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Abstract

Prompt learning approaches have made waves in natural language processing by1

inducing better few-shot performance while they still follow a parametric-based2

learning paradigm; the oblivion and rote memorization problems in learning may3

encounter unstable generalization issues. Specifically, vanilla prompt learning may4

struggle to utilize atypical instances by rote during fully-supervised training or over-5

fit shallow patterns with low-shot data. To alleviate such limitations, we develop6

RETROPROMPT with the motivation of decoupling knowledge from memorization7

to help the model strike a balance between generalization and memorization. In8

contrast with vanilla prompt learning, RETROPROMPT constructs an open-book9

knowledge-store from training instances and implements a retrieval mechanism10

during the process of input, training and inference, thus equipping the model with11

the ability to retrieve related contexts from the training corpus as cues for enhance-12

ment. Extensive experiments demonstrate that RETROPROMPT can obtain better13

performance in both few-shot and zero-shot settings. Besides, we further illustrate14

that our proposed RETROPROMPT can yield better generalization abilities with15

new datasets. Detailed analysis of memorization indeed reveals RETROPROMPT16

can reduce the reliance of language models on memorization; thus, improving17

generalization for downstream tasks1.18

1 Introduction19

Large parametric language models [42, 6, 19, 28] have achieved dramatic empirical success in20

natural language processing (NLP). Notably, pre-trained language models (PLMs) have learned a21

substantial amount of in-depth knowledge from data, and have archived tremendous promise in22

few-shot/zero-shot learning ability with the natural language prompts [11, 47, 52]. However, Recent23

studies [34, 36, 54] observe that prompt learning with PLMs usually generalizes unstably in an24

extremely low-resource setting or emerging domains. One potential reason is that, it is non-trivial25

for parametric models to learn rare or hard patterns well with rote memorization, thus, resulting in26

inefficient generalizable performance.27

Intuitively, if we regard the whole training data as a book and the test phase as the examination,28

the current training-test procedure of prompt learning (based on batch data training) can be viewed29

as page-by-page memorization and closed-book examination [39]. During training, vanilla prompt30

learning may struggle to memorize atypical instances in a fully-supervised setting or overfit shallow31

patterns with low-shot data [56, 8]. Specifically, recent studies[9, 10] have proposed a long-tail theory,32

1Code and datasets are in the supplementary materials and will be released for reproducibility.
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which states that if training data form a long-tail distribution and have small “sub-populations” with33

atypical instances, then PLMs indeed predict on the test data through rote memorizing these atypical34

instances rather than learning the common patterns [56, 51].35

The limitations of rote memorization remind us of the human learning process of “learn by analogy”36

and the proverb that “the palest ink is better than the best memory”. Note that humans can perform37

associative learning to recall relevant skills in deep memories for reinforcing each other, thus, owning38

the extraordinary abilities to solve few-shot and zero-shot tasks. Motivated by these, we endeavor to39

improve the generalization ability of prompt learning with retrieval and association. Our intuition is40

that the difficulty of resolving the above limitations can be substantially alleviated if we can decouple41

the knowledge from memorization by constructing an open-book knowledge-store from the training42

data; thus, referring to related knowledge could provide a strong enhancement signal to help the43

model strike a balance between generalization and memorization.44
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Figure 1: Decoupling knowledge from memorization.

Specifically, we introduce a novel retrieval-45

augmented framework based on prompt46

learning (RETROPROMPT) as shown in47

Figure 1. The open-book knowledge store48

(K,V), defined as the set of key: prompt-49

based example embeddings and value: cor-50

responding label words constructed from51

the training data, are served as additional52

references for the model to decouple knowl-53

edge from pure memorization to some ex-54

tent. Specifically, to integrate retrieved55

knowledge into the input, Firstly, we design to incorporate neural demonstrations into the input56

sequences as in-context augmentation, where the demonstration is retrieved from the knowledge-store.57

Then, we apply a non-parametric algorithm kNN over the input query and knowledge store, and58

regard kNN results as an indication of easy vs. hard examples in the training set. More specifically,59

we automatically force the model to focus on the hard examples identified by kNN by assigning a60

scaling during training. Lastly, the kNN results are further employed at the output of the PLM head61

to participate in masked prediction during inference. The model retrieves Top-k nearest reference62

instances as cues from (K,V) and makes inference by linearly interpolating the output of prompt63

learning with a non-parametric nearest neighbor distribution.64

The considerable performance gains on nine tasks in few-shot and zero-shot settings demonstrate that65

our systemic retrieval mechanism helps the model generalize better with scarce data. Experiments in66

the fully-supervised setting with long-tail distribution illustrate that our RETROPROMPT can deal67

with atypical instances more robustly. We further adopt self-influence [24] as our memorization68

scoring function to analyze the memorization process between fine-tuning, prompt learning and69

our RETROPROMPT. The final analysis results show that 1) the training instances with the highest70

memorization scores tend to be atypical, 2) RETROPROMPT generalize better than fine-tuning and71

convention prompt-tuning with decoupling knowledge from memorization to alleviate the rote of72

