kronecker product. Diao et al. [18]113

improved this by removing the dependence on O(nnz(b)) from the running time, where b 2 RI1···IN114

is the response vector. Marco et al. [46] have studied the generalized Kronecker regression problem.115

Ridge Leverage Scores. Alaoui and Mahoney [3] extended the notion of statistical leverage scores116

to account for L2 regularization. Sampling from approximate ridge leverage score distributions has117

since played a key role in sparse low-rank matrix approximation [16], the Nyström method [48],118

bounding statistical risk in ridge regression [47], and ridge regression [14, 47, 40, 32]. Fast recursive119

algorithms for computing approximate leverage scores [15] and for solving overconstrained least120

squares [39] are also closely related.121

Tensor Decomposition. Cheng et al. [13] and Larsen and Kolda [37] used leverage score sampling122

to speed up ALS for CP decomposition.1 Song et al. [57] gave a polynomial-time, relative-error123

approximation algorithm for several low-rank tensor decompositions, which include CP and Tucker.124

Frandsen and Ge [22] showed that if the tensor has an exact Tucker decomposition, then all local125

minima are globally optimal. Randomized low-rank Tucker decompositions based on sketching have126

become increasingly popular, especially in streaming applications: [44, 59, 11, 58, 30, 45, 43, 2]. The127

more general problem of low-rank tensor completion is also a fundamental approach for estimating128

the values of missing data [1, 42, 28, 27, 21]. Fundamental algorithms for tensor completion are based129

on ALS [66, 24, 41], Riemannian optimization [36, 33, 51], or projected gradient methods [63].130

1The design matrix in each step of ALS for CP decomposition is a Khatri–Rao product, not a Kronecker
product. CP decomposition does not suffer from a bottleneck step like ALS for Tucker decomposition since it is
a sparser decomposition (i.e., CP decomposition does not have a core tensor—just factor matrices).

3

2 Preliminaries131

Algorithm 1 TuckerALS
Input: X 2 RI1⇥···⇥IN , (R1, R2, . . . , RN), �

1: Initialize core tensor G 2 RR1⇥R2⇥···⇥Rn

2: Initialize factors A(n) 2 RIn⇥Rn for n 2 [N]
3: repeat
4: for n = 1 to N do
5: K A(1)⌦· · ·⌦A(n�1)⌦A(n+1)⌦

· · ·⌦A(N)

6: B X(n)
7: for i = 1 to In do
8: y⇤ argminykKG|

(n)y�b
|
i:k22+

�kyk22
9: Update factor row a(n)i: y⇤|

10: K A(1) ⌦A(2) ⌦ · · ·⌦A(N)

11: g⇤ argmingkKg�vec(X)k22+�kgk22
12: Update core tensor G vec�1(g⇤)
13: until convergence
14: return G,A(1)

,A(2)
, . . . ,A(N)

Notation. The order of a tensor is the num-132

ber of its dimensions. We denote scalars by133

normal lowercase letters x 2 R, vectors by134

boldface lowercase letters x 2 Rn, matrices135

by boldface uppercase letters X 2 Rm⇥n, and136

higher-order tensors by boldface script letters137

X 2 RI1⇥I2⇥···⇥IN . We use normal uppercase138

letters to denote the size of an index set (e.g.,139

[N] = {1, 2, . . . , N}). The i-th entry of a vec-140

tor x is denoted by xi, the (i, j)-th entry of a141

matrix X by xij , and the (i, j, k)-th entry of a142

third-order tensor X by xijk.143

Linear Algebra. Let In denote the n⇥n iden-144

tity matrix and 0m⇥n denote the m ⇥ n zero145

matrix. The transpose of A 2 Rm⇥n is A| and146

the Moore–Penrose inverse is A+. The singular147

value decomposition (SVD) of A is a factoriza-148

tion of the form U⌃V|, where U 2 Rm⇥m149

and V 2 Rn⇥n are orthogonal matrices, and150

⌃ 2 Rm⇥n is a non-negative real diagonal ma-151

trix. The entries �i(A) of ⌃ are the singular values of A, and the number of non-zero singular values152

is equal to r = rank(A). The compact SVD is a related decomposition where ⌃ 2 Rr⇥r is a diagonal153

matrix containing the non-zero singular values. The Kronecker product of two matrices A 2 Rm⇥n154

and B 2 Rp⇥q is denoted by A⌦B 2 R(mp)⇥(nq).155

Tensor Products. Fibers of a tensor are the vectors we get by fixing all but one index. If X is a156

third-order tensor, we denote the column, row, and tube fibers by x:jk, xi:k, and xij:, respectively.157

