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ABSTRACT

The nonconvex formulation of matrix completion problem has received significant
attention in recent years due to its affordable complexity compared to the convex
formulation. Gradient descent (GD) is the simplest yet efficient baseline algo-
rithm for solving nonconvex optimization problems. The success of GD has been
witnessed in many different problems in both theory and practice when it is com-
bined with random initialization. However, previous works on matrix completion
require either careful initialization or regularizer to prove the convergence of GD.
In this work, we study the rank-1 symmetric matrix completion and prove that GD
converges to the ground truth when small random initialization is used. We show
that in logarithmic amount of iterations, the trajectory enters the region where lo-
cal convergence occurs. We provide an upper bound on the initialization size that
is sufficient to guarantee the convergence and show that a larger initialization can
be used as more samples are available. We observe that implicit regularization
effect of GD plays a critical role in the analysis, and for the entire trajectory, it
prevents each entry from becoming much larger than the others.

1 INTRODUCTION

Recovering a low-rank matrix from a number of linear measurements lies at the heart of many
statistical learning problems. Depending on the structure of the matrix and linear measurements, it
reduces to various problems such as phase retrieval (Chen et al., 2019), blind deconvolution (Ahmed
et al., 2014), and matrix sensing (Tu et al., 2016). Matrix completion (Candès & Recht, 2009) is also
one such type of problems where each measurement provides one entry of the matrix, and the goal
is to recover the low-rank matrix from a partial, usually very sparse, observation of the entries. One
of the most notable applications of matrix completion is collaborative filtering (F. Gleich & Lim,
2011), which aims to predict preferences of users to items based on a highly incomplete observation
of user-item ratings. There are also a number of different applications such as principal component
analysis (Candès et al., 2011), image reconstruction (Hu et al., 2019), to just name a few.

Extensive amount of work has been dedicated to provide an efficient recovery algorithm for matrix
completion with theoretical guarantees. The convex relaxation based nuclear norm minimization
(Candès & Recht, 2009; Candès & Tao, 2010) was the first algorithm proved to recover the ma-
trix with near optimal sample complexity. Despite its theoretical success, the convex algorithm
was found hard to be used in practical scenarios due to its unaffordable computational complexity
and memory size. Hence, the nonconvex formulation of matrix completion with quadratic loss has
received significant attention in recent years. Many different algorithms were proposed for the non-
convex problem, and their convergence toward the ground truth was analyzed. Examples include
optimization on Grassmann manifolds (Keshavan et al., 2010), alternating minimization (Jain et al.,
2013), projected gradient descent (Chen & Wainwright, 2015), gradient descent with regularizer
(Sun & Luo, 2016), and (vanilla) gradient descent (Ma et al., 2020; Chen et al., 2020).

Gradient descent (GD) has served as a baseline algorithm for solving nonconvex optimization. How-
ever, the convergence of GD to global minimizers is not guaranteed, and it can take exponential time
to escape saddle points (Du et al., 2017). Nevertheless, GD with random initialization was shown to
recover the global minimum successfully in many different problems such as phase retrieval (Chen
et al., 2019), matrix sensing (Li et al., 2018), matrix factorization (Ye & Du, 2021), and training
of neural networks (Du et al., 2019). Previous works on matrix completion (Ma et al., 2020; Chen
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et al., 2020) proved the convergence of GD under the spectral initialization that locates the initial
point in the local region of the minima. However, the role of random initialization when solving
matrix completion with GD is not fully understood yet, although its success is observed in practice.
Hence, we aim to answer the following question:

Can GD with random initialization solve the nonconvex matrix completion problem?

We answer this question with affirmative showing that GD with small random initialization con-
verges to the ground truth successfully for rank-1 symmetric matrix completion. In the analysis, we
use vanilla GD that does not modify GD in any way such as regularizer or truncation does. We also
characterize the entire trajectory that GD follows by showing that the trajectory is well approximated
by the fully observed case. The small initialization plays a critical role in analyzing the trajectory
of early stages, where the randomly initialized vector is almost orthogonal to the first eigenvector
of ground truth matrix. We provide a bound on the required initialization size for the algorithm to
converge, and our bound suggests that one can use a larger initialization to improve the convergence
speed as more samples are provided. However, in any case, GD with small random initialization
takes only logarithmic amount of time to reach the point where local convergence can start. To
the best of our knowledge, this is the first result on matrix completion that proves the convergence
of vanilla GD without any carefully designed initialization. Although our result is restricted to the
rank-1 case, we believe that this work provides an important evidence toward understanding more
general rank-r case.