PLMs. In a nutshell, our work may open up new avenues to improve the generalization of prompting73

PLMs by retrieving knowledge from memorization.74

2 Preliminaries of Prompt Learning75

Assuming that M, T respectively denotes the PLM and the template function for prompt tuning.76

Formally, the text classification task takes a query sentence x = (x0, x1, ..., xn) as input, and classify77

it into a class label y ∈ Y . While prompt learning converts classification task into a masked language78

modeling problem with cloze-style objectives. Specifically, the template function T inserts pieces of79

texts into x as x̂ = T (x), where x̂ is the corresponding input of M with a [MASK] token in it. For80

example, assuming we need to classify the sentence x =“The movie makes absolutely no sense.” into81
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Figure 2: Overview of RETROPROMPT. Note that e(·) denotes word embedding function in the PLM
M, while “M”,“t” and “g” in e(·) specifically refers to “[MASK]”, “terrible” and “great”.

label NEGATIVE (labeled as 0) or POSITIVE (labeled as 1), we wrap it into82

x̂ = [CLS]x It was [MASK][SEP] (1)

The verbalizer f : Y 7→ V is defined as a mapping from the label space Y to a few words in the83

vocabulary, which form the label word set V . The base component of M produces the sequence84

representation over x̂, and we choose the hidden vector at the [MASK] position as the contextual85

representation hx̂ ∈ Rd, where d is the dimension of hidden states. Then the MLM head of M can86

operate on hx̂ to calculate the probability of each word v in the vocabulary being filled in [MASK]87

token PM([MASK] = v|x̂). We let Vy to represent the subset of V that is connected with a specific88

label y, ∪y∈YVy = V . Then the probability distribution over the label y is calculated as:89

P (y|x)=g (PM([MASK]=v|T (x))|v ∈ Vy) , (2)

where g is a function transforming the probability of label words into the probability of the classes.90

3 RETROPROMPT: Retrieval-augmented Prompt Learning91

We introduce a simple and general retrieval-augmented framework for prompt learning, named92

RETROPROMPT, whose basis is the dense retriever (§3.1) with an open-book knowledge-store to93

decouple knowledge from memorization. As shown in Figure 2, RETROPROMPT consists of three94

components: retrieval of neural demonstration for enhancing input (§3.2), the kNN guided training95

(§3.3) and the kNN-based probability for cloze-style prediction (§3.4).96

3.1 Dense Retriever97

Open-book Knowledge-store The first step of our proposed framework is to build a knowledge-98

store for retrieval that can decouple from memorization and captures the semantics of the instance from99

the training set C. Specifically, we utilize the encoder to embed prompt-based instance representation100

over the C to construct the knowledge-store. Given the i-th example (ci, yi) in the training data C,101

we compute the key-value pair (hĉi
, vi), in which ĉi = T (ci), hĉi

∈ Rd is the embedding of the102

[MASK] token in the last layer of the underlying PLM, and vi = f(yi) denotes the label word of the103

i-th example. We store all pairs (hĉ, v) in a key-value datastore (K,V) where hĉ serves as key and v104

as value as follows:105

(K,V) = {(hĉi
, vi) | (ci, yi) ∈ C} (3)

The knowledge-store is flexible to add, edit or delete any instances and can be asynchronously updated106

during the training procedure. Note that our knowledge-store is constructed from few-shot trainsets107

in the corresponding few-shot settings rather than the whole available training data.108
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Efficient Searching Considering that the size of the training data C can be enormous, we must109

ensure an efficient retrieval process. As shown in the above creation of open-book knowledge-store,110

we can build the matrix D ∈ R|C|×d as the index of training examples. Given a query set Q, we111

first encode each query example with template mapping function T (·) to get a set of prompt-based112

query vectors hq̂ for retrieval augmentation on the fly. Then, we utilize query vectors to search for113

the closest examples over the index D via maximum inner product search (MIPS). For the retrieval114

process, we choose FAISS [18] to query the open-book knowledge-store efficiently. FAISS is an115

excellent open-source library for fast nearest neighbor retrieval in high-dimensional spaces.116