The mode-n unfolding of a tensor X 2 RI1⇥I2⇥···⇥IN is the matrix X(n) 2 RIn⇥(I1···In�1In+1···IN)158

that arranges the mode-n fibers of X as columns of X(n) ordered lexicographically by index. The159

vectorization of X 2 RI1⇥I2⇥···⇥IN is the vector vec(X) 2 RI1I2···IN formed by vertically stacking160

the entries of X ordered lexicographically by index. For example, this transforms X 2 Rm⇥n into a161

tall vector vec(X) by stacking its columns. We use vec�1(x) to undo this operation when it is clear162

from context what the shape of the output tensor should be.163

The n-mode product of tensor X 2 RI1⇥I2⇥···⇥IN and matrix A 2 RJ⇥In is denoted by Y = X⇥nA164

where Y 2 RI1⇥···⇥In�1⇥J⇥In+1⇥···⇥IN . This operation multiplies each mode-n fiber of X by the165

matrix A. This operation is expressed elementwise as166

(X⇥n A)i1...in�1jin+1...iN
=
PIn

in=1 xi1i2...iNajin .

The Frobenius norm kXkF of a tensor X is the square root of the sum of the squares of its entries.167

Tucker Decomposition. The Tucker decomposition decomposes tensor X 2 RI1⇥I2⇥···⇥IN into168

a core tensor G 2 RR1⇥R2⇥···⇥RN and N factor matrices A(n) 2 RIn⇥Rn . Given a regularization169

parameter � 2 R�0, we compute a Tucker decomposition by minimizing the nonconvex loss function170

L(G,A(1)
, . . . ,A(N);X) = kX� G⇥1 A

(1) · · ·⇥N A(N)k2F + �

kGk2F +

NX

n=1

kA(n)k2F

!
.

Entries of the reconstructed tensor bX def
= G⇥1A(1)⇥2 · · ·⇥N A(N) are171

bxi1i2...iN =
R1X

r1=1

· · ·
RNX

rN=1

gr1r2...rNa
(1)
i1r1

· · · a(N)
iNrN

. (2)

Equation (2) demonstrates that bX is the sum of R1 · · ·RN rank-1 tensors. The tuple (R1, R2, . . . , RN)172

is the multilinear rank of the decomposition. The multilinear rank is typically chosen in advance and173

much smaller than the dimensions of X.174

4

Alternating Least Squares. We present TuckerALS in Algorithm 1 and highlight its connections175

to Kronecker regression. The core tensor update (Lines 10–12) is a ridge regression problem where176

the design matrix Kcore 2 RI1···IN⇥R1···RN is a Kronecker product of the factor matrices. Each factor177

matrix update (Lines 5-9) also has Kronecker product structure, but there are additional subspace178

constraints we must account for. We describe these constraints in more detail in Section 5.179

3 Row Sampling and Approximate Regression180

Here we establish our sketching toolkit. The �-ridge leverage score of the i-th row of A 2 Rn⇥d is181

`
�
i (A)

def
= ai:(A

|A+ �I)+a|i:. (3)

The matrix of cross �-ridge leverage scores is A(A|A+ �I)+A|. We denote its diagonal by `�(A)182

because it contains the �-ridge leverage scores of A. Ridge leverage scores generalize statistical183

leverage scores in that setting � = 0 gives the leverage scores of A. We denote the vector of statistical184

leverage scores by `(A). If A = U⌃V| is the compact SVD of A, then for all i 2 [n], we have185

`
�
i (A) =

Pr
k=1

�2
k(A)

�2
k(A)+�

u
2
ik, (4)

where r = rank(A). It follows that every `
�
i (A) 1 since U is an orthogonal matrix. We direct the186

reader to Alaoui and Mahoney [3] or Cohen et al. [15] for further details.187

The main results in this paper build on approximate leverage score sampling for block matrices. The188

�-ridge leverage scores of A 2 Rn⇥d can be computed by appending
p
�Id to the bottom of A to189

get A 2 R(n+d)⇥d and considering the leverage scores of A, so we state the following results in190

terms of statistical leverage scores without loss of generality.191

Definition 3.1. For any A 2 Rn⇥d, the vector ˆ̀(A) 2 Rn is a �-overestimate for the leverage score192

distribution of A if, for all i 2 [n], it satisfies193

ˆ̀
i(A)

k ˆ̀(A)k1
� �

`i(A)

k`(A)k1
= �

`i(A)

rank(A)
.

