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Abstract
Causal models have great potential when it comes to enabling machine learning models to go
beyond pure correlation-based inference. Unfortunately though, estimating the causal structure
of an environment poses a significant challenge both in computational effort and in accuracy, let
alone its impossibility without interventions in general. In this work, we show that it is possible
to meta-learn an active learning algorithm for causal discovery (Meta-Causal Discovery, MCD)
in synthetic environments. We learn a policy that learns to perform interventions and update its
structure estimate simultaneously. The learned policy can be used to perform causal discovery in
a matter of milliseconds. By limiting the episode length, we put an upper bound on the number
of interventions that can be performed by MCD, making it more suitable for applications where
post-interventional samples are hard to obtain. We show empirically that our algorithm estimates a
good graph compared to SOTA approaches and that interventions contribute significantly to MCD’s
performance.
Keywords: Causal Discovery, Reinforcement Learning, Meta-Learning

1. Context and Contribution

Many scientific questions, from ”Why did this apple fall on my head?” to ”Does more physical
activity reduce the risk of cardiovascular diseases?”, aiming at answering questions about causal
effects. Within the field of causality, these questions can be mathematically formalized. Although
causality has been researched for decades (Glymour et al., 1991; Spirtes et al., 2000; Pearl and
Mackenzie, 2018), it has recently gained new momentum in the context of machine learning (ML)
(Schölkopf et al., 2021) and, more specifically, reinforcement learning (RL).

Many of the capabilities that causality brings for ML are due to the inference power of causal
models, such as reasoning about actions and counterfactuals, which enable ML to go beyond pure
correlation-based inference. While the inference power of causal models is impressive, estimating
their cause-effect structure from data has been posing several challenges. The task of estimating
causal structures from data is referred to as causal discovery. The core challenge of causal discov-
ery lies in the fact that some causal structures cannot be distinguished from observational data alone
(Hauser and Bühlmann, 2012). This issue can be mitigated by assigning values to variables inde-
pendently from their causes (Pearl, 1993; Hauser and Bühlmann, 2012; Bareinboim et al., 2020),
a process called intervention. Unfortunately, when confronted with real-world environments, per-
forming interventions such as randomized controlled trials can be resource intense. Therefore, a
large body of research exists on intervention design, or put in different words, on how to minimize
the number of interventions needed to estimate the causal model.

With the successful application of RL algorithms to many domains (Moerland et al., 2020; Plaat
et al., 2021; Wang et al., 2022), the opportunity to use RL as a tool for causal discovery has opened
as well. RL methods allow for actively sampling data as opposed to learning from a static data set
of pre-collected observations. This active learning setting for data collection allows for estimating
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causal structures edge-by-edge. This can be beneficial for online decisions e.g. on which variable to
intervene based on how informative an intervention is for estimating a causal structure. Furthermore,
an RL setting allows us to sample data beyond a data set of fixed size and, thus, potentially improve
generalization.

In this work, we show that it is possible to meta-learn an algorithm for causal discovery (MCD).
We sketch an active meta-reinforcement learning model that estimates the causal structure of an
environment with a given set of variables. The model is allowed to perform interventions with a
limited budget to aid this process. The model simultaneously learns to perform informative inter-
ventions and to infer the updates to the structural model based on the resulting observations. During
estimation, the weights of the model are frozen and, therefore, the model learns the causal structure
only utilizing the current activations in the model. This work contributes to common challenges in
causal discovery through the following capabilities:

• Providing good estimates of the ground-truth causal structure compared to the SOTA.

• Performing causal discovery in a matter of milliseconds.

• Integrating observational and interventional data for causal discovery.

• Limiting the number of interventions through a hyper-parameter.

We will start by providing an overview of the relevant literature on causal discovery leading to
a discussion of the common challenges of the task. We will then proceed to introduce necessary
notations, followed by an in-depth description of our approach and our model. We will conclude
with experiments on the accuracy and runtime of our model w.r.t. SOTA approaches and a rigorous
discussion thereof. An overview of our approach is presented in Figure 1. The implementation and
data can be found at https://anonymous.4open.science/r/5D56/

2. Preliminaries and Notation

Causal relationships can formally be expressed in terms of a structural causal model (SCM). We
define an SCM S as a tuple (X ,U ,F ,P) where X = {X1, . . . , X|X |} is the set of endogenous
variables; U = {U1, . . . , U|U|} is the set of exogenous variables; F = {f1, . . . , f|X |} is the set
of functions whose elements are defined as structural equations in the form of Xi ← fi(.); P =
{P1, . . . , P|U|} is a set of pairwise independent distributions where Ui ∼ Pi. Every SCM induces a
graph structure G in which each node represents a random variable. ∀Wi ∈ {X ∪ U}, Xj ∈ X : G
has a directed edge (Wi, Xj) iff Wi is an input of fj . This implies that every exogenous variable Ui

is a root node in G. In this work, we restrict ourselves to SCMs that induce a directed acyclic graph
(DAG).

An intervention1 on a variable Xi ∈ X is defined as replacing the corresponding structural
equation Xi ← fi(.) with Xi ← x for some value x, which we denote as do(Xi = x). Intervening
makes the variable independent of its parents, changing the causal mechanism of the data-generating
process. The model is causal in the sense that one can derive the distribution of a subset X ′ ⊆ X
of variables following an intervention on a set of variables, called intervention target, I ⊆ X \ X ′.
We call the resulting distribution over X post-interventional. When no intervention is performed
(I = ∅) we call the resulting distribution an observational distribution.

1. In this work we only consider perfect, hard interventions.
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Figure 1: Shows the learning setup of our approach. Given a training set of environments with
known causal structures, our model learns to perform interventions and to update its estimation of
the structure. The training is guided through a reward that reflects the structural difference between
the predicted structure and the ground truth structure. After training the learned causal discovery
algorithm can be applied to environments, even if their ground truth structure is unknown.

An RL learning algorithm is characterized by a state-space S, an action-space A, a reward
function r(s) : S 7→ R, and a policy π(s) : S 7→ A. We define an episode e as the state-action
sequence from the beginning to the end of the estimation. We will refer to the length of the episode
as horizon H . The value function Vπ(s) : S 7→ R defines the expected, discounted cumulative
reward of a state s, following a policy π, with discount factor γ. The objective of the RL agent is to
find the optimal policy π∗ that maximizes the value function of all states which can be expressed as
π∗(s) = argmaxπVπ(s),∀s ∈ S.

3. Related Work

Due to its relevance in many applications, causal discovery research has gained further momentum
in the last years leading to an impressive body of work (Vowels et al., 2021). Score-based causal
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discovery approaches search the space of (partially) directed acyclic graphs (DAG) via metrics that
indicate how well the graph fits the data. This is often done greedily over the space of Markov
equivalence classes2 (Meek, 1997; Chickering, 2002; Hauser and Bühlmann, 2012; Ramsey et al.,
2017) or over permutations of node orderings (Solus et al., 2017; Wang et al., 2017a; Yang et al.,
2018). Constraint-based approaches leverage the statistical independence patterns in the data to
constrain the possible output graphs (Glymour et al., 1991; Spirtes et al., 2000). These constraints
can even be expressed as propositional formulas and then solved with answer-set programming
(Hyttinen et al., 2014). RL offers an alternative way of searching the space of DAGs by using the
reward to navigate toward good graph generators (Zhu et al., 2019). Note that many algorithms rely
on strong assumptions on the class of causal relations e.g. linear additive noise models (Bühlmann
et al., 2014; Peters et al., 2014; Shimizu et al., 2006). This makes these algorithms interesting for
theoretical analysis but it also restricts their application potential in practice.

Since the number of possible DAGs grows super-exponentially in the number of nodes (Robin-
son, 1977), most score- and constraint-based approaches suffer from long run times. A recent line of
research tackles this problem by deploying optimization-based algorithms. These algorithms work
e.g. with constraint optimization (Zheng et al., 2018; Brouillard et al., 2020) but also by learning
causal graph neural networks (Goudet et al., 2018; Yu et al., 2019; Ton et al., 2021) or variational
auto-encoders (Yang et al., 2021). For neuro-causal models, advances are also made in the theoreti-
cal analysis of their identifiability (Xia et al., 2021). A similar approach is taken by works that sam-
ple both the graph structures and the functional parameters from posterior distributions (Ke et al.,
2019; Lippe et al., 2021; Scherrer et al., 2022). This improves learning efficiency, not only of the
structures but also of the functional relations of the causal mechanism. While optimization-based
approaches can reduce the run-time for structure learning by avoiding a combinatorial explosion,
but they can still take a significant amount of time to learn the causal structure.

Another common challenge amongst most causal discovery algorithms is the integration of ob-
servational and interventional data. Although integrating frameworks exist (Mooij et al., 2020), only
a fraction of causal discovery algorithms successfully jointly consider interventional and observa-
tional data (Vowels et al., 2021). A promising direction for the seamless integration of interventional
data is by means of RL and active learning. We argue that this is partly due to the implicit connec-
tions between interventions and actions in any RL framework, and partly because RL can easily be
combined with deep-learning models. Our work distinguishes itself from these closely related works
in different ways. While Dasgupta et al. (2019) developed an algorithm that is similar to ours, their
primary task was not causal discovery. Nair et al. (2019), Gasse et al. (2021), and Méndez-Molina
et al. (2022) put a strong focus on using causal structures to aid RL while learning the structures is
done in a supervised manner. Similarly, Scherrer et al. (2022) and Tigas et al. (2022) develop an
active learning algorithm that chooses interventions more efficiently to estimate the structure from
this data. Amirinezhad et al. (2022) have a similar setup and task but restrict RL to learn a heuristic
function for choosing the next intervention target. Furthermore, they do not take into account the
values and distributions of the random variables. Their graph-updating procedure is pre-defined,
whereas in our approach the update rules can be learned.

2. Roughly speaking, a Markov equivalence class is a set of DAGs which cannot be distinguished by means of their
observational distributions alone.

4



SHORT TITLE

4. Reinforcement Learning Setup

4.1. Actions

We implement two types of discrete actions. The first type performs an intervention on SCM and
observes the resulting values of the random variables. This enables the policy to choose a (post-
interventional) distribution and to sample from it. We will refer to this kind of action as listening
action. All, except for one, of the listening actions are intervention actions that intervene on exactly
one variable (i.e., |I| = 1). For each endogenous variable X ∈ X , we provide an action do(X = c)
for a constant c. We argue that c should be chosen in a way that makes it easy to distinguish
the post-interventional distribution from the observational distribution i.e. it should be unlikely that
samples from the post-interventional distribution come from the observational distribution. A future
expansion of our work could include learning a good c. The intervention actions amount to a total of
n actions for n nodes. There is one additional listening action which we call the non-action. When
the non-action is taken, the agent observes the current values of the observable variables without
intervening (i.e., I = ∅). This action accounts for the collection of purely observational data.

The second type of action is responsible for constructing the epistemic model of the agent. The
epistemic model is the current directed graph estimate of the structure of the environment. We will
refer to these actions as structure-actions. Each structure action can either add, delete or reverse
an edge of the epistemic model. Whenever a delete or reverse action is applied to an edge that is
not present in the current model, the action is ignored. This is effectively equivalent to performing
the non-action. The same holds when the add action is applied to an edge that is already in the
epistemic model. We do not make any further restrictions, for instance, w.r.t. acyclicity for the
structure actions.

For a graph with n nodes, there are n(n − 1) possible edges, and hence there are 3n(n − 1)
structure-actions. Together with the listening-actions we have n+1+3n(n−1) actions. Therefore,
the size of the action space is quadratic in the size of nodes.

4.2. State Space

The state s of the environment consists of a concatenation of three vectors and one additional value.
The first vector sV contains the current values of the n endogenous variables where sVi is the value
of Xi. The second vector sO is a one-hot vector that indicates which variable is currently being
intervened on. So if the i-th element of sO is 1, then there is an intervention on Xi. The third
vector sG encodes the current epistemic model as a vector. Each value of this vector represents
an undirected edge in the graph. The edges in the vector are ordered lexicographically. The value
0 encodes that there is no edge between the two nodes. The value 0.5 encodes that there is an
edge going from the lexicographically smaller node to the bigger node of the undirected edge. And
the value 1 encodes that there is an edge in the opposite direction. For example, a 3-node graph
X0 → X2 → X1 would be encoded as sG = [0, 0.5, 1]. As the last element in the state vector sT ,
we encode the time until the end of an episode normalized to 1 as sT = t

H , where t is the number
of steps taken in the current episode and H , is the horizon. Taken together, the size of the state is
2n+ n(n− 1)/2 + 1 with n endogenous variable and hence quadratic in the size of the graph. 3

3. For clarity we obfuscate that the hidden state of the LSTM (see Section 4.4) must also be considered part of the state
to fully define the Markov decision process.
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4.3. Rewards and Episodes

Our task is to find the causal structure of the environment, i.e., the DAG that corresponds to the
graph induced by the SCM. Therefore, we compare the epistemic graph to the true causal structure
of the environment. The quantification of this comparison serves as the reward for our algorithm.
We count the edge differences between the two graphs. This ensures that generating a model that
has more edges in common with the true DAG will be preferred over one which has fewer edges in
common. It further gives a strong focus on causal discovery as opposed to scores based on causal
inference. Specifically, we use a variant of the Structural Hamming Distance (SHD) (Tsamardinos
et al., 2006). In this variant, we take two directed graphs and count how many of the edges need
to be removed or added to transform the first graph into the second graph. This results in a metric
that simply counts the distinguishing edges of two directed graphs. We will refer to this metric as
directed SHD or dSHD. Given a predicted directed graph GP = (V,EP ) and a target, directed graph
GT = (V,ET ), we define the dSHD as dSHD(EP , ET ) =| EP \ ET | + | ET \ EP |.

For each episode, we set a finite horizon H . The estimation of the epistemic model is complete
when H−1 actions were taken. Dynamically determining the end of the estimations is left for future
research. Note that when a small episode length is chosen, fewer samples can be collected by the
agent. This might impact how well the agent is informed on which updates to make to the epistemic
model. At the same time, H should not be set too large since additional learning complexity might
be introduced. At the beginning of each episode, an SCM is sampled from the training set and
the epistemic model of the agent is reset to a random DAG, to further introduce randomness. The
reward is calculated by taking the negative dSHD between the generated DAG and the true causal
graph at the end of each episode. Every other step receives a reward of 0.1 if an intervention action
is performed, and 0 otherwise. The resulting value function for a state s and a policy π is then
defined as

Vπ(s) = Est∼π

[
−γH−tdSHD(EH

Epi, EEnv) | s0 = s
]
+ Est∼π

[
γt0.11I(st) | s0 = s

]
(1)

where EH
Epi are the edges of the epistemic model at the end of an episode, EEnv are the edges of

the current target graph and 1I(st) is the function that indicates whether there is an intervention in
st.

4.4. Learning Algorithm and Policy Network

We use the Actor-Critic with Experience Replay (ACER) (Wang et al., 2017b) algorithm to solve
this RL problem. We choose this algorithm because of its sample-efficient off-policy method and
its (potentially) easy extension to continuous action spaces. We use a discount factor γ = 0.99,
a buffer size of 500000, and a constant learning rate. All other parameters are according to the
standard values of Stable-Baselines (Hill et al., 2018, version 2.10.1).

The architecture of our policy network is sketched in Figure 2. Both, the actor-network and the
critic-network are fully-connected multi-layer perceptrons (MLP). They are preceded by a shared
network that has fully-connected feed-forward layers followed by a single LSTM Hochreiter and
Schmidhuber (1997) layer. The exact amounts of layers and their sizes are specified for each ex-
periment. We want to emphasize the recurrent LSTM layer. It enables the policy to memorize
past observations. More specifically, it enables the policy to remember samples from the (post-
interventional) distributions induced by the data-generating SCM earlier in that episode and ideally
build a representation of their distribution.
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Figure 2: Shows the general architecture of our policy network. The actor and the critic share a
fully connected feed-forward network with an additional LSTM layer.

5. Learning to Intervene

First, we develop a toy example to test whether our approach can learn to perform the right inter-
ventions to identify causal models under optimal conditions. To this end, we construct a simple
experiment in which two observationally equivalent, yet interventionally different environments
have to be distinguished. This can only be achieved with the help of interventions (Bareinboim
et al., 2020). For this experiment, we disable the additional reward for performing interventions.
Thus, if our policy learns to distinguish the two environments, it has to learn that interventions are
needed and to infer the right graph from these interventions.

The two environments are governed by the fully observable, 3-variable SCMs with structures
G1 : X1 ← X0 → X2 and G2 : X0 → X1 → X2. In both environments, the root node X0 follows
a normal distribution with X0 ∼ N(µ = 0, σ = 0.1). The nodes X1 and X2 take the values of their
parents in the corresponding graph. The resulting observational distributions PG1(X0, X1, X2) and
PG2(X0, X1, X2) are equivalent and so are the post-interventional distributions after interventions
on X0 or X2. For an intervention on X1, PG1(X0, X2 | do(X1 = x)) ̸= PG2(X0, X2 | do(X1 =
x)). Hence the two SCMs can only be distinguished by intervening on X1. The details for the
training setup can be found in Appendix A.1. The algorithm is trained in both environments. This
allows us to investigate whether, given enough training time and data, our approach can learn to
distinguish the environments.

After training, we observe that the mean dSHD of the produced graphs is 0.0 with a standard
derivation of 0.0. This is a perfect reproduction of the two environments in all cases. This indicates
that our policy has indeed learned to use the right intervention to find the true causal structure. For
further testing, we apply the converged policy 10 times to each of the environments and qualitatively
analyze the behavior. What the resulting 20 episodes have in common is that, towards the beginning
of each episode, they tend to delete edges that do not overlap in the two environments. Then an
intervention on X1 is performed. Depending on the outcome of the intervention, either G1 or G2 is
ultimately generated. This can also be seen in the two example episodes in Figure 3.

This shows that our learned policy learns to use the intervention on X1 to distinguish between
the two environments. Thus, our approach is capable of learning to use interventions in an active
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Figure 3: Illustration of two sample episodes after training with the respective causal environments
G1 and G2. Each step shows the current estimate of the causal structure, the current values of the
three random variables, and the action which is chosen by the policy based on those observations.
Interventions and their effects are highlighted in green. In steps 7-9 neither the epistemic model nor
the resulting action changes.

manner and to generate the appropriate graph from the resulting observations. If this can be suc-
cessfully learned in more complex environments, our learned policy could potentially be used to
discover new rules of causal structure estimation. Furthermore, these results suggest that the model
has learned to only perform interventions that are relevant as opposed to random interventions.

6. Learning a Causal Discovery Algorithm

In this section, we investigate whether we can learn a causal discovery algorithm with the setup
described in Section 4. If learning such an algorithm is successful, the algorithm should be able
to identify structures that it has not encountered during training. To test this, we compare our
learned algorithm to the SOTA approaches ENCO (Lippe et al., 2021) DCDI (Brouillard et al.,
2020), NOTEARS (Zheng et al., 2018), and a baseline that generates a random DAG. ENCO and
DCDI can both integrate observational and interventional data while NOTEARS only uses observa-
tional data.

Following the widely adopted practice, we test our approach on SCMs that have an additive
linear causal model with independent Gaussian noise. Although this choice limits the applicability
to real-world environments, it provides a good means for comparison to other approaches. It is
known that these kinds of environments can suffer from varsortability where good results can be
achieved by ordering the variables by the variance of their observational distribution (Reisach et al.,
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2021; Kaiser and Sipos, 2021). To make our approach less prone to this error, we randomly sample
the variance of each Gaussian noise we use.

Given a structure G = (V,E) and X = V , we model our SCM environments as follows.
For every endogenous variable Xi we add a parent exogenous variable Ui with distribution Pi =
N(µ = 0, σ = Σ) where Σ is sampled from Uniform([0; 0.5]). For each endogenous variable Xi,
we model fi as

fi(PaGX , Ui) =

 ∑
Y ∈PaGX

WY

+ Ui (2)

where PaGX are the parents of X in G, and W ∼ Uniform([−1; 1]) represents a random weight for
each causal effect of a parent to a child. We randomly generate a test set of 7 DAGs with 3 variables
and 200 DAGs with 4 variables. For each of these graphs, we generate 10 SCMs as described above
for evaluation. During training, we sample a random ground truth DAG at the beginning of each
episode. If this random DAG is in the test set, we discard it and sample a new random DAG. This
process is repeated until the sampled DAG is not in the test set to ensure that our model has never
seen the test set. When a DAG is found, we generate an SCM as described above as our current
environment. The training details for this experiment can be found in Appendix A.2. We will refer
to the best model that is found during training as best model. The setup for the benchmarks can be
found in Appendix B.1. For each of the algorithms we computed the dSHD between the predicted
DAG and the ground truth DAG. Table 1 shows the results of running the algorithms on the first
50SCMs in the test set.

3 Variables 4 Variables

mean median std mean median std
Random 4.43 4.0 0.90 4.80 5.0 1.72
DCDI 2.94 3.0 0.70 4.44 4.0 1.77
ENCO 3.18 3.0 1.09 3.74 4.0 1.73
NOTEARS 2.50 3.0 0.92 3.72 4.0 1.77
MCD (ours) 1.28 1.0 0.66 3.60 4.0 1.62

Table 1: Statistics over the dSHDs resulting from running the algorithms on the first 50 SCMs in
the test set.

Firstly, Table 1 shows that our approach outperforms the random baseline, suggesting that MCD
learns to estimate the environment’s causal structure beyond randomly orienting edges. The means
over the resulting dSHDs suggest that our approach compares favorably to the benchmarks. To
investigate this difference in more detail, we performed a one-sided Wilcoxon signed-rank test on
each estimate from our policy and from DCDI, ENCO, and NOTEARS. To correct for performing 3
comparisons, we consider a significance level of 1.7%. In the 3 variable case as well as the 4 variable
case we can conclude that the dSHDs from our method are significantly lower than the ones from
any of the other algorithms4. We also note that each run of MCD takes an average of 23ms in the

4. We note that the results for ENCO seem significantly worse than those proposed in the original paper Li et al.
(2020). We could not find a definitive answer to why this issue occurs but we suspect either the specific setup of our
environments or an undiscovered implementation issue.
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3 variable case and 30ms in the 4 variable case on a consumer-grade notebook as opposed to the
SOTA, which can take minutes for one estimation. We attribute this performance to the fact that one
estimation of MCD only takes H forward passes through the policy network.

We conclude that with our approach a causal discovery algorithm can be learned that, in an active
setting, performs interventions and updates its structure estimate. Our algorithm not only compares
favorably to the SOTA w.r.t. to the dSHD to the ground truth graph but is also computationally
quick in deriving the estimate making it interesting for a variety of applications.

7. Contribution of Interventions

To empirically investigate the effect of interventions on the performance of our algorithm, we per-
form an ablation study. To this end, we train a variant of our policy (MCD-O) which is based on
purely observational data , i.e. we disallow the use of interventions, and compare it to the model
which uses interventions. We then compare our results to the results of MCD and NOTEARS, which
also works on purely observational data and the random baseline of the previous section.

We train our model with the same parameters as in Section 6 and measure the dSHD on the
first 50 3-variable SCMs in the test set with the best model of the training run. We perform a
Wilcoxon signed-rank test to evaluate whether there is a significant difference between the model
that uses interventions and the one that does not. We also test whether there is a difference between
NOTEARS and our approach when no interventions are allowed.

The statistics of MCD-O applied once on the first 50 test SCMs are as follows: mean =
2.6,median = 3.0, std = 1.44. When comparing this to the version which uses interventions
(mean = 1.28,median = 1.0, std = 0.66, see Table 1), we can see the importance that in-
terventions have on the overall performance of MCD. This is confirmed by performing a Wilcoxon
signed-rank test between the results of MCD and MCD-O indicating that MCD is significantly better
(with p << 0.025). When comparing MCD-O with NOTEARS, we do not observe any significant
difference in a two-sided Wilcoxon signed-rank test (p ∼ 0.4). In other words, while MCD-O does
not provide an improvement over NOTEARS, it still constitutes a valid alternative approach. These
results lead to the conclusion that introducing interventions results in the hypothesized edge over
the purely observational version of our model.

8. Aspects of Intervention Design

As argued in Section 1, MCD provides an approach to restrict the number of interventions needed
for causal discovery. The upper bound of interventions that the learned policy will perform is
the horizon of an episode (20 in the current setup). Compared to the interventions used in the
benchmarks (up to 10000 samples from the observational distribution and up to 3333 samples from
the interventional distributions), this is a significant improvement considering the comparably good
performance of MCD. More specifically, in the application of our best models to the 3-variable
test SCMs we found an average of 17 samples from interventional distributions. The low number
of interventions needed for MCD promises to make it more applicable than SOTA, especially in
scenarios where samples from post-interventional distributions are expensive to obtain.

On average, 64% of the interventions were on the first variable and 36% on the third variable.
No interventions were performed on the second in any of the runs. To investigate this behavior, we
ran checkpoints of the model of earlier steps of the training and found that the model is performing
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interventions on the second variable in those checkpoints. We hypothesize that during learning the
model learns to not do this intervention because of the structures in the test SCMs.

To have a better comparison of the performance of MCD in a context where interventional
samples are hard to obtain, we re-evaluate our approach w.r.t. to SOTA approaches using a similar
amount of samples. For DCDI, we take 17 samples from each post-interventional distribution.
For ENCO we take 17 samples from each post-interventional distribution and 4 samples from the
observational distribution. For NOTEARS we take 20 observational samples.

mean median std

DCDI 3.46 3.0 1.00
ENCO 2.40 3.0 0.80
NOTEARS 2.84 3.0 1.02
MCD (ours) 1.28 1.0 0.66

Table 2: Statistics over the dSHD obtained from predicting the causal structure of the 3 variable test
SCMs by algorithm.

Table 2 shows the statistics over the dSHD obtained from running the corresponding algorithms
on the 3 variable test SCMs. As expected, we see an increase in the performance gap between
MCD and DCDI and MCD and NOTEARS indicating that their ability to perform well when few
interventions are provided is limited. Interestingly, ENCO seems to estimate better structures when
less data is provided. This suggests that ENCO has fewer issues with lower sample sizes. Overall,
we conclude that MCD uses interventions in an efficient way which makes it perform well even
when the budget for interventions is low.

9. Conclusion

This paper presents an approach to learning a causal discovery algorithm. In our RL setting, we
learn a policy that simultaneously learns to actively perform informative interventions and update its
structure estimate. Once the policy is learned, it can be used to perform causal discovery in a matter
of milliseconds, even on SCMs whose structure it has not encountered during training. In doing so,
it manages to integrate interventional and observational data. Lastly, by limiting the episode length,
we put an upper bound on the number of interventions that can be performed by MCD, making it
more suitable for applications where post-interventional samples are hard to obtain.

We acknowledge that our approach needs modifications to scale to realistic environments with
more variables. The explosion of the action- and state-space that this would imply prompts consid-
erations about better encodings. A further problem in a potential real-world setting is the availability
of a large amount of data-generating models for training. To perform well on all the possible causal
relations in the real world, the class of training SCMs would need to be significantly expanded.
An alternative approach would be to make MCD transferable to SCM classes other than linear-
additive SCMs. We argue that also an extension to a scenario in which the variables are learned
from raw input would lead to even better applicability since hand-crafted variables often introduce
sub-optimalities w.r.t. task performance.

11



References

Amir Amirinezhad, Saber Salehkaleybar, and Matin Hashemi. Active learning of causal structures
with deep reinforcement learning. Neural Networks, 154:22–30, 2022.

Elias Bareinboim, JD Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the
foundations of causal inference. ACM Special Volume in Honor of Judea Pearl (provisional title),
2020.
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Appendix A. Training Details

A.1. Learning to Intervene

For the experiment in section 5 the policy network has a fully connected layer of size 30, followed
by an LSTM layer of size 30. The actor-network has one fully connected layer of size 30, the
critic-network one fully connected layer of size 10. The length of each episode was set to 10 and
the model trained for 5 million training steps. As intervention actions we provide do(Xi = 0) and
do(Xi = 5) for each Xi ∈ X . For all other parameters, the default values were used.

A.2. Learning a Causal Discovery Algorithm

The following configuration for the policy network of the experiment in Section 6 worked best after
preliminary experiments for the 3-variable (4-variable) environments: One (two) fully connected
layer(s) of size 30 (64) followed by an LSTM layer of size 30 (128). Its outputs are fed into a fully
connected layer of size 30 (32) for the actor-network and one of size 10 (32) for the critic-network.
As intervention actions we provide do(Xi = 5) for each Xi ∈ X . We chose this value since it is
unlikely to come from any of the noise distributions. For this experiment, we set the horizon to 20.

Appendix B. Setup of Benchmarks

B.1. Samples for Optimistic Experiment

For the evaluation in Section 6 we apply our best models and the benchmarks described above on the
first 50 SCMs from the test set. For NOTEARS we sampled 10000 samples from the observational
distribution of each SCM. For ENCO we sampled 10000 samples from the observational distribution
and 3333 samples from each post-interventional distribution (one per variable) and trained for 50
epochs. For DCDI we took 3333 samples from each post-interventional distribution as well and
trained the deep sigmoidal flow model version of the algorithm for 50000 iterations.
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