Asynchronous Refresh of the Knowledge-store Since the neural demonstration may lead to the117

variable contextual representation of instance as the parameters of the PLM are continually updated,118

we thus propose to “refresh” the index of retrieval by asynchronously re-embedding and re-indexing119

all embeddings in an open-book knowledge-store every j training epochs 2. In § 4.6, we empirically120

demonstrate that this procedure results in performance improvement.121

3.2 Retrieval of Neural Demonstration122

To enhance the PLMs with the ability to learn by analogy through the knowledge-store, we further123

combine RETROPROMPT with neural demonstrations, an orthogonal technique enhancing language124

models, to improve the generalization ability of our model. For the t-th query instance qt, we first125

utilize prompt-based representation hq̂t to query the cached representations of open-book knowledge-126

store. Then we retrieve m nearest neighbors {{c(1)1 , ..., c
(1)
m }, ..., {c(L)

1 , ..., c
(L)
m }} of qt for each127

class, where the superscript L denotes the total number of the classes and the c
(l)
i is retrieved as the128

i-th nearest neighbor in the l-th class. After the model retrieves the Top-m candidates for each class,129

their corresponding representation h
(l)
ĉi

and label word v(l) from knowledge-store will be incorporated130

into the encoder to act as a demonstration learning. Since the h
(l)
ĉi

is already vector, we intuitively131

aggregate the m neighbor vectors for each class according to their similarity and incorporate the132

demonstration into the input representation of x̂ after the word embedding layer of the M as follows:133

134

I = e(x̂)⊕ [
∑

i∈[1:m]

α
(1)
i h

(1)
ĉi

, e(v(1))]⊕ ...⊕ [
∑

i∈[1:m]

α
(L)
i h

(L)
ĉi

, e(v(L))];α
(l)
i =

e
hq̂ ·h

(l)
ĉi∑

i∈[1:m] e
hq̂ ·h

(l)
ĉi

(4)

where e(·) represents the word embedding layer of M, ⊕ denotes the concatenation of input se-135

quences, α(l)
i is the softmax score for the i-th retrieval belonging to l-th class label to denote their136

relevance with q̂, and I is the sequence features for inputting the next layer of PLM. As shown in137

the above equation, we encode demonstration representation with the weighted sum of the retrieval138

representation. Thus, retrieval scores are directly used in the final representation, making the frame-139

work differentiable. To this end, we denote this style of demonstration as neural demonstration,140

significantly different from prior work of discrete demonstration [11].141

Neural vs. Discrete Demonstration Compared with prior discrete demonstrations described in142

[11, 32, 46, 25], retrieving weighted neural demonstrations from the knowledge-store to augment143

prompt learning has advantages in the following three major aspects: (1) neural demonstrations144

could be more tolerant of the model’s maximum input length than discrete demonstrations, while the145

discrete demonstration is usually not suitable for multi-class classification tasks due to the limitation146

of input length, such as relation extraction, etc. (2) the model needs to deal with large retrieval tokens147

for discrete demonstration, making it time-consuming and computationally intensive to perform148

cross-attention operations due to the quadratic attention complexity. In contrast, dealing with much149

shorter instance representations as neural demonstrations unleashes the potential of cross-attention150

and accelerates the inference. (3) when sampling examples based on the similarity between instances,151

our cloze-style contextual representation is more informative and consistent than the contextual152

representation from [CLS] of Sentence-BERT [44] (adopted in LM-BFF).153

2Specifically, we refresh the knowledge-store for each epoch in our experiments.
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3.3 Retrieve kNN for Guiding Training154

Eager learners, such as PLMs, are trained to provide a global approximating function that maps from155

input to output space. Lazy learners such as k-nearest neighbor classifiers, on the contrary, focus156

on approximating the neighborhoods around test examples [2]. Since kNN can easily predict for157

each encountered query instance based on pre-trained representation without an extra classifier, it is158

intuitively to leverage the kNN’s classification results as the prior external knowledge to guide the159

PLMs’ parameters attending to hard examples (hard samples usually refer to atypical samples) during160

the training process (also referred as kNN-train for the abbreviation). Particularly, our intuition is161

to differentiate between easy and hard examples according to the prediction of kNN. Given the t-th162

query instance qt, we leverage the hqt querying the open-book knowledge-store (K,V) to retrieve163

the k-nearest neighbors N of qt according to a similarity function d(·, ·), where d(·, ·) typically adopt164

the inner product similarity. Then, we compute a distribution over neighbors based on a softmax of165

their similarities and aggregate probability mass for each label word across all its occurrences in the166

retrieved targets:167

PkNN (y | qt) ∝
∑

(ci,yi)∈N

1y=yi exp (d (hq̂t ,hĉi)) . (5)