Related Works This work is motivated by the recent success of small initialization in matrix
factorization and matrix sensing. It was first conjectured in Gunasekar et al. (2017) that small
enough step sizes and initialization lead GD to converge to the minimum nuclear norm solution
of a full-dimensional matrix sensing problem. The conjecture was proved in Li et al. (2018) for
the fully overparameterized matrix sensing under the standard restricted isometry property (RIP).
A recent study of Stöger & Soltanolkotabi (2021) provided more general results by showing that
the early iterations of GD with small initialization has spectral bias. Many other works such as
Arora et al. (2019); Razin & Cohen (2020); Li et al. (2021) also studied how GD or gradient flow
with small initialization implicitly force the recovered matrix to become low-rank. However, the
recovery guarantee for matrix completion was not provided by any work.

For the matrix sensing where RIP holds, the loss function has benign geometry globally that it does
not contain any spurious local minima or non-strict saddle points (Bhojanapalli et al., 2016). In case
of matrix completion, a similar result was obtained but with a regularizer that penalizes the matrices
with large row (Ge et al., 2016). Controlling the norm of each row (absolute value of each entry in
case of rank-1) is the biggest hurdle in the analysis of matrix completion. In the local convergence
analysis of Ma et al. (2020), it was proved that gradient descent implicitly regularizes the largest `2-
norm of the rows of error matrices, showing that explicit regularization is unnecessary. In this work,
we also prove that such an implicit regularization is induced by GD if it starts from a point with
small size. We show that the trajectory is close to the fully observed case in both `2 and `∞-norm.
Hence, the trajectory is confined to the region where it has benign geometry, and GD can converge
without any explicit regularizer.

Notations We denote vectors with a lowercase bold letter and matrices with an uppercase bold
letter. The components or entries of them are written without bold. For any vector x, its `2 and `∞-
norm are denoted by ‖x‖2 and ‖x‖∞, respectively. Also, for a vector u? that will be defined later,
we denote the component of x that is orthogonal to u? as x⊥, i.e. x⊥ = x−u?u?>x. Asymptotic
dependencies are denoted with the standard big O notations or with the symbols, ., � and &.

2 PROBLEM FORMULATION

The matrix completion problem aims to reconstruct a low-rank matrix from partially observed en-
tries. In this work, we focus on the case where the ground truth matrix, denoted by M? ∈ Rn×n,
is a rank-1 positive semidefinite matrix. Hence, the ground truth matrix is decomposed as M? =
λ?u?u?> with λ? > 0 and ‖u?‖2 = 1. We define x? =

√
λ?u? so that M? = x?x?>. We further

add the standard incoherence assumption, ‖u?‖∞ =
√

µ
n for some constant µ > 0. We consider a
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noiseless random sampling model that is also symmetric as M?. Each entry in the diagonal and up-
per (or lower) triangular part of M? is revealed independently with probability 0 < p ≤ 1. Formally,
we get as an observation of the matrix M◦ whose (i, j)th entry is 1

pδijM
?
ij , where [δij ]1≤i≤j≤n are

independent Bernoulli random variables with probability p and δji = δij . We denote the set of
observed entries as Ω = {(i, j) | δij = 1}, and we define an operator PΩ on matrices that makes
the entries not contained in Ω zero. (e.g. M◦ = 1

pPΩ(M?))

To recover the matrix, we find x ∈ Rn that minimizes the following nonconvex loss function that is
the sum of squared differences on observed entries.

f(x) :=
1

4p

∑
(i,j)∈Ω

(xixj − x?i x?j )2 (1)

We apply vanilla GD to solve the optimization problem starting from a small randomly initial-
ized vector x(0). Each entry of x(0) is sampled independently from the Gaussian distribution
N
(
0, 1

nβ
2
0

)
. The norm of x(0) is expected to be β0. The update rule of GD is written as

x(t+1) = x(t) − η∇f
(
x(t)

)
= x(t) − η

p
PΩ

(
x(t)x(t)>

)
x(t) + ηM◦x(t), (2)

where η > 0 is a constant step size.

We define F to be the loss function f when all entries of M? are observed, i.e.

F (x) :=
1

4

∥∥xx> −M?
∥∥2

F
.

