
Grounding Aleatoric Uncertainty in
Unsupervised Environment Design

Anonymous Author(s)
Affiliation
Address
email

Abstract

Adaptive curricula in reinforcement learning (RL) have proven effective for1

producing policies robust to discrepancies between the train and test environment.2

Recently, the Unsupervised Environment Design (UED) framework generalized RL3

curricula to generating sequences of entire environments, leading to new methods4

with robust minimax regret properties. Problematically, in partially-observable or5

stochastic settings, optimal policies may depend on the ground-truth distribution6

over aleatoric parameters of the environment in the intended deployment setting,7

while curriculum learning necessarily shifts the training distribution. We formalize8

this phenomenon as curriculum-induced covariate shift (CICS), and describe how9

its occurrence in aleatoric parameters can lead to suboptimal policies. Directly10

sampling these parameters from the ground-truth distribution avoids the issue, but11

thwarts curriculum learning. We propose SAMPLR, a minimax regret UED method12

that optimizes the ground-truth utility function, even when the underlying training13

data is biased due to CICS. We prove, and validate on challenging domains, that our14

approach preserves optimality under the ground-truth distribution, while promoting15

robustness across the full range of environment settings.16

1 Introduction17

Adaptive curricula, which dynamically adjust the distribution of training environments to best18

facilitate learning, have played a key role in many recent achievements in deep reinforcement learning19

(RL). Applications have spanned both single-agent RL [32, 50, 55, 22], where adaptation occurs over20

environment variations, and multi-agent RL, where adaptation can additionally occur over co-players21

[40, 49, 41]. These methods demonstrably improve the sample efficiency and robustness of the final22

policy [25, 8, 21, 20], e.g. by presenting the agent with challenges at the threshold of its abilities.23

In this paper we introduce and address a fundamental problem relevant to adaptive curriculum learning24

methods for RL, which we call curriculum-induced covariate shift (CICS). Analogous to the covariate25

shift that occurs in supervised learning (SL) [18], CICS refers to a mismatch between the input26

distribution at training and test time. In the case of RL, we will show this becomes problematic when27

the shift occurs over the aleatoric parameters of the environment—those aspects of the environment28

holding irreducible uncertainty even in the limit of infinite experiential data [9]. While in some cases,29

CICS may impact model performance in SL, adaptive curricula for SL have generally not been found30

to be as impactful as in RL [52]. Therefore, we focus on addressing CICS specifically as it arises in31

the RL setting, leaving investigation of its potential impact in SL to future work.32

To establish precise language around adaptive curricula, we cast our discussion under the lens of33

Unsupervised Environment Design [UED, 8]. UED provides a formal problem description for which34

an optimal curriculum is the solution, by defining the Underspecified POMDP (UPOMDP; see35

Section 2), which expands the classic POMDP with a set of free parameters Θ, representing the36
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Figure 1: Adaptive curricula can result in covariate shifts in environment parameters with respect to the
ground-truth distribution P (Θ) (top path), e.g. whether a road is icy or not, which can cause the policy to be
optimized for a utility function U differing from the ground-truth utility function U based on P (See Equation 1).
Here, the policies π and π drive assuming ice and no ice respectively. SAMPLR (bottom path) matches the
distribution of training transitions to that under P (Θ|τ) (pink triangles), thereby ensuring the optimal policy
trained under a biased curriculum retains optimality for the ground-truth distribution P .

aspects of the environment that may vary. UED then seeks to adapt distributions over Θ to maximize37

some objective, potentially tied to the agent’s performance. UED allows us to view adaptive curricula38

as emerging via a multi-player game between a teacher that proposes environments with parameters39

θ ∼ P (Θ) and a student that learns to solve them. In addition to notational clarity, this formalism40

enables using game theoretic constructs, such as Nash equilibria [NE, 26], to analyze curricula.41

This game-theoretic view has led to the development of curriculum methods with principled robustness42

guarantees, such as PAIRED [8] and Robust Prioritized Level Replay [PLR⊥, 20], which aim to43

maximize a student’s regret and lead to minimax regret [37] policies at NE. Thus, at NE, the student44

can solve all solvable environments within the training domain. However, in their current form the45

UED robustness guarantees are misleading: if the UED curriculum deviates from a ground-truth46

distribution P (Θ) of interest, i.e. the distribution at deployment, with respect to aleatoric parameters47