Next we describe the approximate leverage score sampling algorithm in Woodruff [62, Section 2.4].194

The core idea here is that if we sample Õ(d/�) rows and reweight them appropriately, this smaller195

sketched matrix can be used instead of A to give provable guarantees for many problems.196

Definition 3.2 (Leverage score sampling). Let A 2 Rn⇥d and p 2 [0, 1]n be a �-overestimate197

for the leverage score distribution of A such that kpk1 = 1. SampleRows(A, s,p) denotes the198

following procedure. Initialize sketch matrix S = 0s⇥n. For each row i of S, independently and with199

replacement, select an index j 2 [n] with probability pj and set sij = 1/
p
pjs. Return sketch S.200

The main result in this section is that we can choose to sketch a single block of a matrix by the201

leverage scores of that block in isolation. This sketched submatrix can then be used with the other202

(non-sketched) block to give a spectral approximation to the original matrix or for approximate linear203

regression. The notation A 4 B is the Loewner order and means B�A is positive semidefinite.204

Lemma 3.3. Let A = [A1;A2] be vertically stacked with A1 2 Rn1⇥d and A2 2 Rn2⇥d. Let p 2205

[0, 1]n1 be a �-overestimate for the leverage score distribution of A1. If s > 144d ln(2d/�)/(�"2),206

the sketch S returned by SampleRows(A1, s,p) guarantees, with probability at least 1� �, that207

(1� ")A|A 4 (SA1)
|SA1 +A|

2A2 4 (1 + ")A|A.

Lemma 3.4 (Approximate block regression). Consider the problem argminx2RdkAx� bk22 where208

A = [A1;A2] and b = [b1;b2] are vertically stacked and A1 2 Rn1⇥d, A2 2 Rn2⇥d, b1 2209

Rn1 , b2 2 Rn2 . Let p 2 [0, 1]n1 be a �-overestimate for the leverage score distribution of A1. Let210

s � 1680d ln(40d)/(�") and let S be the output of SampleRows(A1, s,p). If211

x̃⇤ = argminx2Rd

⇣
kS(A1x� b1)k22 + kA2x� b2k22

⌘
,

then, with probability at least 9/10, we have kAx̃⇤ � bk22 (1 + ")minx2RdkAx� bk22.212

5

We defer the proofs of these results to Appendix A. The key idea behind Lemma 3.4 is that leverage213

scores do not increase if rows are appended to the matrix. This then allows us to prove a sketched214

submatrix version of Drineas et al. [19, Lemma 8] for approximate matrix multiplication and satisfy215

the structural conditions for approximate least squares in Drineas et al. [20]. One consequence is that216

we can “sketch and solve” ridge regression, which was shown in [61, Theorem 1] and [6, Theorem 2].217

Corollary 3.5. For any A 2 Rn⇥d, b 2 Rd, � � 0, consider argminx2Rd(kAx� bk22 + �kxk22).218

Let p 2 [0, 1]n1 be a �-overestimate for the leverage scores of A and s � 1680d ln(40d)/(�"). If219

S is the output of SampleRows(A, s,p), then, with probability at least 9/10, the sketched solution220

x̃⇤ = argminx2Rd(kS(Ax� b)k22+�kxk22) gives a (1+ ")-approximation to the original problem.221

Remark 3.6. The success probability of the sketch can be boosted from 9/10 to 1� � by sampling a222

factor of O(log(1/�)) more rows. See the discussion in Chen and Price [12, Section 2] about matrix223

concentration bounds for more details.224

4 Kronecker Regression225

Now we describe the key ingredients that allow us to design an approximate Kronecker regression226

algorithm whose running time is subquadratic in the number of columns in the design matrix.227

1. The leverage score distribution of a Kronecker product matrix K = A(1) ⌦ · · · ⌦A(N) is a228

product distribution of the leverage score distributions of its factor matrices. Therefore, we can229

sample rows of K from `(K) with replacement in Õ(1) time after a preprocessing step.230

2. The normal matrix K|K+ �I in the ridge regression problem minxkKx� bk22 + �kxk22 is a231

O(1)-spectral approximation to the sketched version (SK)|SK+ �I by Lemma 3.3. Thus can232

use Richardson iteration with (K|K+�I)+ as the preconditioner to solve the sketched instance,233

which guarantees us a (1+ ")-approximation. Using (K|K+�I)+ as the preconditioner allows234

us to heavily exploit the Kronecker structure with fast matrix-vector multiplications.235

3. At this point, Kronecker matrix-vector multiplications are still the bottleneck, so we partition236

the factor matrices into two groups by their number of columns and use fast rectangular matrix237

multiplication to get a subquadratic running time.238

This first result shows how �-ridge leverage scores of a Kronecker product matrix decompose accord-239

ing to the SVDs of its factor matrices. All missing proofs in this section are deferred to Appendix B.240

Lemma 4.1. Let K = A(1) ⌦A(2) ⌦ · · ·⌦A(N), where each factor matrix A(n) 2 RIn⇥Rn . Let241

(i1, i2, . . . , iN) be the natural row indexing of K by its factors. Let the factor SVDs be A(n) =242