Also, we define x̃(t) as the trajectory of GD when it is applied to F with the same initial point x(0).
x̃(t) is a trajectory of the fully observed case. To be specific, it evolves with

x̃(t+1) = x̃(t) − η∇F (x̃(t)) = x̃(t) − η
∥∥∥x̃(t)

∥∥∥2

2
x̃(t) + ηM?x̃(t), x̃(0) = x(0). (3)

We lastly introduce the so-called leave-one-out sequences. They were major ingredient when con-
trolling the `∞-norm in Ma et al. (2020). We also use them for similar purpose. For each l ∈ [n],
let us define an operator P(l)

Ω such that P(l)
Ω (X) is equal to X on the lth row/column and equal to

1
pPΩ(X) otherwise. The lth leave-one-out sequence, x(t,l), evolves with

x(t+1,l) = x(t,l) − ηP(l)
Ω

(
x(t,l)x(t,l)>

)
x(t,l) + ηM (l)x(t,l), x(0,l) = x(0), (4)

where M (l) = P(l)
Ω (M?).

3 MAIN RESULTS

In this section, we present our main results. The first main result is about the global convergence of
GD with small random initialization.
Theorem 1. Let the initial point x(0) ∈ Rn be sampled from the Gaussian distributionN (0, 1

nβ
2
0I)

and x(t) be updated with (2). Suppose that a sufficiently small step size with ηλ? < 0.1 is used and
the sample complexity satisfies n2p & µ2n log22 n. Then, there exists T ? = (1 + o(1)) 1

ηλ? log
√
n
β0

such that

min
{∥∥∥x(t) − x?

∥∥∥
2
,
∥∥∥x(t) + x?

∥∥∥
2

}
. µ

1√
log n

‖x?‖2, (5)

min
{∥∥∥x(t) − x?

∥∥∥
∞
,
∥∥∥x(t) + x?

∥∥∥
∞

}
. µ

1√
log n

‖x?‖∞, (6)

max
1≤l≤n

∥∥∥x(t) − x(t,l)
∥∥∥

2
. µ

1√
log n

‖x?‖∞, (7)

max
1≤l≤n

∣∣∣(x(t,l) − x?)l

∣∣∣ . µ
1√

log n
‖x?‖∞ (8)
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hold at t = T ? with probability at least 1− o(1) if a sufficiently small initialization with

n−C . β0 .
√
λ? 4

√
np

log24 n

1
4
√
n

(9)

is used, where C > 0 is a large constant.

We did not do our best to optimize the log factors, and most of them can be reduced with more
delicate analysis. Several remarks on Theorem 1 are in order.

Global Convergence Theorem 1 proves that the trajectory of gradient descent eventually enters
the local region of global minimizers±x? in the sense of both `2 and `∞-norm starting from a small
random initialization. Combined with the result of Ma et al. (2020), GD starts to converge linearly
to either x? or −x? after t = T ?, completing the proof for global convergence.

Leave-one-out Sequence In order to apply the local convergence result of Ma et al. (2020), in
addition to (5) and (6), the existence of leave-one-out sequences {x(t,l)}l∈[n] that satisfy (7) and (8)
is necessary. Leave-one-out sequences also play critical role and appear naturally in the proof of
Theorem 1.

Step Size We can assume that λ? does not scale with n because a proper scaling on M? would
achieve it. Then, according to the condition ηλ? < 0.1, a vanishingly small step size is unnecessary
for the convergence of GD, but a small, constant-sized step size is sufficient.

Sample Complexity The required sample complexity for Theorem 1 to hold is optimal up to
logarithmic factor compared to the statistical lower bound of Ω(n log n).

Convergence Time Considering that β−1
0 is at most polynomial in n, only O(log n) iterations are

required for GD to enter the local region. It requiresO(log( 1
ε )) more iterations to achieve ε-accuracy

in the local region, and thus, the overall iteration complexity is given by O(log n) +O(log( 1
ε )).

Initialization Size Although small initialization allows us to prove the global convergence of GD,
a larger initialization is preferred because the convergence time, T ?, is inversely proportional to β0.
When the sample complexity is optimal, i.e. n2p � npoly(log n), a bound on the initialization
size provided by Theorem 1 reads n−

1
4 ignoring the log factors. However, as more samples are

provided, we are allowed to use larger initialization to reduce the convergence time. When the
sample complexity satisfies n2p � n1+a, the bound reads n−

1
4 (1−a) ignoring the log factors. The

bound becomes near constant as a approaches 1, namely the fully observed case, and this agrees
with the previous result that small initialization is unnecessary for the fully observed case (Ye & Du,
2021).