Θ′ ⊂ Θ, the resulting policies may be suboptimal under the ground-truth distribution P .48

For a concrete example of how CICS can be problematic, consider the case of training a self-driving49

car to navigate potentially icy roads, when icy conditions rarely occur under P . When present, the50

ice is typically hard to spot in advance; thus, the aleatoric parameters Θ′ correspond to whether each51

section of the road is icy. A priori, a curriculum should selectively sample more challenging icy52

settings to facilitate the agent’s mastery over such conditions. However, this approach risks producing53

an overly-pessimistic agent (i.e. one that assumes that ice is common), driving slowly even in fair54

weather. Such a policy leads to inadequate performance on P , which features ice only rarely.55

We can preserve optimality on P by grounding the policy—that is, ensuring that the agent acts56

optimally with respect to the ground-truth utility function for any action-observation history τ and57

the implied ground-truth posterior over Θ:58

U(π|τ) = Eθ∼P (θ|τ)
[
U(π|τ, θ)

]
, (1)

where the ground-truth utility conditioned on X , U(π|X), is defined to be Eτ,θ∼P (θ|X) [
∑∞

t=0 γ
trt],59

for rewards rt and a discount γ.60

We can ground the policy by grounding the training distribution, which means constraining the61

training distribution of aleatoric parameters P (Θ′) to match P (Θ′). This is trivially accomplished by62

directly sampling θ′ ∼ P (Θ′), which we call naive grounding. Unfortunately, this approach makes63

many curricula infeasible by removing the ability to selectively sample environment settings over64

aleatoric parameters. Applying this strategy to the self-driving agent may result in a policy that is65

optimal in expectation under P where there is rarely ice, but nevertheless fails to drive safely on ice.66

We wish to maintain the ability to bias a training distribution, since it is required for curriculum67

learning, while ensuring the resulting decisions remain optimal in expectation under P . This goal is68

captured by the following objective:69

UD(π) = Eτ∼D
[
U(π|τ)

]
, (2)
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where D is the training distribution of τ . Under naive grounding, D is equal to P (τ) and Equation70

2 reduces to U(π). To overcome the limitations of naive grounding, we develop an approach that71

allows D to deviate from P (τ), e.g. by prioritizing levels most useful for learning, but still grounds72

the policy by evaluating decisions following potentially biased training trajectories τ according to73

U(π|τ). Figure 1 summarizes this approach, and contrasts it with an ungrounded adaptive curriculum.74

In summary this work presents the following contributions: i) We first formalize the problem of CICS75

in RL in Section 3. ii) Then, we present SAMPLR, which extends PLR⊥, a state-of-the-art UED76

method, to preserve optimality on P while training under a usefully biased training distribution in77

Section 4. iii) We prove in Section 5 that SAMPLR promotes Bayes-optimal policies that are robust78

over all environment settings θ ∼ P (Θ). iv) Our experiments validate these conclusions in two79

challenging domains, where SAMPLR learns highly robust policies, while PLR⊥ fails due to CICS.80

2 Background81

2.1 Unsupervised Environment Design82

Unsupervised Environment Design [UED, 8] is the problem of automatically generating an adaptive83

distribution of environments which will lead to policies that successfully transfer within a target84

domain. The domain of possible environment settings is represented by an Underspecified POMDP85

(UPOMDP), which models each environment instantiation, or level, as a specific setting of the free86

parameters that control how the environment varies across instances. Examples of free parameters are87

the position of walls in a maze or friction coefficients in a physics-based task. Formally a UPOMDP88

is defined as a tuple M = ⟨A,O,Θ,S, T , I,R, γ⟩, where A is the action space, O is the observation89

space, Θ is the set of free parameters, S is the state space, T : S ×A×Θ → ∆(S) is the transition90

function, I : S → O is the observation function, R : S → R is the reward function, and γ is the91

discount factor. UED typically approaches the curriculum design problem as training a teacher agent92

that co-evolves an adversarial curriculum for a student agent, e.g. by maximizing the student’s regret.93