U(n)⌃(n)V(n)|. For any � � 0, the �-ridge leverage scores of K are243

`
�
(i1,...,iN)(K) =

X

t2T

QN
n=1 �

2
tn(A

(n))
QN

n=1 �
2
tn(A

(n)) + �

NY

n=1

u
(n)
intn

!2

, (5)

where the sum is over T = [R1]⇥ [R2]⇥ · · ·⇥ [RN]. For statistical leverage scores, this simplifies244

to `(i1,...,iN)(K) =
QN

n=1 `in(A
(n)).245

This proof repeatedly uses the mixed-product property for Kronecker products and the definition of246

�-ridge leverage scores in Equation (3).247

4.1 Iterative Methods248

Now we state a result for the convergence rate of preconditioned Richardson iteration [55], which249

uses the notation kxk2M = x|Mx.250

Lemma 4.2 (Preconditioned Richardson iteration). Let M be any matrix such that A|A 4 M 4251

 ·A|A for some � 1. Let x(k+1) = x(k) �M+(A|Ax(k) �A|b). Then, kx(k) � x⇤kM 252

(1� 1/)kkx(0) � x⇤kM, where x⇤ = argminx2RdkAx� bk22.253

Remark 4.3. The ridge regression algorithm in Chowdhury et al. [14] is also based on sketching and254

preconditioned Richardson iteration. They consider short and wide matrices where d� n and use255

the sketched normal matrix as the preconditioner to solve the original problem. One of our main256

technical contributions is to use the original normal matrix as the preconditioner to solve the sketched257

6

Algorithm 2 FastKroneckerRegression
Input: Factor matrices A(n) 2 RIn⇥Rn , response vector b 2 RI1···IN , L2 regularization strength �,
error ", failure probability �

1: Set R R1R2 · · ·RN

2: for n = 1 to N do
3: Compute a spectral approximation Ã(n) with Õ(RnN

2
"
�2) rows by Lemma 3.3 such that

A(n)|A(n) 4 Ã(n)|Ã(n) 4 (1 + log(1 + "/4)/N)A(n)|A(n) (6)

4: Compute Ã(n)|Ã(n) and the SVD of Ã(n)|Ã(n) = V(n)(⌃(n)|⌃(n))V(n)|

5: Compute (1 + log(1 + "/2)/N)-approximate leverage scores `(A(n)) using Lemma B.4 by
applying a random Johnson–Lindenstrauss projection

6: Initialize product distribution data structure P to sample indices from (`(A(1)), · · · , `(A(N)))
7: Set D (⌃(1)|⌃(1) ⌦ · · ·⌦⌃(N)|⌃(N) + �IR)+

8: Let M+ = (V(1) ⌦ · · ·⌦V(N))D(V(1) ⌦ · · ·⌦V(N))|
9: Set s d1680R ln(40R) ln(1/�)/"e

10: Set S SampleRows(K, s,P)
11: Let K̃ = SK and b̃ = Sb
12: Initialize x 0R

13: repeat
14: x x� (1�

p
")M+(K̃|K̃x+ �x� K̃|b̃) using fast Kronecker-matrix multiplication

15: until convergence
16: return x

problem. Reversing this is advantageous because computing the pseduoinverse and matrix-vector258

products with the original Kronecker matrix is substantially less inexpensive due to its Kronecker259

structure. However, this still motivates the need for faster Kronecker matrix-vector multiplications.260

4.2 Fast Kronecker-Matrix Multiplication261

The next result is a simple but useful observation about extracting the rightmost factor matrix from the262

Kronecker product and recursively computing a new less expensive Kronecker-matrix multiplication.263

Lemma 4.4. Let A(n) 2 RIn⇥Jn , for n 2 [N], and B 2 RJ1···JN⇥K . There is an algorithm264

KronMatMul([A(1)
, . . . ,A(N)],B) that computes (A(1) ⌦A(2) ⌦ · · · ⌦A(N))B 2 R(I1···IN)⇥K265

in O(K
PN

n=1 J1 · · · JnIn · · · IN) time.266

The following theorem is more sophisticated. We write the statement in terms of rectangular matrix267

multiplication time MM(a, b, c), which is the time to multiply an a⇥ b matrix by a b⇥ c matrix.268

Theorem 4.5. Let A(n) 2 RIn⇥Rn , for n 2 [N], I = I1 · · · IN , R = R1 · · ·RN , b 2 RI , c 2 RR,269

and S 2 RI⇥I be a diagonal matrix with Õ(R"
�1) nonzeros. The vectors (A1⌦ · · ·⌦AN)|Sb and270

S(A1 ⌦ · · ·⌦AN)c can be computed in time Õ(minT✓[N] MM(
Q

n2T Rn, R"
�1

,
Q

n/2T Rn)).271

The core idea behind Theorem 4.5 is that the factor matrices can be partitioned into two groups to272

achieve a good “column-product” balance, i.e., minT✓[N] max{
Q

n2T Rn,
Q

n 62T Rn} is close to273 p
R. Then we use the fact that nnz(S) = Õ(R"