The next main result is about the trajectory of GD before it enters the local region. The theorem
states that for all t ≤ T ?, x(t) stays close to the fully observed case x̃(t) in both `2 and `∞-norm.
Theorem 2. Suppose that the conditions of Theorem 1 hold and T ? be defined as in Theorem 1.
Then, for all t ≤ T ?, we have ∥∥∥x(t) − x̃(t)

∥∥∥
2
.

1√
log n

∥∥∥x̃(t)
∥∥∥

2
(10)∥∥∥x(t) − x̃(t)

∥∥∥
∞

.
1√

log n

∥∥∥x̃(t)
∥∥∥
∞

(11)

with probability at least 1− o(1).

Trajectory of GD The sequence x̃(t) is a linear combination of x(0) and u?, and it is easy to
analyze how x̃(t) evolves. By showing that x(t) stays close to x̃(t) for all iterations, we not only
show the convergence of GD with small initialization as in Theorem 1 but also characterize the exact
trajectory that GD follows by Theorem 2.

Implicit Regularization One can prove that x̃(t) is incoherent up to logarithmic factor throughout
the whole iterations, and from (10) and (11), incoherence of x(t) is bounded by that of x̃(t). Hence,
Theorem 2 shows that the incoherence of x(t) is implicitly controlled by GD without any regularizer.
This is an improvement over the previous result on global convergence of GD for matrix completion
(Ge et al., 2016), where explicit regularizer was employed to control `∞-norm of x(t), although
small initialization was not used in that work.
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Figure 1: (left) Evolution of the quantities α̃t, β̃t, γ̃t simulated with α̃0 = 1√
n
β0, β0 = 1

n , λ? = 1,

and n = 1000. (right) Trajectory of x̃(t). It starts from a point that is close to the origin due to
small initialization. It finds the direction u? while rotating around the origin, and once it finds the
direction, it keeps the direction and gets expanded.

4 FULLY OBSERVED CASE AND PROOF SKETCH

Before we explain about the proof of Theorems 1 and 2, we describe the trajectory of fully observed
case. We characterize x̃(t) with three variables: α̃t =

∣∣u?>x̃(t)
∣∣, β̃t = ‖x̃(t)‖2, γ̃t = ‖x̃(t)

⊥ ‖2.
According to (3), the three variables evolve with

α̃t+1 = (1− ηβ̃2
t + ηλ?)α̃t, γ̃t+1 = (1− ηβ̃2

t )γ̃t, β̃2
t = α̃2

t + γ̃2
t .

At t = 0, due to random initialization, the initial vector is almost orthogonal to u?, and we have
α̃0 ≈ 1√

n
β0 and γ̃0 ≈ β̃0 = β0. Also, due to small initialization, the term ηβ̃2

t is ignorable until

β̃t becomes sufficiently large, so α̃t increases exponentially with the rate 1 + ηλ? while γ̃t stays
still. Hence, at the early iterations where (1 + ηλ?)t is still much less than

√
n, β̃t is kept to its

initial value β0, while the trajectory becomes more parallel to u? because α̃t increases. When
(1 + ηλ?)t gets much larger than

√
n, the trajectory becomes almost parallel to u? in that β̃t ≈

α̃t � γ̃t. Until β̃t reaches 1
logn , we can consider α̃t as increasing in a rate (1 + ηλ?), and it takes

about 1
log(1+ηλ?) log

√
n
β0

steps to reach this point. After this, we can no longer ignore β̃2
t , and α̃t

increases with slower rate as β̃t increases, but we can show that β̃2
t becomes sufficiently close to λ?

within log log n iterations. Finally, local convergence to u? occurs in that α̃t approaches λ? and γ̃t
decreases exponentially with the rate (1− ηλ?). We plotted the actual behavior of quantities α̃t, β̃t,
γ̃t on the left side of Fig. 1.

We define the iterates before α̃t reaches 1√
npβ0 as Phase I, and the next iterates before β̃2

t reaches

λ?
(

1− 1
logn

)
as Phase II. We analyze the trajectory of x(t) in each phase separately. In Phase I, we

take advantage of the small random initialization to show that the deviation of x(t) from x̃(t) does
not increase much and is kept to

√
1
np times the norms of x(t). In Phase II, we show that x(t)− x̃(t)

expands at a constant rate (1 + ηλ?). The next two sections give main lemmas that will be used to
prove Theorems 1 and 2.