2.2 Prioritized Level Replay94

We focus on a recent UED algorithm called Robust Prioritized Level Replay [PLR⊥, 21], which95

performs environment design via random search. PLR⊥ maintains a buffer of the most useful levels96

for training, according to an estimate of learning potential—typically based on regret, approximated97

by a function of the temporal-difference (TD) errors incurred on each level. For each episode, with98

probability p, PLR⊥ actively samples the next training level from this buffer, and otherwise evaluates99

regret on a new level θ ∼ P (Θ) without training. This sampling mechanism provably leads to a100

minimax regret policy for the student at NE, and has been shown to improve sample-efficiency and101

generalization. The resultant regret-maximizing curricula naturally avoid unsolvable levels, which102

have no regret. We provide implementation details for PLR⊥ in Appendix A.103

3 Curriculum-Induced Covariate Shift104

Since UED algorithms formulate curriculum learning as a multi-agent game between a teacher and a105

student agent, we can formalize when CICS becomes problematic by considering the equilibrium106

point of this game: Let Θ be the environment parameters controlled by UED, P (Θ), their ground-107

truth distribution, and P (Θ), their curriculum distribution at equilibrium. We use τt to refer to the108

joint action-observation history (AOH) of the student until time t (and simply τ when clear from109

context). Letting V (π|τt) denote the value function under the curriculum distribution P (Θ), we110

characterize an instance of CICS over Θ as problematic if the optimal policy under P (Θ) differs111

from that under the ground-truth P (Θ) for some τt, so that112

argmax
π

V (π|τt) ̸= argmax
π

V (π|τt).

The value function V (π|τt) with respect to P (Θ) can be expressed as a marginalization over θ:113

V (π|τt) =
∑
θ

P (θ|τt)Ṽ (π|τt, θ) ∝
∑
θ

P (θ)P̃ (τt|θ)Ṽ (π|τt, θ). (3)
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Here, the notation P (θ) means P (Θ = θ), and the tilde on the P̃ and Ṽ terms indicates independence114

from any distribution over Θ, as they both condition on θ. Importantly, the value function under115

the curriculum distribution V (π|τt) corresponds to Equation 3 with P replaced by P . We see that116

V (π|τt) is unchanged for a given τt when P (θ) is replaced with P (θ) if 1) P (θ∗|τt) = 1 for some117

θ∗, and 2) P shares support with P . Then P̃ (τt|θ) = 1 iff θ = θ∗ and zero elsewhere. In this case,118

the sums reduce to V (π|τt, θ∗), regardless of changing the ground-truth distribution P to P . In other119

words, when Θ is fully determined given the current history τ , covariate shifts over Θ with respect to120

P (Θ) have no impact on policy evaluation and thus the value function for the optimal policy. If the121

first condition does not hold, the uncertainty over the value of some subset Θ′ ⊂ Θ is irreducible122

given τ , making Θ′ aleatoric parameters for the history τ . Thus, assuming the curriculum shares123

support with the ground-truth distribution, covariate shifts only alter the optimal policy at τ when124

they occur over aleatoric parameters given τ . Such parameters can arise when the environment is125

inherently stochastic or when the cost of reducing uncertainty is high.126

Crucially, our analysis assumes P and P share support over Θ. When this assumption is broken,127

the policy trained under the curriculum can be suboptimal for environment settings θ, for which128

P (θ) = 0 and P (θ) > 0. In this paper, we specifically assume that P and P share support and focus129

on addressing suboptimality under the ground-truth P due to CICS over the aleatoric parameters Θ′.130

This discussion thus makes clear that problematic CICS can be resolved by grounding the training131

distribution, i.e. enforcing the constraint P (Θ′|τ) = P (Θ′|τ) for the aleatoric parameters of the132

environment. This constraint results in grounding the policy, i.e. ensuring it is optimal with respect to133

the ground-truth utility function based on P (Equation 1). As discussed, naive grounding satisfies134

this constraint by directly sampling θ′ ∼ P (Θ′), at the cost of curricula over Θ′. This work develops135

an alternative for satisfying this constraint while admitting curricula over Θ′.136