�1) with a sparsity-aware KronMatMul to solve each274

part of this partition separately, and combine them with fast rectangular matrix multiplication. If275

we achieve perfect balance, the running time is Õ(R1.626
"
�1) using results of Gall and Urrutia [23],276

which are explained in detail in van den Brand and Nanongkai [60, Appendix C]. If one of these two277

factor matrix groups has at most 0.9 of the “column-product mass,” the running time is Õ(R1.9
"
�1).278

4.3 Main Algorithm279

We are now ready to present our main algorithm for solving approximate Kronecker regression.280

Theorem 4.6. For any Kronecker product matrix K = A(1) ⌦ · · · ⌦ A(N) 2 RI1···IN⇥R1···RN ,281

b 2 RI1···IN , � � 0, " 2 (0, 1/4], and � > 0, FastKroneckerRegression returns x⇤ 2 RR1···RN282

7

in283

Õ

⇣PN
n=1

�
nnz(A(n)) +R

!
nN

2
"
�2
�
+minS✓[N] MM

⇣Q
n2S Rn, R"

�1
,
Q

n2[N]\S Rn

⌘⌘
,

time such that, with probability at least 1� �,284

kKx⇤ � bk22 + �kxk22 (1 + ")min
x
kKx� bk22 + �kxk22.

We defer the proof to Appendix B.2, but sketch how the ideas in Algorithm 2 come together. First,285

we do not compute the pseudoinverse K̃+ but instead use iterative Richardson iteration (Lemma 4.2),286

which allows us avoid a Õ(R!
"
�1) running time. This technique by itself, however, only allows us287

to reduce the running time to Õ(R2
"
�1) since all of the matrix-vector products (e.g., K̃|b̃, K̃x, and288

multiplication against M+) naively take ⌦(R2) time. To achieve subquadratic time, we need three289

more ideas: (1) compute an approximate SVD of each Gram matrix A(n)|A(n) in order to construct290

the decomposed preconditioner M+; (2) use fast Kronecker-vector multiplication (e.g., Lemma 4.4)291

to exploit the Kronecker structure of the decomposed preconditioner; (3) noting that Lemma 4.4 for292

the Kronecker-vector products K̃|b̃ and K̃|(K̃x) is insufficient because the intermediate vectors can293

be large, we develop a novel multiplication algorithm in Theorem 4.5 that fully exploits the sparsity,294

Kronecker structure, and fast rectangular matrix multiplication of Gall and Urrutia [23].295

5 Applications to Low-Rank Tucker Decomposition296

Now we apply our fast Kronecker regression algorithm to TuckerALS and prove Theorem 1.2. We297

list the running times of different factor matrix and core update algorithms in Table 2 (Appendix C)298

and analyze these subroutines in Appendix C.3.299

Core Tensor Update. The core update running time in Theorem 1.2 is a direct consequence of300

our algorithm for fast Kronecker regression in Theorem 4.6. The only difference is that we avoid301

recomputing the SVD and Gram matrix of each factor since these are computed at the end of each302

factor matrix update and stored for future use.303

Factor Matrix Update. The factor matrix updates require more work because of the G|
(n)y term304

in Line 8 of TuckerALS. To overcome this, we substitute variables and recast each factor update as305

an equality-constrained Kronecker regression problem with an appended low-rank block to account306

for the L2 regularization of the original variables. To support this new low-rank block, we use the307

Woodbury matrix identity to extend the technique of using Richardson iterations with fast Kronecker308

matrix-vector multiplication for solving sketched regression instances.309

The next result formalizes this substitution and reduces the problem to block Kronecker regression310

with a new subspace constraint. This relies on the fact that the least squares solution to kMx� zk22311

with minimum norm is M+z [53]. All proofs in this section are deferred to Appendix C.312

Lemma 5.1. Let A 2 Rn⇥m, M 2 Rm⇥d, b 2 Rn, and � � 0. For any ridge regression problem313

of the form argminx2Rd(kAMx� bk22 + �kxk22), we can solve zopt = argminNz=0kAz� bk22 +314

�kM+zk22, where N = Im �MM+, and return vector M+zopt instead.315

Letting z = G|
(n)y in Line 8 of TuckerALS and modifying FastKroneckerRegression to support316

additional low-rank updates to the preconditioner, we get the FastFactorMatrixUpdate algorithm,317

presented as Algorithm 3 in Appendix C.2. The analysis is similar to the proofs of Theorem 4.6. The318

factor matrix updates benefit in the same way as before from fast Kronecker matrix-vector products,319

and new low-rank block updates are supported via the Woodbury identity.320

Theorem 5.2. For any � � 0, " 2 (0, 1/4], and � > 0, the FastFactorMatrixUpdate algorithm321

updates A(n) 2 RIn⇥Rn in TuckerALS with a (1+ ")-approximation, with probability at least 1� �,322

in time Õ(InR2
6=n"