Given the probability pkNN of the query instance qt being predicted as the gold class, we propose168

to retrieve the kNN for guiding the training process of prompt learning. The kNN guider reweights169

the cross-entropy loss LCE by adjusting the relative loss for the correctly-classified or misclassified170

instances identified by kNN, respectively. Specifically, we apply the negative log-likelihood as the171

modulating factor F (pkNN). The final loss L is defined as:172

F (pkNN) = − log (pkNN), L = (1 + βF (pkNN))LCE , (6)

where β denotes a scalar to determine the proportion of each loss term. Note that pkNN is computed173

using the leave-one-out distribution on the training set due to the fact that each example in the training174

set cannot retrieve itself. The motivation of modulating factor here is similar to Focal-loss [31], while175

we focus on exploit the application of kNN in tuning PLMs.176

3.4 kNN based probability for Cloze-style Prediction177

Apart from the neural demonstration on the input side and kNN guided training process (also referred178

as kNN-test for the abbreviation), we further present kNN based probability for Cloze-style prediction179

on the inference process, providing the PLM ability to retrieve nearest neighbors for decisions rather180

than making predictions only based on memorized parameters. Given the non-parametric k nearest181

neighbor distribution PkNN of the query instance qt being predicted as y, the P (y | qt) is reformulated182

by interpolating the PkNN with the already-trained base PLM’s MLM prediction PM using parameter183

λ to produce the final probability of the label:184

P (y | qt) = λPkNN(y | qt) + (1− λ)g (PM([MASK] = v|T (qt))) . (7)

Different from kNN-LM [14] that uses tokens to augment the language modeling directly, we185

explicitly take advantage of prompt-based instance representation for classification tasks, which is186

more deeply rooted in prompt learning. In this way, we can unlock the model prediction process as187

an open-book examination.188

4 Experiments189

4.1 Datasets and Baselines190

Datasets We evaluate RETROPROMPT on several types of natural language understanding tasks,191

including single sentence classification tasks (SST-2 [50], MR [40], and CR [16]) and sentence pair192

classification tasks (MNLI [53], QNLI [43], and QQP3). To further evaluate the effectiveness of the193

proposed approach with multi-class classification, we also conduct experiments on the information194

extraction tasks, including FewNERD [7], SemEval 2010 Task 8 (SemEval) [15], and TACRED [55].195

3https://www.quora.com/q/quoradata/.
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Table 1: Results across 9 NLU datasets in the few-shot and zero-shot setting. We report mean
(and standard deviation) results over five different few-shot splits. “D-demo” refers to discrete
demonstration, and “KnPr” is the abbreviation of KnowPrompt. LOTClass [38] is the SOTA model
in unsupervised text classification with self-training. † donates the model uses extra knowledge and
♣ means they train the PLM on the whole unlabeled trainset, while we and the other baselines only
leverage the vanilla PLM to test without training. The average scores with ∗ denote that we reuse the
results of the “non-demo” version of the related model to fill in the default values.

St. Model
Single Sentence Sentence Pair

Model
Information Extraction

Avg.SST-2 MR CR MNLI QNLI QQP FewN SemEval TACRED
(acc) (acc) (acc) (acc) (acc) (F1) (acc) (acc) (F1)

16

FT 81.4 (3.8) 76.9 (5.9) 75.8 (3.2) 45.8 (6.4) 60.2 (6.5) 60.7 (4.3) FT 52.7 (2.2) 66.1 (1.2) 25.8 (2.8) 60.6
LM-BFF (man) 91.6 (1.2 ) 87.0 (2.0) 90.3 (1.6) 64.3 (2.5) 64.6 (5.4 ) 65.4 (5.3) KnPr 65.3 (1.1) 80.9 (2.5) 33.2 (2.0) 71.4
LM-BFF (D-demo) 91.8 (1.2 ) 86.6 (1.8) 90.2 (1.4) 64.8 (2.3) 69.2 (5.4) 68.2 (3.2) KnPr (D-demo) — — — 72.2∗

KPT † 90.3 (1.6) 86.8 (1.8) 88.8 (3.7) 61.4 (2.1) 61.5 (2.8) 71.6 (2.7) KPT † 65.9 (1.5) 78.8 (2.1) 32.8 (1.7) 70.9

Ours 93.9 (0.4) 88.0 (0.8) 91.9 (0.7) 71.1 (1.8) 71.6 (1.8) 74.0 (2.0) Ours 67.3 (0.9) 81.5 (1.3) 40.7 (0.7) 75.6