4 Sample-Matched PLR (SAMPLR)137

Algorithm 1: Sample-Matched PLR (SAMPLR)
Randomly initialize policy π(ϕ), an empty level

buffer Λ of size K, and belief model B(st|τ).
while not converged do

Sample replay-decision Bernoulli, d ∼ PD(d)
if d = 0 or |Λ| = 0 then

Sample level θ from level generator
Collect π’s trajectory τ on θ, with a

stop-gradient ϕ⊥
else

Use PLR to sample a replay level from the
level store, θ ∼ Λ

Collect fictitious trajectory τ ′ on θ, based on
s′t ∼ B

Update π with rewards R(τ ′)
end
Compute PLR score, S = score(τ ′, π)
Update Λ with θ using score S

end

We now describe a general strategy138

for addressing CICS, and apply it to139

PLR⊥, resulting in Sample-Matched PLR140

(SAMPLR). This new UED method features141

the robustness properties of PLR⊥ while142

mitigating the potentially harmful effects of143

CICS over the aleatoric parameters Θ′.144

As discussed in Section 3, CICS become145

problematic when the covariate shift occurs146

over some aleatoric subset Θ′ of the147

environment parameters Θ, such that the148

expectation over Θ′ influences the optimal149

policy. Adaptive curriculum methods like150

PLR⊥ prioritize sampling of environment151

settings where the agent experiences the most152

learning. While such a curriculum lets the153

agent focus on correcting its largest errors, the154

curriculum typically changes the distribution155

over aleatoric parameters Θ′, inducing bias in156

the resulting decisions. Ideally, we can eliminate this bias, ensuring the resulting policy makes optimal157

decisions with respect to the ground-truth utility function, conditioned on the current trajectory:158

U(π|τ) = Eθ′∼P (θ′|τ)
[
U(π|τ, θ′)

]
. (4)

A naive solution for grounding is to simply exclude Θ′ from the set of environment parameters under159

curriculum control. That is, for each environment setting proposed by the curriculum, we resample160

θ′ ∼ P . We refer to this approach as naive grounding. Naive grounding forces the expected reward161

and next state under each transition at the current AOH τ to match that under P . Thus, optimal162

policies under naive grounding must be optimal with respect to the ground-truth distribution over θ′.163
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While technically simple, naive grounding suffers from lack of control over Θ′. This limitation is of164

no concern when the value of Θ′ does not alter the distribution of τ until the terminal transition, e.g.165

when Θ′ is the correct choice in a binary choice task, thereby only influencing the final, sparse reward166

when the right choice is made. In fact, our initial experiment in Section 6 shows naive grounding167

performs well in such cases. However, when the value of Θ′ changes the distribution of τ before168

the terminal transition, the agent may benefit from a curriculum that actively samples levels which169

promote learning robust behaviors under unlikely events. Enabling the full benefits of the curriculum170

in such cases requires the curriculum to selectively sample values of Θ′.171

Instead of naive grounding, we aim to ground only the policy updates, allowing the curriculum to172

bias the training distribution. This can be accomplished by optimizing the following objective:173

UD(π) = Eτ∼D
[
U(π|τ)

]
. (5)

To achieve this we directly replace the reward rt and next state st+1 with counterfactual values that174

would be experienced if θ′ were consistent with τ and P , so that θ′ ∼ P (θ′|τ). This substitution175

occurs by simulating a fictitious transition, where the fictitious state is sampled as s′t ∼ B(s′t|τ),176

the action as at ∼ π(·|τ) (as per usual), the fictitious next state as s′t+1 = T (s′t, at), and the177

fictitious reward as r′t = R(s′t+1). Here, the belief model B(s′t|τ) provides the ground-truth posterior178

distribution of the current state given τ :179

B(st|τ) =
∑
θ′

P (st|τ, θ′)P (θ′|τ). (6)

Fictitious transitions, summarized in Figure 2, ground the observed rewards and state transitions to P .180

Should training on these transitions lead to an optimal policy over Θ, this policy will also be optimal181

with respect to P . We prove this property in Section 5. Fictitious transitions thus provide the benefit182

of naive grounding without giving up curriculum control over Θ′.183

Figure 2: A standard RL
transition (top) and a fictitious
transition used by SAMPLR
(bottom). A is the advantage
function.

In general, we implement B as follows: Given P (Θ′) as a prior, we184

model the posterior P (θ′|τ) with Bayesian inference. The posterior185

could be learned via supervised learning with trajectories collected186

from the environment for a representative selection of θ′. Further,187

we may only have limited access to P (Θ) throughout training, for188

example, if sampling P (Θ) is costly. In this case, we can learn an189

estimate P̂ (Θ′) from samples we do collect from P (Θ), which can190

occur online. We can then use P̂ (Θ′) to inform the belief model.191

SAMPLR, summarized in Algorithm 1, incorporates this fictitious192

transition into PLR⊥ by replacing the transitions experienced in193

replay levels sampled by PLR⊥ with their fictitious counterparts,194

as PLR⊥ only trains on these trajectories. PLR⊥ uses PPO with195

the Generalized Advantage Estimator [GAE, 38] as the base RL196

algorithm, where both advantage estimates and value losses can be197

written in terms of one-step TD errors δt at time t. Training on198

fictitious transitions then amounts to computing these TD errors199

with fictitious states and rewards: δt = r′t + V (s′t) − V (s′t+1).200

Importantly, because PLR⊥ provably leads to policies that minimize worst-case regret over all θ at201

NE, SAMPLR enjoys the same property for θ ∼ P (Θ). A proof of this fact is provided in Section 5.202

Applying SAMPLR requires two key assumptions: First, the simulator can be reset to a specific state,203

which is often true, as RL largely occurs in resettable simulators or those that can be made to do so.204

When a resettable simulator is not available, a possible solution is to learn a model of the environment205

which we leave for future work. Second, we have knowledge of P (Θ′). Often, we know P a priori,206

e.g. via empirical data or as part of the domain specification, as in games of chance.207

5 The Grounded Optimality of SAMPLR208

Training on fictitious transitions is a method for learning an optimal policy with respect to the ground-209

truth utility function UD(π) over the distribution D of training trajectories τ , defined in Equation 5.210
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When D corresponds to the distribution of trajectories on levels θ ∼ P (Θ), UD(π) reduces to the211

ground-truth utility function, U(π). For any UED method, our approach ensures that, in equilibrium,212

the resulting policy is Bayes-optimal with respect to P (Θ) for all trajectories in the support of D.213

Remark 1. If π∗ is optimal with respect to the ground-truth utility function UD(π) then it is optimal214

with respect to the ground-truth distribution P (Θ) of environment parameters on the support of D.215

Proof. By definition we have π∗ ∈ argmax
π∈Π

{UD(π)} = argmax
π∈Π

{Eτ∼D
[
U(π|τ)

]
}. Since π can216

condition on the initial trajectory τ , the action selected after each trajectory can be independently217

optimized. Therefore, for all τ ∈ D, π∗ ∈ argmax
π∈Π

{U(π|τ)} implying that π∗ is the optimal policy218

maximizing U(π|τ).219

Thus, assuming the base RL algorithm finds Bayes-optimal policies, a UED method that optimizes220

the ground-truth utility function, as done by SAMPLR, results in Bayes-optimal performance over221

the ground-truth distribution. If the UED method maximizes worst-case regret, we can prove an even222

stronger property we call robust ϵ-Bayes optimality.223

Let Uθ(π) be the ground-truth utility function for π on the distribution Dπ
θ of initial trajectories224

sampled from level θ, so that Uθ(π) = UDπ
θ
(π). Given a policy π maximizing Uθ(π), we say that π225

is robustly ϵ-Bayes optimal iff for all θ in the domain of P (Θ) and all π′, we have226

Uθ(π) ≥ Uθ(π
′)− ϵ.

Note how this property differs from being simply ϵ-Bayes optimal, which would only imply that227

U(π) ≥ U(π′)− ϵ.

Robust ϵ-Bayes optimality requires π to be ϵ-optimal on all levels θ in the support of the ground-228

truth distribution, even those rarely sampled under P (Θ). We will show that at ϵ-Nash equilibrium,229

SAMPLR results in a robustly ϵ-Bayes optimal policy for the ground-truth utility function Uθ(π). In230

contrast, training directly on levels θ ∼ P (Θ) results in a policy that is only ϵ-Bayes optimal.231

Theorem 1. If π∗ is ϵ-Bayes optimal with respect to U D̂(π) for the distribution D̂ of trajectories232

sampled under π over levels maximizing the worst-case regret of π, as occurs under SAMPLR, then233

π∗ is robustly ϵ-Bayes optimal with respect to the ground-truth utility function, U(π).234

Proof. Let π∗ be ϵ-optimal with respect to U D̂(π) where D̂ is the trajectory distribution under π on235

levels maximizing the worst-case regret of π. Let π∗ be an optimal grounded policy. Then for any θ,236

Uθ(π
∗)− Uθ(π

∗) ≤ U D̂(π
∗)− U D̂(π

∗) ≤ ϵ (7)

The first inequality follows from D̂ being trajectories from levels that maximize worst-case regret237

with respect to π∗, and the second follows from π∗ being ϵ-optimal on U D̂(π). Rearranging terms238

gives the desired condition.239

6 Experiments240

Our experiments first focus on a discrete, stochastic binary choice task, with which we validate our241

theoretical conclusions by demonstrating that CICS can indeed lead to suboptimal policies. Moreover,242

we show that naive grounding suffices for learning robustly optimal policies in this setting. However,243

as we have argued, naive grounding gives up control of the aleatoric parameters Θ′ and thus lacks244

the ability to actively sample scenarios helpful for learning robust behaviors—especially important245

when such scenarios are infrequent under the ground-truth distribution P (Θ). SAMPLR induces246

potentially biased curricula, but retains optimality under P (Θ) by matching transitions under P (Θ′)247

with those under P (Θ′). We assess the effectiveness of this approach in our second experimental248

domain, based on the introductory example of driving icy roads. In this continuous-control driving249

domain, we seek to validate whether SAMPLR does in fact learn more robust policies that transfer to250

tail cases under P (Θ′), while retaining high expected performance on the whole distribution P (Θ′).251

All agents are trained using PPO [39] with the best hyperparameters found via grid search using a set252

of validation levels. We provide extended descriptions of both environments alongside the full details253

of our architecture and hyperparameter choices in Appendix C.254
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Figure 3: Left: Example Stochastic Fruit Choice levels. The plots show mean and standard error (over 10 runs)
of episodic returns (left); room count of solved levels (middle), during training (dotted lines) and test on the
ground-truth distribution (solid lines), for q = 0.7; and the room count of levels presented at training (right).

6.1 Stochastic Fruit Choice255

We aim to demonstrate the phenomenon of CICS in Stochastic Fruit Choice, a binary choice task,256

where the aleatoric parameter determines the correct choice. This task requires the agent to traverse up257

to eight rooms, and in the final room, decide to eat either the apple or banana. The correct choice θ′ is258

fixed for each level, but hidden from the agent. Optimal decision-making depends on the ground-truth259

distribution over the correct fruit, P (Θ′). This task benefits from a curriculum over the number of260

rooms, but a curriculum that selectively samples over both room layout and correct fruit choice can261

lead to suboptimal policies. Figure 3 shows example levels from this environment.262

This domain presents a hard exploration challenge for RL agents, requiring robust navigation across263

multiple rooms. Further, this environment is built on top of MiniHack [36], enabling integration of264

select game dynamics from the NetHack Learning Environment [23], which the agent must master to265

succeed: To go from one room to the next, the agent needs to learn to kick the locked door until it266

opens. Upon reaching the final room, the agent must then apply the eat action on the correct fruit.267

Let πA be the policy that always chooses the apple, and πB , the banana. If the probability that the268

goal is the apple is P (A) = q, then the expected return is RAq under πA and RB(1− q) under πB .269

The optimal policy is πA when q > RB/(RA + RB), and πB otherwise. Domain randomization270

(DR), which directly samples each level θ ∼ P (θ), optimizes for the correct ground-truth P (Θ′), but271

will predictably struggle to solve the exploration challenge. PLR⊥ may induce curricula easing the272

exploration problem, but can be expected make the correct fruit choice oscillate throughout training273

to maximize regret, leading to problematic CICS.274

We set RA = 3, RB = 10, and q = 0.7, making πB optimal with an expected return of 3.0. We275

compare the train and test performance of agents trained with DR, PLR⊥, and PLR⊥ with naive276

grounding over 200M training steps in Figure 3. In this domain, SAMPLR reduces to naive grounding,277

as θ′ only effects the reward of a terminal transition, making fictitious transitions equivalent to real278

transitions for all intermediate time steps. We see that DR struggles to learn an effective policy,279

plateauing at a mean return around 1.0, while PLR⊥ performs the worst. Figure 6 in Appendix B280

shows that the PLR⊥ curriculum exhibits much higher variance in q, rapidly switching the optimal281

choice of fruit to satisfy its regret-maximizing incentive, making learning more difficult. In contrast,282

PLR⊥ with naive grounding constrains q = 0.7, while still exploiting a curriculum over an increasing283

number of rooms, as visible in Figure 6. This grounded curriculum results in a policy that solves284

more complex room layouts at test time. Figures 5 and 6 in Appendix B additionally show how the285

SAMPLR agent’s choices converge to πB and how the size of SAMPLR’s improvement varies under286

alternative choices of q in {0.5, 0.3}.287

6.2 Zero-Shot Driving Formula 1 Tracks with Black Ice288

We now turn to a domain where the aleatoric parameters influence the distribution of τt at each t,289

thereby creating opportunities for a curriculum to actively sample specific θ′ to promote learning on290

biased distributions of τt. We base this domain on the black ice driving scenario from the introduction291

of this paper, by modifying the CarRacingBezier environment in [20]. In our version, each track tile292

has black ice with probability q, in which case its friction coefficient is 0, making acceleration and293
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row shows a Formula 1 track (q = 0.2) at two zoom scales.

braking impossible. This task is especially difficult, since the agent cannot see black ice in its pixel294

observations. Figure 4 shows example tracks with ice rendered for illustration purposes. The episodic295

returns scale linearly with how much of the track is driven and how quickly this is accomplished.296

As success requires learning to navigate the challenging dynamics over ice patches, a curriculum297

targeting more difficult ice configurations should lead to policies more robust to black ice. Here, the298

ground-truth distribution P (Θ′) models the realistic assumption that most days see little to no ice.299

We therefore model the probability of ice per tile as q ∼ Beta(α, β), where α = 1, β = 15.300

Table 1: Icy F1 returns, mean ± standard error over 10 runs.

Condition DR PLR Naive SAMPLR

Ground truth
q ∼ Beta(1, 15) 581± 23 543± 21 618± 6 616± 6

Zero-shot
q = 0.2 332± 63 323± 60 363± 15 393± 13
q = 0.4 94.7± 41 43± 38 75± 39 195± 11
q = 0.6 −76.3± 24 −115± 12 −79± 25 −1± 17
q = 0.8 −131.1± 11 −151± 6.0 −139± 9 −111± 7

We test the hypothesis that SAMPLR’s301

regret-maximizing curriculum results in302

policies that preserve optimal performance303

on the ground-truth distribution P (Θ′),304

while being more robust to tail cases305

compared to DR and PLR⊥ with naive306

grounding. We expect standard PLR⊥ to307

underperform all methods due to CICS,308

leading to policies that are either too309

pessimistic or too optimistic with respect310

to the amount of ice. These baselines provide the controls needed to distinguish performance changes311

due to the two grounding approaches and those due to the underlying curriculum learning method.312

We train agents with each method for 5M and test zero-shot generalization performance on the313

Formula 1 (F1) tracks from the CarRacingF1 benchmark, extended to allow each track segment to314

have black ice with probability q in {0.0, 0.2, 0.4, 0.6, 0.8}. These test tracks are significantly longer315

and more complex than those seen at training, as well as having a higher rate of black ice.316

To implement SAMPLR’s belief model, we use a second simulator as a perfect model of the317

environment. At each time step, this second simulator, which we refer to as the fictitious simulator,318

resets to the exact physics state of the primary simulator, and its icy tiles are resampled according to319

the exact posterior over the aleatoric parameter q = θ′, such that θ′ ∼ P (θ′|τ), ensuring the future320

uncertainty is consistent with the past. The agent decides on action at based on the current real321

observation ot, and observes the fictitious return r′t and next state s′t+1 determined by the fictitious322

simulator after applying at in state s′t ∼ P (s′t|τ, θ′). This dual simulator arrangement, fully detailed323

in Appendix A.2, allows us to measure the impact of training on fictitious transitions independently324

of the efficacy of a model-based RL approach. Further, as the training environment in RL is most325

often simulation (e.g. in sim2real), this approach is widely applicable.326

SAMPLR outperforms all baselines in zero-shot transfer to higher ice rates on the full F1 benchmark327

and attains a statistically significant improvement at p < 0.001 when transferring to q = 0.4 and328

q = 0.6, and p < 0.05 when q = 0.8. Importantly, SAMPLR outperforms PLR⊥ with naive329

grounding, indicating that SAMPLR exploits specific settings of Θ′ to better robustify the agent330

against rare icy conditions in the tail of P (Θ′). Indeed, Figure 4 shows that on average, SAMPLR331

exposes the agent to more ice per track tile driven, while PLR⊥ underexposes the agent to ice332

compared to DR and naive grounding, suggesting that under PLR⊥ agents attain higher regret on333

ice-free tracks—a likely outcome as ice-free tracks are easier to drive and lead to returns, with334
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which regret scales. Unfortunately, this results in PLR⊥ being the worst out of all methods on the335

ground-truth distribution. SAMPLR and naive grounding avoid this issue by explicitly matching336

transitions to those under P at τ . As reported in Table 1, SAMPLR matches the baselines in mean337

performance across all F1 tracks under P (Θ′), indicating that despite actively sampling challenging338

θ′, it preserves performance under P (Θ′), i.e. the agent does not become overly cautious.339

7 Related Work340

The mismatch between training and testing distributions of input features is referred to as covariate341

shift, and has long served as a fundamental problem for the machine learning community. Covariate342

shifts have been extensively studied in supervised learning [48, 18, 5, 2]. In RL, prior works have343

largely focused on covariate shifts due to training on off-policy data [44, 34, 11, 14, 13, 46] including344

the important case of learning from demonstrations [31, 33]. Recent work also aimed to learn invariant345

representations robust to covariate shifts [53, 54]. More generally, CICS is a form of sample-selection346

bias [15]. Previous methods like OFFER [7] considered correcting biased transitions via importance347

sampling [43] when optimizing for expected return on a single environment setting, rather than robust348

policies over all environments settings. We believe our work provides the first general formalization349

and solution strategy addressing curriculum-induced covariate shifts (CICS) for RL.350

The importance of addressing CICS is highlighted by recent results showing curricula to be essential351

for training RL agents across many of the most challenging domains, including combinatorial352

gridworlds [55], Go [40], StarCraft 2 [49], and achieving comprehensive task mastery in open-ended353

environments [41]. While this work focuses on PLR⊥, other methods include minimax adversarial354

curricula [30, 50, 51] and curricula based on changes in return [25, 32]. Curriculum methods have355

also been studied in goal-conditioned RL [12, 6, 42, 27], though CICS does not occur here as goals356

are observed by the agent. Lastly, domain randomization [DR, 35, 29] can be seen as a degenerate357

form of UED, and curriculum-based extensions of DR have also been studied [19, 47].358

Prior work has also investigated methods for learning Bayes optimal policies under uncertainty359

about the task [56, 28], based on the framework of Bayes-adaptive MDPs (BAMDPs) [3, 10]. In360

this setting, the agent can adapt to an unknown MDP over several episodes by acting to reduce its361

uncertainty about the identity of the MDP. In contrast, SAMPLR learns a robustly Bayes-optimal362

policy for zero-shot transfer. Further unlike these works, our setting assumes the distribution of some363

aleatoric parameters is biased during training, which would bias the a posteriori uncertainty estimates364

with respect to the ground-truth distribution when optimizing for the BAMDP objective. Instead,365

SAMPLR proposes a means to correct for this bias assuming knowledge of the true environment366

parameters, to which we can often safely assume access in curriculum learning.367

Deeply related, Off-Belief Learning [OBL, 16] trains cooperative agents in self-play using fictitious368

transitions assuming all past actions of co-players follow a base policy, e.g. a uniformly random one.369

Enforcing this assumption prevents agents from developing conventions that communicate private370

information to co-players via arbitrary action sequences. Such conventions hinder coordination with371

independently trained agents or, importantly, humans. SAMPLR can be viewed as adapting OBL to372

single-agent curriculum learning, where a co-player sets the environment parameters at the start of373

each episode (see Appendix D). This connection highlights how single-agent curriculum learning is374

inherently a multi-agent problem, and thus problems afflicting multi-agent learning also surface in375

this setting; moreover, methods addressing such issues in one setting can then be adapted to the other.376

8 Conclusion377

This work characterized how curriculum-induced covariate shifts (CICS) over aleatoric environment378

parameters Θ′ can lead to suboptimal policies under the ground-truth distribution over these379

parameters, P (Θ′). We introduced a general strategy for correcting CICS, by training the agent on380

fictitious rewards and next states whose distribution is guaranteed to match what would be experienced381

under P (Θ′). Our method SAMPLR augments PLR⊥ with this correction. By training on fictitious382

transitions, SAMPLR actively samples specific values of θ′ that induce trajectories with greater383

learning potential, while still grounding the training data to P (Θ′). Crucially, our experiments in384

challenging environments with aleatoric uncertainty showed that SAMPLR produces robust policies385

outperforming those trained with competing baselines that do not correct for CICS.386
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