�1 log(1/�) + InR
PN

k=1 Rk +R
!
n).323

Corollary 5.3. FastFactorMatrixUpdate updates A(n) 2 RIn⇥Rn in Õ(InR
2�✓⇤

6=n "
�1 log(1/�)+324

InR
PN

k=1 Rk +R
!
n) time, where ✓

⇤
> 0 is the optimally balanced MM exponent in Theorem 4.5.325

8

Figure 1: Running times of Kronecker regression algorithms with a design matrix of size n
2 ⇥ d

2.

6 Experiments326

All experiments use NumPy [25] with an Intel Xeon W-2135 processor (8.25MB cache, 3.70 GHz)327

and 128GB of RAM. The FastKroneckerRegression-based ALS experiments for low-rank Tucker328

decomposition on image tensors are deferred to Appendix D.2.329

Kronecker regression. We build on the numerical experiments in [17, 18] for Kronecker regression330

that use two random factor matrices. We generate matrices A(1)
,A(2) 2 Rn⇥d where each entry is331

drawn i.i.d. from the normal distribution N (1, 0.001) and compare several algorithms for solving332

minxk(A(1)⌦A(2))x�1n2k22+�kxk22 as we increase n, d. The running times are plotted in Figure 1.333

The algorithms we compare are: (1) a baseline that solves the normal equation (K|K+�I)+K|b and334

fully exploits the Kronecker structure of K|K before calling np.linalg.pinv(); (2) an enhanced335

baseline that combines the SVDs of A(n) with Lemma 4.4, e.g., KronMatMul([(U(1))|, (U(2))|],b),336

using only Kronecker-vector products; (3) the sketching algorithm of Diao et al. [18, Algorithm 1];337

and (4) our FastKroneckerRegression algorithm in Algorithm 2. For both sketching algorithms,338

we use " = 0.1 and � = 0.01. We reduce the number of row samples in both algorithms by ↵ = 10�5339

so that the algorithms are more practical and comparable to the earlier experiments in [17, 18]. Lastly,340

we set � = 10�3. We discuss additional parameter choice details and the full results in Appendix D.1.341

The running times in Figure 1 demonstrate several different behaviors. The naive baseline quickly342

becomes impractical for moderately large values of n or d. KronMatMul is competitive for n 104,343

especially since it is an exact method. The runtimes of the sketching algorithms are nearly-independent344

of n. Diao et al. [18] works well for small d, but deteriorates tremendously as d grows because it345

computes ((SK)|SK + �I)+ 2 Rd2⇥d2

and cannot exploit the Kronecker structure of K, which346

takes O(d6) time. FastKroneckerRegression, on the other hand, runs in O(d4) time because it347

uses quadratic-time Kronecker-vector products in each Richardson iteration step (Line 14).348

Table 1: Kronecker regression losses for d = 64. OPT denotes the loss of the KronMatMul algorithm,
DJSSW19 is Diao et al. [18, Algorithm 1], and Algorithm 2 is FastKroneckerRegression. We also
record the relative error of each algorithm and the number of rows sampled from A(1) ⌦A(2).

n OPT Algorithm 2 Approx DJSSW19 Approx Rows sampled (%)

1024 0.031 0.032 1.051 0.035 1.138 0.0370
2048 0.123 0.126 1.026 1.577 12.792 0.0093
4096 0.507 0.520 1.026 275.566 543.776 0.0023
8192 2.073 2.136 1.030 333.430 160.809 0.0006

16384 8.238 8.608 1.045 546391.728 66329.791 0.0001

These experiments also show that combining sketching with iterative methods can give better sketch349

efficiency. Table 1 compares the loss of [18, Algorithm 1] and FastKroneckerRegression to an350

exact baseline OPT for d = 64. Both algorithms use the exact same sketch SK for each value of n.351

Our algorithm uses the original (K|K + �I)+ as a preconditioner to solve the sketched problem,352

whereas Diao et al. [18, Algorithm 1] computes ((SK)|SK+ �I)+(SK)|Sb exactly and becomes353

numerically unstable for n � 2048 when d 2 {16, 32, 64}. This raises the question about how to354

combine sketched information with the original data to achieve more efficient algorithms, even when355

solving sketched instances. We leave this question of sketch efficiency as an interesting future work.356

9

References357

[1] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor factoriza-358

tions for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56,359

2011.360

[2] Salman Ahmadi-Asl, Stanislav Abukhovich, Maame G Asante-Mensah, Andrzej Cichocki,361