5 PHASE I: FINDING DIRECTION

We provide detailed results and proof ideas for Phase I in this section. Our main goal is to analyze
the deviation of x(t) from x̃(t). First, if we look at the update equations (2) and (3), the second
term is proportional to the third power of

∥∥x(t)
∥∥

2
, while the other terms linearly depend on

∥∥x(t)
∥∥

2
.
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Hence, the second term becomes almost ignorable due to small initialization. Without the second
terms, the difference between x(t) and x̃(t) at t = 1 is η(M◦ −M?)x(0). From concentration
inequalities, one can show that the `2 and `∞-norms of x(1) − x̃(1) are bounded by∥∥∥η(M◦ −M?)x(0)

∥∥∥
2
. µ

√
log n

np
β0 and

∥∥∥η(M◦ −M?)x(0)
∥∥∥
∞

.

√
µ log2 n

np

β0√
n
,

respectively. Thus, the norms of x(t)− x̃(t) are about 1√
np times smaller than those of x̃(t) at t = 1.

Due to the third terms of (2) and (3), the norms of x(t) − x̃(t) can increase exponentially at a rate
(1+ηλ?) in the worst case where x(t)− x̃(t) is parallel to u?. In such case, the norms of x(t)− x̃(t)

would be larger than those of x̃(t) at the end of Phase I because those of x̃(t) remain still in Phase I.
However, we overcome this issue by proving that the bounds increase at most polynomially with
respect to t, and because t is at most O(log n), the bounds remain 1√

np times smaller than the norms

of x̃(t) throughout Phase I.

Lemma 3. Let T1 be the largest t such that (1 + ηλ?)t ≤
√

log21 n
np

√
n. Suppose that the conditions

of Theorem 1 hold. Then, for all t ≤ T1, we have∥∥∥x(t) − x̃(t)
∥∥∥

2
. µ

√
log n

np
β0t, (12)

∥∥∥x(t) − x̃(t)
∥∥∥
∞

.

√
µ3 log2 n

np

β0√
n
t2 (13)

with probability at least 1− o(1).

T1 is defined to be the end of Phase I. Lemma 3 proves Theorem 2 for Phase I.

5.1 PROOF OF (12)

We first demonstrate how to obtain the `2-norm bound of Lemma 3. Let us define a sequence x̂(t)

that is updated with

x̂(t+1) = x̂(t) − η
∥∥∥x̃(t)

∥∥∥2

2
x̂(t) + ηM◦x̂(t), x̂(0) = x(0). (14)

Note that the norm of x̃(t) is used in the second term of (14). The update equation of x̂(t) differs on
the third term compared to x̃(t) and on the second term compared to x(t). We use x̂(t) as a proxy for
bounding

∥∥x(t) − x̃(t)
∥∥

2
. We first show that

∥∥x̂(t) − x̃(t)
∥∥

2
increases at most linearly with respect

to t.
Lemma 4. For all t ≤ T1, we have∥∥∥x̂(t) − x̃(t)

∥∥∥
2
. µ

√
log n

np
β0t (15)

with probability at least 1− o(1) if n2p & µ2n log8 n and ηλ? < 0.1.

The proof of this lemma is based on the fact that x̂(t) is a product between x(0) and a matrix
polynomial of I , M◦, while x̃(t) is a product between x(0) and a matrix polynomial of I , M?.
We prove the lemma by comparing the two matrix polynomials. We remark that Lemma 4 holds
regardless of the small initialization, but it relies on the randomness of x(0).

Because x(t) and x̂(t) differ only on the second term, their initial difference is proportional to β3
0 .

More precisely, it is 1√
npβ

3
0 . We show that the difference increases exponentially at a rate (1+ηλ?).

Lemma 5. If (13) holds for all t ≤ T1, we have∥∥∥x(t) − x̂(t)
∥∥∥

2
.

√
log6 n

np
(1 + ηλ?)tβ3

0 (16)

for all t ≤ T1 with probability at least 1− o(1).
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Due to the small initialization, one can prove that
∥∥x(t) − x̂(t)

∥∥
2

is ignorable compared to∥∥x̂(t) − x̃(t)
∥∥

2
in Phase I, and (12) is proved by (15). Note that the bound on β0, (9), in Theo-

rem 1, is obtained from here.

5.2 PROOF OF (13)

We control the lth component of x(t) − x̃(t) with the help of lth leave-one-out sequence. The
leave-one-out sequences have two important properties. First, because they are defined without only
one row/column, they are extremely close to x(t), and at t = 1,

∥∥x(t) − x(t,l)
∥∥

2
is about 1√

np
1√
n

.

Second, the lth component of the lth leave-one-out sequence evolves similar to that of x̃(t), and it is
easy to analyze. With these two properties, we bound the lth component of x(t) − x̃(t) as∣∣∣(x(t) − x̃(t)

)
l

∣∣∣ ≤ ∥∥∥x(t) − x(t,l)
∥∥∥

2
+
∣∣∣(x(t,l) − x̃(t)

)
l

∣∣∣. (17)

We claim that both
∥∥x(t) − x(t,l)

∥∥
2

and
∣∣(x(t,l) − x̃(t)

)
l

∣∣ increase at most polynomially with re-
spect to t from the initial scale 1√

np
β0√
n

.

Lemma 6. For all t ≤ T1, we have∥∥∥x(t) − x(t,l)
∥∥∥

2
. µ

√
log n

np

β0√
n
t (18)

∣∣∣(x(t,l) − x̃(t)
)
l

∣∣∣ .
√
µ3 log2 n

np

β0√
n
t2, (19)

with probability at least 1− o(1).

As explained for x(t) − x̃(t), due to the third terms of (2) and (14), x(t) − x(t,l) can also increase
exponentially with the rate (1 + ηλ?) in the worst case where x(t) − x(t,l) is parallel to u?. This is
contrary to our result (18) that

∥∥x(t) − x(t,l)
∥∥

2
increases only linearly. We show that x(t) − x(t,l)

is maintained almost orthogonal to u? in Phase I, and thus the worst case does not happen.

Lemma 7. For all l ∈ [n] and t ≤ T1, we have

∣∣∣u(l)>(x(t) − x(t,l))
∣∣∣ . µ

√
log2 n

np

β0

n
(1 + ηλ?)t

with probability at least 1− o(1), where u(l) is the first eigenvector of M (l).

Note that u(l) is almost parallel to u?. The u(l) component of x(t)−x(t,l) is initialized at the order
1√
np

β0

n , which is 1√
n

times smaller than
∥∥x(t) − x(t,l)

∥∥
2
. Although it is increased exponentially,

from the definition of T1, the u(l) component is maintained much smaller than
∥∥x(t) − x(t,l)

∥∥
2

in
Phase I.

One can show that
∣∣(x(t,l) − x̃(t)

)
l

∣∣ increases by
∥∥x(t) − x̃(t)

∥∥
2
‖u?‖∞ in each step, and summa-

tion of the bound (12) gives (19). Finally, (13) is obtained by putting (18) and (19) into (17).

6 PHASE II: EXPANSION

In the next phase, we show that the bounds obtained in Phase I are increased at a rate (1 + ηλ?).

Lemma 8. Let T2 be the largest t such that β̃2
t ≤ λ?

(
1− 1

logn

)
. Then, for all T1 < t ≤ T2, we

have ∥∥∥x(t) − x̃(t)
∥∥∥

2
. µ

√
log3 n

np
β0(1 + ηλ?)t−T1 , (20)

7
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∥∥∥x(t) − x̃(t)
∥∥∥
∞

.

√
µ3 log6 n

np

β0√
n

(1 + ηλ?)t−T1 , (21)

∥∥∥x(t) − x(t,l)
∥∥∥

2
. µ

√
log4 n

np

β0√
n

(1 + ηλ?)t−T1 , (22)

∣∣∣(x(t,l) − x̃(t)
)
l

∣∣∣ .
√
µ3 log6 n

np

β0√
n

(1 + ηλ?)t−T1 , (23)

with probability at least 1− o(1).

T2 is defined to be the end of Phase II. We explain how Lemma 8 leads to Theorem 2 in Phase II.
We first focus on (20) and (10). We can divide Phase II into three parts according to the behavior
of
∥∥x̃(t)

∥∥
2
. First,

∥∥x̃(t)
∥∥

2
is maintained to β0 until (1 + ηλ?)t becomes

√
n, or (1 + ηλ?)t−T1

becomes
√
np. In this part, although the bounds increase exponentially with the rate (1 + ηλ?),

1√
np factor that was already present in (12) of Phase I compensates this increment. At the end of

the first part,
∥∥x(t) − x̃(t)

∥∥
2

is smaller than
∥∥x̃(t)

∥∥
2

by some log factors. Next,
∥∥x̃(t)

∥∥
2

increases
with the rate (1 + ηλ?) until it reaches 1

logn . Because both
∥∥x(t) − x̃(t)

∥∥
2

and
∥∥x̃(t)

∥∥
2

increase
with (1 + ηλ?), the ratio between them is maintained in the second part. Lastly, in the remaining
iterations,

∥∥x̃(t)
∥∥

2
increases with (1− ηβ̃2

t + ηλ?) at each step, and the increment becomes smaller
as it converges to

√
λ?. Hence, as in the first part,

∥∥x(t) − x̃(t)
∥∥

2
increases faster than

∥∥x̃(t)
∥∥

2
.

However, as explained in Section 4, the length of this part is at most log log n, so the ratio between∥∥x(t) − x̃(t)
∥∥

2
and

∥∥x̃(t)
∥∥

2
increases only by some log factors. We prove that the log factors already

present at the end of the second part compensates this, and finally (10) holds for all t in Phase II.
A similar argument can be used to prove that the bounds for

∥∥x(t) − x̃(t)
∥∥
∞,
∥∥x(t) − x(t,l)

∥∥
2
, and∣∣(x(t,l) − x̃(t))l

∣∣ are less than
∥∥x̃(t)

∥∥
∞ by some log factors throughout Phase II.

At the end of Phase II, x̃(t) is very close to±x? in both `2 and `∞-norms, so one can substitute x̃(t)

of Lemma 8 with ±x? to prove Theorem 1.

7 SIMULATION

In this section, we provide some simulation results that support our theoretical findings.

Trajectory of GD With the dimension n = 5000, we constructed the ground truth vector u? by
sampling it from the Gaussian distribution N (0, 1

nI) and normalized it to have unit norm. We let
λ? = 1 so that the matrix M? is given by u?u?>, and we randomly sampled the matrix symmet-
rically with sampling rate p = 0.1. The initialization size was set to β0 = 1

n and step size of 0.1
was used for GD. Fig. 2 represents one trial of the experiment, but similar graphs were obtained in
every repetition of the experiment. The evolution of some important quantities such as

∥∥x(t)
∥∥

2
and∣∣u?>x(t)

∣∣ are depicted on the left side of Fig. 2. As observed in the fully observed case, the signal
component

∣∣u?>x(0)
∣∣ increases with the rate (1 + ηλ?) until it gets close to

√
λ?, and local con-

vergence to x? occurs, where
∥∥x(t) − x?

∥∥
2

decreases exponentially. On the right side of Fig. 2, we
describe the deviation of x(t) from x̃(t) in both `2 and `∞-norms. The solid lines represent norms of
x(t) and the dotted lines represent those of x(t)− x̃(t). We could observe that there is a gap between
solid and dotted lines throughout whole iterations. Hence, x(t) stays close to the trajectory of fully
observed case as we proved in Theorem 2.

Small Initialization In the next experiment, we assessed the importance of small initialization for
convergence of GD. We constructed the matrix M? as in the first experiment, but with n = 500 this
time. We measured the distance between x(t) and x? at t = 1

log(1+ηλ?) log
√
n
β0

+ 100 and averaged
it over 1000 trials. We repeated the experiment while changing the initialization size from 100 to
10−9 and the sampling probability from 0.01 to 0.04 with step size 0.1. The result is summarized
to Fig. 3. In all sampling probabilities, the small initialization improves the convergence of GD.
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Figure 2: (left) Evolution of the quantities ‖x(t)‖, |u?>x(t)| that behaves similar to α̃t, β̃t, respec-
tively, and ‖x(t) − x?‖2 that shows local convergence. (right) Comparison between the norms of
x(t) and x(t) − x̃(t).
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Figure 3: Convergence of GD with respect to initialization size and sampling probability.

Also, the performance starts to saturate at much larger initialization size as sampling probability
increases, and this agrees with our finding (9) that a larger initialization is possible as more samples
are available.

8 CONCLUSION

In this paper, we showed that for rank-1 symmetric matrix completion, GD can converge to the
ground truth starting from a small random initialization. The result is interesting because the loss
function of matrix completion does not have benign geometry globally if no regularizer is applied.
Our result does not use any explicit regularizer and only rely on the implicit regularizing effect of
GD. We expect that the results provided in this paper shed light on understanding the more general
rank-r case, and we keep this as our future work. It would also be interesting to investigate the
tightness of our bound on initialization size, which reads n−

1
4 when optimal number of samples are

provided.
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Detailed proofs for the results explained in the main text are provided in this supplementary. We
say that an event happens with very high probability if it happens with probability at least 1 − 1

nC

for some large constant C > 0. We say that an event happens with high probability if it happens
with probability at least 1 − o(1). A union of poly(n) number of events that hold with very high
probability still happens with high probability. For a matrix A, we denote the spectral norm with
‖A‖ and maximum absolute value of the entries as ‖A‖∞. Also, the largest `2-norm of rows of A
is denoted as ‖A‖2,∞.

A SPECTRAL ANALYSIS

We introduce some spectral bounds related to the matrices M◦ and M (l).
Lemma 9. If n2p & n log n, we have

‖M◦ −M?‖ . λ?µ

√
log n

np

with high probability.

Lemma 10. If n2p & µn log n, for all l ∈ [n], we have∥∥∥M◦ −M (l)
∥∥∥ . λ?1

√
rµ

np

with high probability.

The following bounds on eigenvectors are the results of Abbe et al. (2020).
Lemma 11. If n2p & µ2n log n, we have

‖u◦ − u?‖2 . µ

√
log n

np
(24)

‖u◦ − u?‖∞ .

√
µ3 log n

np

1√
n

(25)

∥∥∥u◦ − u(l)
∥∥∥

2
. µ

√
log n

np

1√
n

(26)

with high probability.

Next, we state bounds on the eigenvalues of M◦ and M (l). The first eigenvalues of M◦ and M (l)

are denoted as λ◦ and λ(l), respectively. The following lemma is derived from Lemmas 9 and 10
and Weyl’s Theorem.
Lemma 12. If n2p & µ2n log n, we have

|λ◦ − λ?| . λ?µ

√
log n

np
(27)

∣∣∣λ(l) − λ?
∣∣∣ . λ?µ

√
log n

np
(28)

for all l ∈ [n] with high probability.

B INITIALIZATION

We introduce some results related to the initialization vector x(0) in this section. Because x(0) is
sampled from a gaussian distribution, the results in this section are derived from basic properties of
the gaussian distribution.

12
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Lemma 13. The size of x(0) is in the range

β0

(
1− c

√
log n

n

)
≤
∥∥∥x(0)

∥∥∥
2
≤ β0

(
1 + c

√
log n

n

)
with high probability for some constant c > 0. The `∞-norm of x(0) satisfies∥∥∥x(0)

∥∥∥
∞

.
√

log n
β0√
n
.

Lemma 14. For a fixed vector u,

1√
log n

β0√
n
‖u‖2 .

∣∣∣u>x(0)
∣∣∣

holds with high probability and ∣∣∣u>x(0)
∣∣∣ .√log n

β0√
n
‖u‖2

holds with very high probability.

Lemma 14 implies that the u? component of x(0) is in the range

1√
log n

β0√
n
.
∣∣∣u?>x(0)

∣∣∣ .√log n
β0√
n
.

C FULLY OBSERVED CASE

We provide some lemmas related to x̃(t) in this section. We first note that x̃(t) is explicitly written
as

x̃(t) =

t∏
s=1

(1− ηβ̃2
s )x(0) +

t∏
s=1

(1− ηβ̃2
s + ηλ?)(u?>x(0))u?.

Let us define T ′2 as the last t such that β̃2
t ≤ λ?

logn log logn . Then, for all t ≤ T ′2, we have

t∏
s=1

(1− ηβ̃2
s + ηλ?) = (1 + o(1))(1 + ηλ?)t,

t∏
s=1

(1− ηβ̃2
s ) = 1 + o(1)

because
(

1 + 1
logn log logn

)logn

= 1 + o(1). The following lemma provides both upper and lower

bounds for norms of x̃(t).
Lemma 15. For all t, we have

1√
log n

(
1 +

(1 + ηλ?)min{t,T ′2}
√
n

)
β0 .

∥∥∥x̃(t)
∥∥∥

2
.
√

log n

(
1 +

(1 + ηλ?)t√
n

)
β0

1√
log n

(
1 +

(1 + ηλ?)min{t,T ′2}
√
n

)
β0√
n
.
∥∥∥x̃(t)

∥∥∥
∞

.
√
µ log n

(
1 +

(1 + ηλ?)t√
n

)
β0√
n

The lower bounds do not increase after t = T ′2. We have the tighter bounds∥∥∥x̃(t)
∥∥∥

2
� β0,

1√
n
β0 ≤

∥∥∥x̃(t)
∥∥∥
∞

.
√

log n
β0√
n

(29)

in Phase I.

Until T ′2, β̃t increases with the rate (1 + ηλ?), and hence T ′2 � 1
log(1+ηλ?) log

√
n
β0

. How much

iterations will be required for it to reach
√
λ?
√

1− 1
logn after T ′2? The following lemma proves that

O(log log n) iterations are required to reach the end of Phase II after T ′2. Note that αt ