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ABSTRACT

Molecular representation learning has demonstrated great promise in bridging ma-
chine learning and chemical science and in supporting novel chemical discoveries.
State-of-the-art methods mostly employ graph neural networks (GNNs) with self-
supervised learning (SSL) and extra chemical reaction knowledge to empower the
learned embeddings. However, prior works ignore three major issues in modeling
reaction data, that is abnormal energy flow, ambiguous embeddings, and sparse
embedding space problems. To address these problems, we propose ReaKE, a
chemical synthetic knowledge graph-driven pre-training framework for molecu-
lar representation learning. We first construct a large-scale chemical synthetic
knowledge graph comprising reactants, products and reaction rules. We then pro-
pose triplet-level and graph-level contrastive learning strategies to jointly opti-
mize the knowledge graph and molecular embeddings. Representations learned by
ReaKE can capture intermolecular relationships reflected in the semantic knowl-
edge graph and molecular structures. By comparing with other state-of-the-art
methods, we show that ReaKE can achieve competitive performance on the reac-
tion prediction pretext task and the learned representations transfer well to var-
ious downstream tasks, including reaction classification, yield prediction, and
molecule property prediction. Further visualization shows that the learned rep-
resentations can capture the fine-grained differences both between reactions and
between molecules.

1 INTRODUCTION

Organic chemistry is rapidly developed with the growing interest in big data technology(Schwaller
et al., 2021b). Among them, reaction prediction becomes a necessary component of retro-synthetic
analysis or virtual library generation for drug design(Kayala & Baldi, 2011). However, the predic-
tion of chemical reaction outcomes in terms of products, yields, or reaction rates with computa-
tional approaches remains a formidable undertaking. To handle this challenge, many deep learning
methods are adaptively transferred to the chemistry domain and demonstrate competitive results in
solving tedious reaction classification problems, revealing the mechanistic basis of chemical reac-
tions, and accurately predicting reaction yields(Meuwly, 2021). These researches not only advance
chemical research but also effectively cut down the cost of trial and error in industrial production
and improve the yield of product synthesis(Engkvist et al., 2018).

Inspired by the great success in Natural Language Processing (NLP) domain, many recent molecular
representation learning methods have been proposed to employ BERT-based(Devlin et al., 2018) or
Transformer-based(Vaswani et al., 2017) models, such as the SMILES-BERT(Wang et al., 2019),
Mol-BERT(Li & Jiang, 2021), Mol-Transformer(Schwaller et al., 2019), RXNFP(Schwaller et al.,
2021a), K-BERT(Wu et al., 2022) and KV-PLM(Zeng et al., 2022). These methods treated SMILES
sequences of molecules/reactions as text and generated efficient molecular embeddings by designing
molecule-made-to-measure BERT or Transformer models. However, NLP-based methods cannot ef-
fectively model molecular structural information. Still, molecular biological activity largely depends
on its structure, so graph neural network (GNN)-based supervised learning methods are introduced
to model the topological information (Liu et al., 2019; Yang et al., 2019; Liu et al., 2022; Ma et al.,
2022). In contrast, these methods require a large amount of labeled data to improve generalization
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whereas task-specific labels in the real world are often of limited size(Xie et al., 2022). Therefore,
self-supervised learning (SSL) methods are actively proposed to maximize the use of unlabeled data,
such as GraphCL(You et al., 2020), MICRO-Graph(Zhang et al., 2020), GraphLoG(Xu et al., 2021),
MolCLR(Wang et al., 2022) and KPGT(Li et al., 2022). The above methods leverage contrastive
learning on molecules and focus on extracting subgraph patterns for more comprehensive molecular
representations.

However, SSL on molecular graph structures remains challenging as the current approaches mostly
lack domain knowledge in chemical synthesis. Recent studies have pointed out that pre-trained
GNNs with random node/edge masking gives limited improvements and often lead to negative trans-
fer on downstream tasks Hu et al. (2020); Stärk et al. (2021), as the perturbations actions on graph
structures can hurt the structural inductive bias of molecules. More recently, a few studies inject ex-
tra chemical reaction knowledge into SSL training to empower the learned embeddings. For exam-
ple, RxnRep (Wen et al., 2022) leverages the chemical reaction data and makes the two augmented
representations of a reaction similar to each other but distinct from different reactions. MolR(Wang
et al., 2021) preserves the equivalence of molecules with respect to chemical reactions in the em-
bedding space, i.e., forcing the sum of reactant embeddings and the sum of product embeddings to
be equal for each chemical equation.

Albeit promising, the previous chemical reaction-aware self-supervised methods face the following
three problems: (1)Abnormal energy flow: all chemical reactions are accompanied by changes in
entropy, and changes in entropy require reaction conditions such as temperature and pressure to
trigger. Under the equivalence assumption of the previous method, the reactants and products can
flow with each other as long as the embedding is equal, which violates the principle of entropy
increase in the second law of thermodynamics. For example, If one has a reaction of A + B → C
and a reaction of D + E → C, it will result in A+B → D + E, but that reaction might not occur.
(2) Ambiguous embeddings: the previous method assumes that the embeddings of reactants and
products are equal in embedding space, however, reactants and products are often similar but totally
different in property, this assumption will lead to a lack of discrimination between reactants and
products in the embedding space, for example, incorrectly predicting products as reactants 5. (3)
Sparse embedding space: since the amount of recorded chemical reactions is limited, the embedding
spaces of reactants and products learned by the previous methods are sparse and lack smoothness,
which may lead to a large offset of embeddings when making a small perturbation to the reaction.

To address these problems, we develop ReaKE, a novel deep learning framework that learns
chemistry-meaningful molecular representations from graph-in-graph data architecture, i.e., a
knowledge graph (KG) that connects molecules using reaction templates and individual graphs that
represent 2D structure of molecules. First, to alleviate the energy flow and the ambiguous embed-
ding problems, we construct a chemical synthetic knowledge graph and build explicit connections
between molecules through reaction template information. This can introduce the changes in re-
action sites as the trigger conditions of flow between molecules, but also establish the difference
between reactants and products in the embedding space. Then, for solving the sparse embedding
space, we further design a functional group-augmented SSL method for reaction triplet representa-
tion learning, which can help avoid large offsets of embeddings due to small chemical perturbations.
Finally, we propose a reaction-aware contrastive learning strategy to improve the training efficiency
of the knowledge graph representation.

Extensive experiments demonstrate that the representations learned by our proposed model can ben-
efit a wide-range of downstream tasks that require extensive chemical synthesis priors. For example,
ReaKE achieves a 6.8% absolute Hit@1 gain in pretext reaction prediction, an average of 9.4% ab-
solute F1 score gain in reaction classification tasks, and an average 4% R2 improvement in yield
predictions, respectively, over existing state-of-the-art methods. Further visualization studies in-
dicate that our reaction representations can not only categorize reactions clearly but also capture
discriminative properties of reaction templates.

2 METHODS

An illustrative overview of our proposed method of molecular pre-training with Reaction
Knowledge Embedding (ReaKE) is presented in Fig. 1. In this section, we first introduce the
definition of a chemical synthetic knowledge graph, as schematically shown in Fig. 2(a). Then we
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depict the joint learning of the molecular encoder at the node-level and the knowledge encoder at
the graph-level (section 2.2), followed by the overall pre-training objects (section 2.3).

Figure 1: Overview of ReaKE. Our model joint learns molecular embeddings at the node-level and
knowledge embeddings at the graph-level. The pre-trained model is evaluated on three representative
tasks, including reaction classification, yield prediction and molecular property prediction.

2.1 DEFINITION OF CHEMICAL SYNTHETIC KNOWLEDGE GRAPH

Chemically speaking, the flow between reactants and products needs to be triggered by environmen-
tal conditions such as temperature and pressure, and the reaction conditions are finally reflected on
the reaction site, and the reaction site can be reflected by the reaction template, such that the intro-
duction of template information can be used as the trigger for the reaction conditions to avoid the
problem of abnormal energy flow. In this sense, we re-formulate the molecular SSL task as a multi-
scale knowledge graph embedding (KGE) task Wang et al. (2017). We first introduce a chemical
synthetic knowledge graph (KG) that is constructed by chemical reaction data. We define the reac-
tant set R = {r1, r2, ...} as head entities, the product set P = {p1, p2, ...} as tail entities, and the re-
action template set T = {t1, t2, ...} as relations. Also, we define a triplet as bi = (ri, ti, pi). Finally,
we will have a set of triplets B = {b1, b2, · · · } that makes up the chemical synthetic knowledge
graph. For example, as shown in Fig. 2(a), if we have a reaction C8H8O+C6H8N2 → C14H14N2,
we can extract its template R1 − CO − R2 + R3 −NH2 → R1R2 − CN − R3 as a relation and
build a triplet (C8H8O, template, C14H14N2), (C6H8N2, template, C14H14N2). To integrate the
multi-scale representations of molecules and knowledge graphs, we utilize joint contrastive learning
to fuse the heterogeneous information.

2.2 JOINT CONTRASTIVE LEARNING FOR MOLCULES AND KNOWLEDGE GRAPHS

In this section, we introduce our joint learning of triplet-level molecular representation and graph-
level knowledge graph representation. The main purpose of triplet-level learning is to construct a
smooth latent embedding space for reactants and products while graph-level learning aims to make
triplet embeddings distributed on the embedding space more evenly. Next, we will elucidate these
two parts in detail.

2.2.1 MOLECULAR REPRESENTATION LEARNING AT THE TRIPLET-LEVEL

Molecular Encoder with Graph Neural Network. Let G = (V, E) denote a molecular graph with
atoms V = {v1, v2, · · · } and bonds E = {d1, d2, · · · }. Atom attributes are set as element type,
total degree, atom is in ring or not, the number of connected hydrogen atoms, atom is aromatic,
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(a) Chemical knowledge graph. (b) Negative sampling strategy. (c) Molecular augmentation.

Figure 2: Key points for ReaKE. (a) The construction of chemical synthetic knowledge graph, atoms
with red color are reaction center. (b) The reaction-aware negative sampling strategy in a batch. (c)
The self-supervised learning with functional group-based augmentation for molecules.

valence, radical electrons and so on. These atom properties are represented as a one-hot vector.
GNNs utilize the graph connectivity as well as node features to learn representations of atoms and
further the entire molecule. Generally, GNNs follow a message passing paradigm, in which each
atom representation is iteratively updated by aggregating the representations of its neighbor atoms.
At the lth layer, GNN updates the atom embedding hi of atom vi as:

h(l)
vi = Update(l)(h(l−1)

vi , Aggregate(l)({h(l−1)
vj |vj ∈ N (vi) ∪ {vi}})) (1)

where N (vi) is the neighbor set of atom vi. Aggregate is an aggregation function depending on
the architecture of different GNN. After L layers of message aggregating, the final representation of
molecule G is defined as follows:

eG = Readout({h(L)
vi |vi ∈ V}) (2)

where Readout function collects the representation of all atoms and obtains the final molecule
representation by pooling operation.

Triplet-level Contrastive Learning. To alleviate the sparse embedding space issue, we propose a
functional group-augmented SSL method to ensure that small shifts in the embeddings of reactants
and products would not affect the correctness of triples. Specifically, we augment a molecule by
keeping the reaction center functional group and drop atoms (crop from edge to center or randomly
drop) outside the reaction center with a ratio β. An illustrative example is shown in Fig. 2(c).

In a triplet (r, t, p), the augmentation is applied twice on reactant r and product p separately, re-
sulting in two molecular embeddings er(1), er(2) for er and two molecular embeddings ep(1), ep(2)
for ep. We minimize the agreement between the two molecules. The similarity loss is defined as
follows:

LSim = s(er(1), er(2)) + s(ep(1), ep(2)) (3)

where s is the distance function, s(er(1), er(2)) = ∥er(1) − er(2)∥2 denotes the l2 norm between two
embeddings.

2.2.2 KNOWLEDGE REPRESENTATION LEARNING AT THE GRAPH-LEVEL

In addition to the training at the triplet level, we further leverage a contrastive knoledge embedding
at the graph level to make the triplet embeddings more evenly distributed on the embedding space.

Template Encoder. To describe the inference relation from reactant molecule to product molecule,
we utilize reaction templates to represent the changes that occur in the chemical process. An illus-
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trative template example has been shown in Fig. 2(a). In particular, we leverage the toolkit RDChi-
ral(Coley et al., 2019) to extract templates with radius 1. Given a reaction r1 + r2 + · · · + rk →
p1 + p2 + · · · + pq , {r1, r2, · · · , rk} is the reactant set and {p1, p2, · · · , pq} is the product set, we
defined the template tr1 + tr2 + · · · + trk → tp1

+ tp2
+ · · · + tpq

and a GNN encoder g(·), the
relation embedding is defined as follows:

et =

k∑
i=1

g(tri)−
q∑

j=1

g(tpj ) (4)

where k denotes the number of reactants, n is the number of products. Note that the GNN encoder
g(·) we used here is different from the molecule encoder.

Graph-Level Contrastive Learning. In addition to learning encoders of molecules and templates,
we also propose contrastive strategies for knowledge graph embedding. In particular, we focus on
the design of negative sampling Zhang et al. (2019). Negative sampling is a crucial part of the
KGE training process, the generation of hard negative samples can greatly improve the efficiency
and quality of training. However, previous approaches employ indiscriminate negative sampling
in a batch that yields uninformative or wrong negatives easily. Thus, we propose a reaction-aware
negative sampling which is shown in Fig. 2(b). The negative sampling strategy is detailed as follows:

Denote a mini-batch B = {b1, b2, · · · , bn} of size n. For a triplet bi = (ri, ti, pi) ∈ B, we sample
the head entity r′i or tail entity p′i in the rest triplets to construct negative triplets set B′

i. Head entities
and tail entities in triples whose relation are ti are excluded, that is we do not sample molecules of
the same class as ri or pi. The set B′ used to construct negative samples can be formulated as:

B′ = {bk ∈ B|bk = (rk, tk, pk), tk ̸= ti} (5)

The entity set in B′ is denoted as {R′, P ′} where the reactant entity set and the product entity set are
represented as R′ and P ′, respectively. The negative triplets set B′

i can then be defined as follows:

B′
i = {(r′i, ti, pi)|r′i ∈ R′} ∪ {(ri, ti, p′i)|p′i ∈ P ′} (6)

By filtering out false triplets, the quality of negative sampling can thus be improved. We utilize
TransE(Bordes et al., 2013) as the basic training objective because it is effective and simple in
capturing asymmetry, inversion, and composition relations. Thus The overall KG loss is defined as
follows:

LKG =
1

n

n∑
i=1

dti(eri , epi
) +

1

m

m∑
j=1

σ(γ − dti(e
′
rj , e

′
pj
)) (7)

where m is the number of negative samples, it is up to 2(n − 1). σ means the sigmoid function,
which helps avoid learning easy triplets. (r′j , ti, p

′
j) is the jth negative triplet in B′

i. γ is the margin
hyperparameter and dt is the distance function.

dt(er, ep) = ∥(er + et)− ep∥2 (8)

2.3 OPTIMIZATION OBJECTIVES

Overall, the model is trained jointly with a weighted sum of knowledge embedding loss and molecule
augmentation loss mentioned above, where λ stands for the trade-off parameter. It is described as
follows:

L = LKG + λLSim (9)

3 EXPERIMENTS

In this section, we conduct various experiments to demonstrate the generality of our model. We first
use the embedding-based chemical reaction prediction task to validate whether the framework effec-
tively solves the abnormal energy flow issue. Then, we introduce two reaction-related downstream
tasks: reaction classification and yield prediction, to investigate whether our model could capture
the changes between the before and after of a reaction (template information). Finally, we explore
the generalization ability of ReaKE through molecular property prediction tasks.
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3.1 DATASETS

Pre-training Dataset. The dataset we leverage for constructing the chemical synthetic knowledge
graph here is USPTO-479k(Zheng et al., 2019). It contains reactions with up to five reactants and
only one product. By removing reactions from which we cannot extract templates and others that
contain the same reactants and products, we finally obtain 407,039 training reactions, 29,848 vali-
dation reactions and 39,802 testing reactions. We further convert the training reactions into 587,403
triplets with 103,339 reaction templates.

Downstream Task Datasets. For the reaction classification task, we use the Schneider dataset
(Schneider et al., 2015). It is derived from the Schneider 50k dataset, which is a descendant of the
USPTO dataset of patent reactions. After further cleaning, we obtain 38,800 reactions with 46 reac-
tion types. We split it into a training set with 31,002 reactions, a validation set with 3,896 reactions
and a test set with 3,902 reactions. For the yield prediction task, a palladium-catalyzed Buchwald-
Hartwig C-N cross-coupling reactions dataset(Ahneman et al., 2018) is utilized to evaluate model
performance in our experiment. It includes 3,955 reactions labeled with yield. These reactions are
composed of 15 aryl halides, 1 methylaniline, 4 Buchwald ligands, 1 Pd catalyst, 3 bases and 23
additives. In addition, following drfp(Probst et al., 2022), we used four out-of-sample splits based
on isoxazole additives and created a 70/10/20 train/valid/test split. For the molecular property pre-
diction task, we use four Open Graph Benchmark (OGB) datasets with their standard scaffold splits
and random splits. The datasets are BACE, Tox21, Clintox and HIV dataset(Wu et al., 2018).

3.2 CHEMICAL REACTION PREDICTION

Baselines. Following the evaluation protocol of MolR(Wang et al., 2021), we compare our mod-
els with several state-of-the-art molecular representation methods, including Mole2vec(Jaeger et al.,
2018), MolBERT(Li & Jiang, 2021), and MolR. In the baselines, reactants and products are em-
bedded by a molecule encoder, and the dot product of two embeddings is used for ranking product
candidates. The pre-training setup can be found in Appendix A.

Evaluation Protocol. We use product ranking prediction to evaluate our pretrained model. In the
test set, considering the direct use of templates or reaction types will lead to the problem of product
data leakage, which is not conducive to our product ranking task, we split the template into reactant
templates {tr1 , tr2 , · · · , trk} and product template {tp1

, tp2
, · · · , tpq

}. All products and its tp in the
test set are treated as candidates. For reactants in a reaction, we calculate the embedding distance
between (er+

∑k
i=1 g(tri)) and all product candidates’ (ep+

∑q
j=1 g(tpj

)), and rank the candidates
by distance. Then, the true product’s ranking is used to calculate mean reciprocal rank (MRR), mean
rank (MR), and top-k hit ratio (Hit@k) which are standard evaluation metrics in KG models. Higher
MRR, higher Hit@k and lower MR indicate that model achieves a better performance.

Table 1: Results of product ranking prediction.
Methods MRR MR Hit@1 Hit@3 Hit@5 Hit@10

Mol2vec 0.681 483.7 0.614 0.725 0.759 0.798
Mol2vec-FT1 0.688 ± 0.000 417.6 ± 0.1 0.620 ± 0.000 0.734 ± 0.000 0.767 ± 0.000 0.806 ± 0.000

MolBert 0.708 460.7 0.623 0.768 0.811 0.858
MolBert-FT1 0.731 ± 0.000 457.9 ± 0.0 0.649 ± 0.000 0.790 ± 0.000 0.831 ± 0.000 0.873 ± 0.000

MolBERT-FT2 0.776 ± 0.000 459.6 ± 0.2 0.708 ± 0.000 0.827 ± 0.000 0.859 ± 0.000 0.891 ± 0.000

MolR 0.918 ± 0.000 27.4 ± 0.4 0.882 ± 0.000 0.949 ± 0.001 0.960 ± 0.001 0.970 ± 0.000

ReaKE-SAGE 0.953 ± 0.001 4.1 ± 0.2 0.930 ± 0.001 0.973 ± 0.001 0.980 ± 0.000 0.987 ± 0.000
ReaKE-GAT 0.965 ± 0.001 6.6 ± 0.4 0.946 ± 0.001 0.982 ± 0.001 0.986 ± 0.001 0.990 ± 0.000
ReaKE-GCN 0.966 ± 0.000 4.5 ± 0.1 0.948 ± 0.000 0.983 ± 0.000 0.987 ± 0.001 0.991 ± 0.000
ReaKE-TAG 0.967 ± 0.000 2.9 ± 0.0 0.950 ± 0.000 0.982 ± 0.000 0.987 ± 0.000 0.992 ± 0.000

Results. As shown in Tab. 1, our ReaKE gains about 4.9% MRR and 6.8% Hit@1 performance
enhancement against the baseline model MolR and outperforms all Bert-based models. In addition,
ReaKE outperforms the baseline regardless of which GNN is combined, suggesting the challenges
are better tackled with the external reaction template information. Appendix D shows the dice simi-
larity between the predicted product and ground-truth product and cases where our method predicted
correctly but other methods did not. Taken together, these results indicate that our method can avoid
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the situation of predicting products as reactants and can learn the changes between reactants and
products, which also confirms the effectiveness of introducing templates.

3.3 REACTION CLASSIFICATION

Baselines and Evaluation Protocol. We consider several molecule fingerprints and reaction
fingerprints as baselines, including AP3(Carhart et al., 1985), DRFP(Schneider et al., 2015),
RXNFP(Schwaller et al., 2021a) and RxnRep(Wen et al., 2022). AP3 is an atom-pairs molecu-
lar fingerprint method with a maximum path length of three. DRFP creates a hash binary fingerprint
based on the symmetric difference between substructures.

Table 2: Classification F1 score on the Schneider dataset.
Methods 4 reactions 8 reactions 16 reactions 32 reactions 64 reactions 128 reactions

per class per class per class per class per class per class

AP3 0.518 ± 0.004 0.620 ± 0.004 0.703 ± 0.006 0.761 ± 0.002 0.799 ± 0.004 0.828 ± 0.004
DRFP 0.100 ± 0.005 0.129 ± 0.004 0.199 ± 0.008 0.266 ± 0.007 0.338 ± 0.006 0.398 ± 0.002

RXNFP 0.322 ± 0.012 0.394 ± 0.013 0.471 ± 0.010 0.531 ± 0.006 0.575 ± 0.005 0.618 ± 0.004
RxnRep 0.441 ± 0.010 0.634 ± 0.003 0.767 ± 0.003 0.831 ± 0.002 0.875 ± 0.003 0.900 ± 0.002
MolR 0.629 ± 0.007 0.722 ± 0.009 0.803 ± 0.006 0.862 ± 0.006 0.901 ± 0.004 0.900 ± 0.027

ReaKE-SAGE 0.796 ± 0.011 0.860 ± 0.010 0.892 ± 0.004 0.908 ± 0.003 0.918 ± 0.003 0.933 ± 0.002
ReaKE-GAT 0.778 ± 0.012 0.844 ± 0.004 0.876 ± 0.005 0.897 ± 0.005 0.917 ± 0.003 0.923 ± 0.007
ReaKE-GCN 0.765 ± 0.008 0.842 ± 0.008 0.877 ± 0.009 0.898 ± 0.003 0.918 ± 0.004 0.923 ± 0.016
ReaKE-TAG 0.821 ± 0.011 0.882 ± 0.003 0.901 ± 0.005 0.916 ± 0.004 0.928 ± 0.003 0.935 ± 0.004

(a) DRFP. (b) RXNFP. (c) ReaKE.

Figure 3: t-SNE visualization of ReaKE, DRFP, RXNFP on schneider dataset. (a), (b)and (c)show
the fingerprint distribution of the entire schneider dataset, with 46 colors representing 46 categories
of reactions.

To evaluate the effectiveness of the learned representations, we use our pre-trained model as a feature
extractor and obtain the final reaction representations by calculating the difference between reactants
and products. Then, we train MLP for reaction classification. Following the few-shot setting of
RxnRep(Wen et al., 2022), instead of using the entire training set, we sample 4, 8, 16, 32, 64, 128
reactions per class to simulate the situation of a small dataset. Every experiment is repeated five
times with the resampling of training data. In addition, we visualize the initial embedding space
directly encoded by the pre-trained model. We demonstrate the distribution of chemical reaction
embeddings with different classes and the distribution of reactants and products within a type of
reaction.

Results. The evaluation results under transfer feature extraction setting are illustrated in Tab. 2,
ReaKE achieves 19.2%, 16%, 9.8%, 5.4%, 2.7%, 3.5% F1 score gain over the state-of-art model
with 4, 8, 16, 32, 64, 128 reactions per class as the training set. It demonstrates our learned embed-
dings can transfer well to downstream tasks with a small training set. The large margins between our
method and MolR indicate that the addition of reaction template information can make the chemical
representation more discriminative.

t-SNE visualizations of DRFP, RXNFP and our method on the Schneider dataset are shown in Fig.
6. We perform two kinds of visualizations: One is the visualization on the reaction fingerprint
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level as shown in Fig. 3(a), Fig. 3(b) and Fig. 3(c), that is obtain the embeddings of all reactions
from pre-trained model, and then conduct t-SNE visualization to see the distribution of the initial
embeddings in the feature space. As shown in Fig. 3(c), there is a clear boundary between each
category and almost no overlapping parts. Furthermore, the reactions of the same category are
clustered in multiple clusters, which demonstrates that our reaction representations can not only
categorize reactions clearly but also capture discriminative properties about reaction templates. The
other is the visualization on the molecular level which can be found in Appendix B.

3.4 YIELD PREDICTION

Baselines and Evaluation Protocol. For comparison, we choose the DFT-based method,
DRFP(Schneider et al., 2015), Yield-BERT and its augmented version Yield-BERT (aug.)
(Schwaller et al., 2020) as baselines. Yield-BERT is an extension of the learned RXNFP finger-
print with a regression layer.

Table 3: R2 of yield prediction on Buchwald Hartwig reactions.
Test 1 Test 2 Test 3 Test 4 Avg. 1-4

DFT 0.80 0.77 0.64 0.54 0.69
DRFP 0.81 ± 0.010 0.83 ± 0.003 0.71 ± 0.001 0.49 ± 0.004 0.71 ± 0.160

Yield-BERT 0.84 ± 0.010 0.84 ± 0.030 0.75 ± 0.040 0.49 ± 0.050 0.73
Yield-BERT(aug.) 0.80 ± 0.010 0.88 ± 0.020 0.56 ± 0.080 0.43 ± 0.040 0.58 ± 0.330

MolR 0.68 ± 0.003 0.84 ± 0.002 0.61 ± 0.006 0.51 ± 0.003 0.66 ± 0.120
ReaKE 0.87 ± 0.002 0.89 ± 0.002 0.67 ± 0.004 0.57 ± 0.005 0.75 ± 0.140

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4.

Figure 4: Fine-tune performance R2 scores (%) on Test1-4 of ReaKE.

We obtain the reaction representations from our pre-trained model, and then feed it into xg-
boost(Chen & Guestrin, 2016). We leveraged the four tests in DRFP(Schneider et al., 2015) to
show the results under splits based on isoxazole additives with 5 times run. We report the mean and
standard deviation of R2 score.

Result. We apply feature extraction setting and fine-tune setting on the yield prediction task. The
results under two settings are shown in Tab. 3 and Fig. 4 separately. For the feature extraction, our
method gains about 2% average R2 value enhancement on Test1-4. For the fine-tuning setting, we
achieve a 4% average R2 improvement on Test1-4. In addition, in Test1 and Test4, our fine-tune
model gains about 7% R2 improvement. In conclusion, our method can capture subtle changes in
the reaction and improve the performance of prediction yield prediction, which also confirms that
pretext template information is beneficial for downstream tasks.

3.5 MOLECULE PROPERTY PREDICTION

Baselines and Evaluation Protocol. To further confirm our pre-trained model’s potential when ad-
dressing tasks not related to chemical synthesis, we apply ReaKE to molecular property predictions.
we select the rule-based methods ECFP4(Rogers & Hahn, 2010), MACCCS(Heikamp & Bajorath,
2011), and the self-supervised learning method MolR as baselines. Due to the large gap between
the pretext dataset and property datasets, we verify our method by adding an MLP layer under the
fine-tuning setting. We demonstrate the average ROC-AUC score of the datasets under random splits
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and scaffold splits, we apply 5-fold cross-validation to random splits and run experiments 5 times
with different random seeds under scaffold splits.

Results. The evaluation results under fine-tune setting are illustrated in Fig. 5. On average, we
achieve a 1.5% and 3.0% gain on the random splits and scaffold splits. It suggests our method is
effective for training at the node level.

(a) Random split. (b) Scaffold split.

Figure 5: Fine-tune performance ROC-AUC scores (%) on property prediction benchmarks.

3.6 ABLATION STUDY

We further analyze the contribution of different components under two kinds of augmentation in our
ReaKE. The drop atom mode randomly crops atoms outside the reaction center, and the subgraph
mode crops atoms from edge to center. The variants are as follows: (1) w/o neg: w/o negative
sampling; (2) w/o aug: w/o molecular augmentation; (3) w/o temp: w/o adding reaction templates
information.

The ablation results on chemical reaction prediction are reported in Appendix C. In specific, the
removal of the template component leads to the most significant performance drop, which is align
with our assumption that template information can benefit molecular modeling. Note that molecular
augmentation can bring obvious improvements. We show two kinds of augmentations: drop atom
mode and drop subgraph mode. The exclusion of both strategies will decrease the results, showing
the importance of augmentation. We also try to iterate the estimation w/o negative sampling but
observe a performance drop given more iterations.

4 CONCLUSION

In this work, we propose a simple yet effective chemical synthetic knowledge graph to tackle the
challenges in modeling reaction data. We introduce the changes in reaction sites as the trigger
conditions of flow between molecules and build explicit connections between molecules through
reaction template information. Besides, we design a functional group-augmented SSL method for
reaction triplet representation learning, which can help avoid large offsets of embeddings due to
small chemical perturbations. Finally, we propose a reaction-aware contrastive learning strategy to
improve the training efficiency of the knowledge graph representation. Comprehensive experiments
over multiple benchmark downstream tasks consistently demonstrate that our pre-trained model can
be generalized to either reactions or molecular-related tasks and outperforms previous baselines
under both feature extractor mode and fine-tune mode.

Further directions to explore can be described as the following points: First, we can take into ac-
count the 3D structure of molecules and reactions to improve the expressiveness of the embedding.
Second, it is interesting to consider external factors related to the reaction (i.e., temperature, reaction
conditions, etc.), which would probably improve the performance of tasks such as yield prediction.
Finally, interpreting the embeddings learned by reaction data also tends to be meaningful.
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A PRE-TRAINING SETUP

We consider four GNN models as molecule encoders, they are GCN, GAT, SAGE, and TAG. In all
models, we use a 2-layer GNN with a sum pooling Readout function and project the representation
to a 1024-dimensional latent space for both molecule encoder and template encoder. Besides, we
optimize our model using Adam optimizer with a learning rate of 5e-5. As a default setting, we use
a margin value γ of 4.0, a molecule augmentation drop ratio β of 0.7, and a trade-off parameter α of
1.0. Furthermore, we train at batch-size 1024 for 30 epochs.

B VISUALIZATION ON SCHNEIDER DATASET

We further demonstrate the distribution of reactants and products within a type of reaction in Schnei-
der dataset.

(a) DRFP. (b) RXNFP. (c) ReaKE.

Figure 6: t-SNE visualization of ReaKE, DRFP, RXNFP on schneider dataset. (a), (b)and (c) demon-
strate the distribution of reactant and product embeddings within the reactions of the same class,
label 0 stands for reactants and label 1 stands for products.

The visualization on the molecular level is shown in Fig. 6(a), Fig. 6(b) and Fig. 6(c), which is
gaining the embeddings of reactants and products in a class of Schneider reactions, and then using
t-SNE visualization to explore the distribution. As shown in Fig. 6(c), the reactants and products
form clusters separately, which suggests the Ambiguous embeddings problem is alleviated, and
there exist differences between the embeddings of the reactant and the product. Besides, our model
can aggregate molecules with the same functional group.

C ABLATION STUDY

Table 4: Ablation study results on chemical reaction prediction.
Method MRR MR Hit@1 Hit@10

ReaKE (drop atom) 0.967 2.8 0.950 0.992
-w/o neg 0.925 11.6 0.900 0.967
-w/o aug 0.953 3.7 0.930 0.987

-w/o temp 0.917 33.9 0.880 0.970

ReaKE (subgraph) 0.967 3.3 0.950 0.991
-w/o neg 0.922 18.0 0.896 0.966
-w/o aug 0.953 3.7 0.930 0.987

-w/o temp 0.914 40.4 0.880 0.965
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D CASE STUDY

To explore whether our method can effectively solve the Abnormal energy flow problem in the
pretext task, we statistics the distribution of dice FP similarities between predicted products and
real products. We except the cases where both our method and MolR predict the true product for
demonstrating the differences more explicitly.

(a) MolR. (b) ReaKE.

Figure 7: Pie chart of dice FP similarities distribution of predicted and real products.

We also conduct a case study on USPTO-479k and select the first 100 reactions on the test dataset
to see if our optimization is effective compared with MolR. The detailed results are demonstrated
on Table 5, we remove examples where all methods predict correctly.

Table 5: Case study on the first 100 reactions of USPTO-479k test set.

Ground-truth Predicted product Predicted product
Index Reactant(s) product by ReaKE by MolR

5 same as ground-truth

10 same as ground-truth
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66

72 same as ground-truth

79 same as ground-truth

82 same as ground-truth

As shown in Table 5, our method models chemical reaction data in detail and avoids some cases
where the predicted product value is consistent with the reactant (such as the No.5 reaction and
the No.72 reaction). This phenomenon also confirms that our initial analysis of the problem and
optimization measures are effective. Besides, there are reactions (such as the No. of 66 reaction) that
cannot be predicted correctly by both methods, which is due to the fact that only the main product
is retained in USPTO-479k, and the by-product is omitted. This deficiency leads to inaccurate
prediction, but the correct product ranking predicted by our method is still better than previous
methods.
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