4

FT 60.2 (2.8) 57.6 (1.4) 66.4 (5.5) 35.0 (0.3) 54.2 (3.9) 52.8 (4.7) FT 32.7 (2.9) 38.8 (2.0) 14.7 (2.8) 45.8
LM-BFF (man) 90.7 (0.8) 85.2 (2.8) 89.9 (1.8) 51.0 (2.5) 61.1 (6.1) 48.0 (4.9) KnPr 52.5 (1.5) 58.4 (3.7) 28.8 (2.5) 62.8
LM-BFF (D-demo) 90.2 (1.5) 85.5 (2.1) 89.7 (0.6) 56.1 (1.0) 61.7 (7.6) 63.2 (5.6) KnPr (D-demo) — — — 65.1∗

KPT † 88.2 (5.7) 83.4 (1.5) 87.2 (2.5) 53.7 (2.7) 59.2 (2.8) 54.9 (7.9) KPT † 58.8 (2.2) 57.2 (3.2) 27.5 (2.2) 63.3

Ours 91.5 (0.4) 87.4 (0.5) 91.4 (0.6) 57.6 (5.5) 62.8 (4.5) 66.1 (4.1) Ours 60.9 (1.9) 59.9 (1.9) 32.1 (2.0) 67.7

0

LOTClass♣ 71.8 81.7 50.1 50.4 36.5 55.9 LOTClass♣ 11.5 9.8 2.5 41.1
FT 49.1 50.0 49.8 34.4 49.5 31.6 FT 10.0 6.2 0.5 31.2
LM-BFF (man) 83.5 80.3 78.4 49.7 50.5 49.7 KnPr 15.9 10.3 2.3 46.7
LM-BFF (D-demo) 82.9 80.7 81.4 52.2 53.5 44.0 KnPr (D-demo) — — — 47.0∗

KPT † 78.4 81.9 71.4 37.1 58.4 47.5 KPT † 24.6 11.6 0.8 45.7

Ours 89.1 86.1 79.7 53.7 60.1 65.1 Ours 41.3 12.2 3.6 54.5

Baselines We compare with LM-BFF [11] for single sentence and sentence pair classification tasks196

and adopt SOTA prompt learning model KnowPrompt [5] as the baseline for information extraction197

tasks. Note that the discrete demonstration method cannot be applied to multi-class classification198

tasks due to the input length limitations; thus, we leave out the experimental table about the results199

of KnPr (D-demo). We also compare our RETROPROMPT with the knowledge-enhanced prompt200

learning method KPT [17] since KPT leverages the external knowledge base for enhancing prompt201

learning while we focus on utilizing internal trainsets as a knowledge-store.202

4.2 Evaluation protocols and details203

The experiments are implemented on 1 NVIDIA V100 and utilize Pytorch [41] as the base library.204

We adopt RoBERTalarge [35] as the PLM and employ AdamW as the optimizer for all experiments.205

To mitigate the influence of diverse templates, we conduct baselines and RETROPROMPT with the206

same templates for each dataset. The specific templates we use for each dataset are in Appendix. As207

for few-shot and zero-shot experiments, we leverage different settings, respectively.208

Few-shot Setting. We follow the few-shot setting of LM-BFF [11] to conduct 4-shot and 16-shot209

experiments and evaluate the average performance with a fixed set of seeds, Sseed, across five different210

sampled Dtrain for each task. Note that our knowledge-store is constructed with the few-shot training211

set in this setting.212

Zero-shot Setting. We leverage vanilla RoBERTalarge for all baselines (except LOTClass [38])213

to directly inference on the test set. To take advantage of retrieval mechanism, RETROPROMPT214

follows LOTClass [38] to utilize unlabeled trainsets for retrieval. Specifically, we take the vanilla215

RoBERTalarge to tag the pseudo labels on unlabeled trainset and create the open-book knowledge-store216

with the unlabeled trainsets and pseudo labels. Lastly, RETROPROMPT make predictions on the test217

set based on the constructed datastore without tuning any of the model parameters.218

4.3 Experimental Results219

Few-shot Results. As shown in Table 1, we find RETROPROMPT consistently outperforms baseline220

method LM-BFF and KnowPrompt, both in 4-shot and 16-shot experiments. Especially for informa-221

tion extraction tasks with multiple classes, discrete demonstrations cannot be applied to the input222

due to the limited input sequence length, while our neural demonstration can also work and achieves223
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improvement on these multi-class datasets. Moreover, RETROPROMPT obtain better performance224

compared with KPT. Compared with KPT with external knowledge, we only focus on referencing the225

internal few-shot trainsets without visiting the external knowledge base. Besides, we observe that226

RETROPROMPT has a relatively lower standard deviation than the baselines. The reason may lie that227

the retrieval mechanism can compensate for instabilities in parametric predictions.228
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Figure 3: Performance on
fully-supervised datasets.

Zero-shot Results. From Table 1, we also observe that RETRO-229

PROMPT achieves improvements in the zero-shot setting. Another230

notable point is that RETROPROMPT performs even better than KPT231

in the zero-shot setting, revealing that exploring own data to decouple232

knowledge from memorization has more potential than leveraging233

external knowledge. Moreover, we achieve superior performance to234

LOTClass even though we utilize the vanilla RoBERTalarge without235

any training.236

fully-supervised Results. The experiments in fully-supervised set-237

tings with long-tail distribution illustrate that RETROPROMPT achieves238

improvement compared with baselines. This indicates that our retrieval239

mechanism extends the LM’s ability to learn hard examples in the fully-supervised datasets.240

4.4 Model Generalization to New Domains241

Table 2: Results of model generalization
to new domains.

Model Source Target Domain

16-shot MR SST-2 CR

FT 76.9 71.4 64.7
LM-BFF (man) 87.0 88.9 86.9
LM-BFF (D-demo) 86.6 89.3 87.5
KPT 86.8 89.1 86.7

RETROPROMPT 88.0 91.4 88.8

16-shot QQP MRPC RTE

FT 60.7 43.7 48.0
LM-BFF (man) 65.4 20.9 65.5
LM-BFF (D-demo) 68.2 38.8 66.2
KPT 71.6 42.3 65.8

RETROPROMPT 74.0 49.4 67.3

The scarce data may bring the overfitting problem for the242

lots of memory parameters of PLMs, even though prompt243

learning. Thus, we conduct cross-domain experiments to244

validate the generalization of our RETROPROMPT. Specif-245

ically, we utilize the model trained on the source datasets246

and directly test on the other target datasets. From Table 2,247

we can find that our method consistently outperforms248

baselines. This finding illustrates that RETROPROMPT249

achieves great model generalization to new domains.250

4.5 Analysis of Memorization251

It is necessary and interesting to further explore the memo-252

rization mechanism to help us better understand the utility253

of retrieval for memorization in NLP.254

Definition of Memorization Measurement. Inspired by the idea of [9] in the computer vision255

area, we define memorization measures as to how the classification varies when a training instance z256

is deleted from the trainset. We follow [24, 56] to define and derive the memorization score for a257

training instance z as follows:258

Sdelate(z)
def
= −dP (y|x; θ̂ξ,−z)

dξ

∣∣∣∣
ξ=0

= −∇θP (y|x; θ̂)⊤ dθ̂ξ,−z

dξ

∣∣∣∣
ξ=0

= −∇θP (y|x; θ̂)⊤H−1

θ̂
∇θL(z, θ̂),

(8)
where θ̂ξ,−z denotes the parameters of the model trained with the instance z down-weighted by ξ, θ̂ is259

the parameters of the model trained with all instances and Hθ̂ = 1
n

∑n
i=1 ∇2

θL(zi, θ̂). Thus Sdelate(z)260

is the amount of change of P (y|x; θ) when the instance z is down-weighted by a small amount ξ.261

Top-memorized Instances: Typical or Atypical? Since the SST-2 dataset provides the annotations262

of phrase-level sentiment polarity labels, we adopt SST-2 to analyze the memorization by judging the263

atypical of an instance by checking the percentage of positive phrases. We collect such statistics from264

SST-2 and find that a typical positive instance has a relatively high percentage of positive phrases,265

and a typical negative instance should have a relatively low percentage of positive phrases. Based266

on the above observation, we apply the memorization score defined in Eq. 8 to select Top-10% and267
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Bottom-10% memorized instances from the trainset and collect the average percentage of positive268

phrases in these instances.269

Table 3: The upper part shows the average
percentage of positive phrases over different
memory groups of positive/negative instances.
The lower part denotes the mean values of
memorization score on the SST-2 dataset.

Mem Group Negative Postive

FT LM-BFF OURS FT LM-BFF OURS

Top-10% 34.29 32.78 30.23 68.75 69.71 75.67
ALL 23.40 86.39
Bottom-10% 17.63 16.25 14.42 95.92 95.08 94.53

FT LM-BFF OURS

MEM SCORE 4.597 0.121 0.032

As shown in Table 3,we can conclude following find-270

ings: (1) The PLM tends to give atypical samples271

deeper memory attention. Specifically, no matter272

LM-BFF or our method, the top-10% memorized273

negative instances have a higher percentage of pos-274

itive phrases than the average percentage of posi-275

tive phrases of all negative instances. 2) LM-BFF276

has lower memorization scores on hard samples than277

fine-tuning. We think it owns to prompt learning278

can help PLMs recall what they learned from pre-279

training without strengthening memory for down-280

stream data. 3) RETROPROMPT further has lower281

average memorization scores than fine-tuning and282

LM-BFF, which illustrates that our method is less memory dependent. This result may be attributed283

to decoupling knowledge from memorization through retrieval to alleviating the rote of PLMs.284

Table 4: Detailed ablation experiments in
few-shot settings. “N-demo” donates the neu-
ral demonstration, and “refresh” refers to the
asynchronous refresh of the knowledge-tore.

Model 16-shot
SST-2 CR MNLI QQP TACRED

OURS 93.9 91.9 71.1 74.0 40.7
w/o kNN-test 93.2 91.2 70.4 73.0 38.2
w/o kNN-train 92.0 91.2 68.8 71.3 36.5
w/o N-demo 92.4 90.8 69.1 72.0 37.6
w/o refresh 93.5 91.5 70.7 73.6 39.9

Case Analysis. As shown in Table 6, we manu-285

ally list the top-ranked and bottom-ranked training286

instances of SST-2 according to our model. It re-287

veals that the top-ranked memorized instances seem288

to show universal opinions indirectly. Thus, we in-289

spect them as atypical/hard for sentiment classifica-290

tion. While those instances with 0 memorization291

scores are straightforward to show their opinion for292

sentiment classification, representing the typical in-293

stance. Note that F (pkNN ) is defined to represent294

the difficulty of the sample discriminated by kNN dis-295

tribution. And the Table 6 also shows that F (pkNN )296

indeed reflect atypicality of examples, which validate the effectiveness of the kNN guided training.297

4.6 Ablation Study298

Component Ablation. As shown in Table 4, the performance of component ablation experiments299

with four variants has a clear drop, which proves the effectiveness of our retrieval component. We300

also find that neural demonstration and kNN-train have more improvement in the few-shot setting301

than kNN-test. Note that kNN-test is similar to kNN-LM [23, 14] and the results reveals that simply302

incorporate kNN in the test process of prompt learning has little influence in a few-shot setting.303

Table 5: Performance on 16-shot CR
and TACRED with different represen-
tations of key and calculate function
of kNN distribution.

Key Repres. kNN Acq. CR TAC.

Prompt Rep-similar 91.9 40.7
[CLS] Rep-similar 89.0 37.2
Prompt BM25 89.5 38.8
[CLS] BM25 88.7 36.1

Key Representation and kNN Acquisition. We study304

the effect of using different representations of the key in the305

knowledge-store. We experiment with two types of repre-306

sentations: (1) prompt-based representation, which is the307

default setting, and (2) [CLS] based representation of current308

LM. We also experiment with two types of calculation of309

kNN distribution: (1) representation based similarity score310

(refer as rep-similar), which is the default setting, and (2)311

BM25 based score , which calculates the correlation score312

between the query and each key examples with BM25 [45]313

algorithm. Results in Table 5 show that using prompt-based representations for key and representation314

based similarity scores for kNN leads to the best performance. It suggests that prompt learn better315

representations for context similarity and the representation similarity based kNN distribution is316

better than BM25 based scores.317
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Table 6: Case examples of Top-3 and Bottom-3 memorized instance of ours from trainset of SST-2.

Negative Positive
Content Mem F (pkNN) Content Mem F (pkNN)

Although god is great addressed interesting
matters of identity and heritage, it’s hard to
shake the feeling that it was intend to be a
different kind of film.

0.066 1.17 A b-movie you can sit through, enjoy on a
certain level and then forget. 0.020 0.18

A standard police-oriented drama that, were
it not for deniro’s participation, would have
likely wound up a tnt original.

0.011 1.48

A film that will be best appreciated by those
willing to endure its extremely languorous
rhythms, waiting for happiness is ultimately
thoughtful without having much dramatic
impact.

0.010 0.43

A hit and miss affair, consistently amusing
but not as outrageous or funny as cho may
have intended or as imaginative as one might
have hoped.

0.010 2.74 What’s invigorating about is that it doesn’t
give a damn. 0.003 0.06

It’s a loathsome movie, it really is and it
makes absolutely no sense. 0.00 0.00

A fun family movie that’s suitable for all
ages– a movie that will make you laugh, cry
and realize, ‘it’s never too late to believe in
your dreams.’

0.00 0.00

It is that rare combination of bad writing,
bad direction and bad acting – the trifecta of
badness.

0.00 0.00 It’s a cool event for the whole family. 0.00 0.00

This thing is virtually unwatchable. 0.00 0.00 Good fun, good action, good acting, good
dialogue, good pace, good cinematography. 0.00 0.00

5 Related Work318

Retrieval-enhanced PLMs. Our pipeline is partly inspired by discrete demonstration methods319

such as [11, 32, 46, 25, 26] that retrieves few training examples in a natural language prompt, while320

we propose neural demonstration for enhancing the input to alleviate the limitations of input length.321

Another line researches of retrieval augmentation [12, 20, 29] retrieve useful information from a322

external knowledge corpus (e.g., Wikipedia) for a particular task (e.g., an open-domain question).323

Unlike these works, we focus on retrieving examples from the internal training data. Besides, semi-324

parametric methods [23, 14, 22, 21, 1, 39] have risen to leverage k-nearest neighbor classifier that325

makes the prediction based on representation similarities, to enhance pre-trained language models.326

However, unlike these models using nearest neighbors only for augmenting the process of prediction,327

we aim to develop a comprehensive retrieval mechanism for input, training and test process.328

Prompt learning for PLMs. With the birth of GPT-3 [3], prompt learning [33] has recently329

arisen to fill the gap between masked LM objective of PLMs and downstream fine-tuning objective.330

Prompt learning has achieves very impressive performance on various tasks [48, 49, 4, 37, 13, 5],331

especially under the setting of few-shot learning. Moreover, continuous prompts have also been332

proposed [30, 27, 34] to reduce prompt engineering, which directly appends a series of learnable333

continuous embeddings as prompts into the input sequence. Our work is orthogonal to previous334

prompt learning approaches, which aim to optimize prompts, while we focus on the systematic study335

of retrieving related examples from training data to enhance prompt learning.336

6 Conclusion and Future Work337

We propose RETROPROMPT that decouples knowledge from memorization by introducing retrieval338

augmentation to further improve the generalization ability of prompt learning on the input side and339

the whole process of model training and prediction. RETROPROMPT, is a straightforward yet effective340

retrieval method that combines both neural demonstrations, kNN guider for training and prediction.341

Our extensive results show that it outperforms other demonstration-enhanced prompt methods and342

knowledge-enhanced prompt methods in few-shot, zero-shot and fully-supervised settings. Analyzing343

the essence of memorization validates the effectiveness of decoupling knowledge from memorization.344

Interesting future directions include: 1) apply to other tasks, such as QA and NLG, 2) explore the345

noise data mining for unsupervised learning, 3) further improve the retrieve efficiency for large346

datasets, etc.347
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source code and data in our supplemental material submission, and we outline the data560

generation procedure, the evaluation protocol, the training regime, and everything else561

necessary for reproduction either in the main body of the paper or in the appendix.562

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they563

were chosen)? [Yes] See Subsection 4.2 and Appendix.564

(c) Did you report error bars (e.g., with respect to the random seed after running experi-565

ments multiple times)? [Yes] We list the standard deviation for few-shot setting.566

(d) Did you include the total amount of compute and the type of resources used (e.g., type567

of GPUs, internal cluster, or cloud provider)? [Yes] We introduce type of resources in568

Section 4.2.569

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...570

(a) If your work uses existing assets, did you cite the creators? [Yes]571

(b) Did you mention the license of the assets? [No] The code and the data are proprietary.572

(c) Did you include any new assets either in the supplemental material or as a URL? [No]573

(d) Did you discuss whether and how consent was obtained from people whose data you’re574

using/curating? [No] The code and the data are proprietary.575

(e) Did you discuss whether the data you are using/curating contains personally identifiable576

information or offensive content? [No]577
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5. If you used crowdsourcing or conducted research with human subjects...578

(a) Did you include the full text of instructions given to participants and screenshots, if579

applicable? [N/A]580

(b) Did you describe any potential participant risks, with links to Institutional Review581

Board (IRB) approvals, if applicable? [N/A]582

(c) Did you include the estimated hourly wage paid to participants and the total amount583

spent on participant compensation? [N/A]584
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