Anh Huy Phan, Tohishisa Tanaka, and Ivan Oseledets. Randomized algorithms for computation362

of tucker decomposition and higher order svd (hosvd). IEEE Access, 9:28684–28706, 2021.363

[3] Ahmed Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression with364

statistical guarantees. In Advances in Neural Information Processing Systems, volume 28, 2015.365

[4] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix366

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms367

(SODA), pages 522–539. SIAM, 2021.368

[5] Rosa I Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and369

random projection. Machine learning, 63(2):161–182, 2006.370

[6] Haim Avron, Kenneth L. Clarkson, and David P. Woodruff. Sharper Bounds for Regularized371

Data Fitting. In Approximation, Randomization, and Combinatorial Optimization. Algorithms372

and Techniques (APPROX/RANDOM 2017), volume 81, pages 27:1–27:22, 2017.373

[7] Brett W. Bader and Tamara G. Kolda. Tensor toolbox for MATLAB, version 3.2.1. https:374

//www.tensortoolbox.org/, 2021.375

[8] Raghavendran Balu and Teddy Furon. Differentially private matrix factorization using sketching376

techniques. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia377

Security, pages 57–62, 2016.378

[9] Casey Battaglino, Grey Ballard, and Tamara G Kolda. A practical randomized cp tensor379

decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018.380

[10] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical381

risk minimization. Journal of Machine Learning Research, 12(3), 2011.382

[11] Maolin Che and Yimin Wei. Randomized algorithms for the approximations of tucker and the383

tensor train decompositions. Advances in Computational Mathematics, 45(1):395–428, 2019.384

[12] Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Conference on385

Learning Theory, pages 663–695. PMLR, 2019.386

[13] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. SPALS: Fast alternating least387

squares via implicit leverage scores sampling. Advances in Neural Information Processing388

Systems, 29:721–729, 2016.389

[14] Agniva Chowdhury, Jiasen Yang, and Petros Drineas. An iterative, sketching-based framework390

for ridge regression. In International Conference on Machine Learning, pages 989–998. PMLR,391

2018.392

[15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron393

Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference394

on Innovations in Theoretical Computer Science, pages 181–190, 2015.395

[16] Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank396

approximation via ridge leverage score sampling. In Proceedings of the Twenty-Eighth Annual397

ACM-SIAM Symposium on Discrete Algorithms, pages 1758–1777. SIAM, 2017.398

[17] Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product399

regression and p-splines. In International Conference on Artificial Intelligence and Statistics,400

pages 1299–1308. PMLR, 2018.401

10

[18] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching402

for kronecker product regression and low rank approximation. Advances in neural information403

processing systems, 32, 2019.404

[19] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast Monte Carlo algorithms for405

matrices I: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157,406

2006.407

[20] Petros Drineas, Michael W. Mahoney, Shan Muthukrishnan, and Tamás Sarlós. Faster least408

squares approximation. Numerische Mathematik, 117(2):219–249, 2011.409

[21] Marko Filipović and Ante Jukić. Tucker factorization with missing data with application to410

low-n-rank tensor completion. Multidimensional systems and signal processing, 26(3):677–692,411

2015.412

[22] Abraham Frandsen and Rong Ge. Optimization landscape of tucker decomposition. Mathemati-413

cal Programming, pages 1–26, 2020.414

[23] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers415

of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM416

Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.417

[24] Lars Grasedyck, Melanie Kluge, and Sebastian Kramer. Variants of alternating least squares418

tensor completion in the tensor train format. SIAM Journal on Scientific Computing, 37(5):419

A2424–A2450, 2015.420

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-421

tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,422

Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-423

dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin424

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.425

Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi:426

10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.427

[26] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal of the428

ACM (JACM), 60(6):1–39, 2013.429

[27] Prateek Jain and Sewoong Oh. Provable tensor factorization with missing data. arXiv preprint430

arXiv:1406.2784, 2014.431

[28] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using432

alternating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory433

of computing, pages 665–674, 2013.434

[29] M James. The generalised inverse. The Mathematical Gazette, 62(420):109–114, 1978.435

[30] Jun-Gi Jang and U Kang. Fast and memory-efficient tucker decomposition for answering436

diverse time range queries. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge437

Discovery & Data Mining, pages 725–735, 2021.438

[31] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert439

space 26. Contemporary mathematics, 26, 1984.440

[32] Praneeth Kacham and David P Woodruff. Sketching algorithms and lower bounds for ridge441

regression. arXiv preprint arXiv:2204.06653, 2022.442

[33] Hiroyuki Kasai and Bamdev Mishra. Low-rank tensor completion: a Riemannian manifold443

preconditioning approach. In International Conference on Machine Learning, pages 1012–1021.444

PMLR, 2016.445

[34] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,446

51(3):455–500, 2009.447

[35] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor448

learning in Python. Journal of Machine Learning Research (JMLR), 20(26), 2019.449

11

[36] Daniel Kressner, Michael Steinlechner, and Bart Vandereycken. Low-rank tensor completion by450

Riemannian optimization. BIT Numerical Mathematics, 54(2):447–468, 2014.451

[37] Brett W. Larsen and Tamara G. Kolda. Practical leverage-based sampling for low-rank tensor452

decomposition. arXiv preprint arXiv:2006.16438v2, 2020.453

[38] Brett W. Larsen and Tamara G. Kolda. Sketching matrix least squares via leverage scores454

estimates. arXiv preprint arXiv:2201.10638, 2022.455

[39] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE 54th Annual456

Symposium on Foundations of Computer Science, pages 127–136. IEEE, 2013.457

[40] Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified analysis of458

random Fourier features. In International Conference on Machine Learning, pages 3905–3914.459

PMLR, 2019.460

[41] Allen Liu and Ankur Moitra. Tensor completion made practical. In Advances in Neural461

Information Processing Systems, volume 33, pages 18905–18916, 2020.462

[42] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion for estimating463

missing values in visual data. IEEE transactions on pattern analysis and machine intelligence,464

35(1):208–220, 2012.465

[43] Linjian Ma and Edgar Solomonik. Fast and accurate randomized algorithms for low-rank tensor466

decompositions. Advances in Neural Information Processing Systems, 34, 2021.467

[44] Osman Asif Malik and Stephen Becker. Low-rank Tucker decomposition of large tensors using468

TensorSketch. Advances in Neural Information Processing Systems, 31:10096–10106, 2018.469

[45] Osman Asif Malik and Stephen Becker. A sampling-based method for tensor ring decomposition.470

In International Conference on Machine Learning, pages 7400–7411. PMLR, 2021.471

[46] Ana Marco, José-Javier Martínez, and Raquel Viaña. Least squares problems involving gen-472

eralized kronecker products and application to bivariate polynomial regression. Numerical473

Algorithms, 82(1):21–39, 2019.474

[47] Shannon McCurdy. Ridge regression and provable deterministic ridge leverage score sampling.475

In Advances in Neural Information Processing Systems, volume 31, 2018.476

[48] Cameron Musco and Christopher Musco. Recursive sampling for the Nyström method. In477

Advances in Neural Information Processing Systems, volume 30, 2017.478

[49] Sérgio MC Nascimento, Kinjiro Amano, and David H Foster. Spatial distributions of local479

illumination color in natural scenes. Vision research, 120:39–44, 2016.480

[50] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-20).481

1996.482

[51] Madhav Nimishakavi, Pratik Kumar Jawanpuria, and Bamdev Mishra. A dual framework for483

low-rank tensor completion. In Advances in Neural Information Processing Systems, volume 31,484

2018.485

[52] Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Computation Theory486

(TOCT), 5(3):1–17, 2013.487

[53] M. Planitz. Inconsistent systems of linear equations. The Mathematical Gazette, 63(425):488

181–185, 1979.489

[54] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann. Introduction to tensor de-490

compositions and their applications in machine learning. arXiv preprint arXiv:1711.10781,491

2017.492

[55] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.493

12

[56] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalex-494

akis, and Christos Faloutsos. Tensor decomposition for signal processing and machine learning.495

IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.496

[57] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation.497

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages498

2772–2789. SIAM, 2019.499

[58] Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell. Low-rank tucker500

approximation of a tensor from streaming data. SIAM Journal on Mathematics of Data Science,501

2(4):1123–1150, 2020.502

[59] Abraham Traore, Maxime Berar, and Alain Rakotomamonjy. Singleshot : a scalable tucker503

tensor decomposition. In Advances in Neural Information Processing Systems, volume 32,504

2019.505

[60] Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and beyond:506

Subquadratic and worst-case update time. In 2019 IEEE 60th Annual Symposium on Foundations507

of Computer Science (FOCS), pages 436–455. IEEE, 2019.508

[61] Shusen Wang, Alex Gittens, and Michael W Mahoney. Sketched ridge regression: Optimization509

perspective, statistical perspective, and model averaging. In International Conference on510

Machine Learning, pages 3608–3616. PMLR, 2017.511

[62] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. 2014.512

[63] Rose Yu and Yan Liu. Learning from multiway data: Simple and efficient tensor regression. In513

International Conference on Machine Learning, pages 373–381. PMLR, 2016.514

[64] Huamin Zhang and Feng Ding. On the kronecker products and their applications. Journal of515

Applied Mathematics, 2013, 2013.516

[65] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Decomposition of big tensors with low517

multilinear rank. arXiv preprint arXiv:1412.1885, 2014.518

[66] Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimaging519

data analysis. Journal of the American Statistical Association, 108(502):540–552, 2013.520

13

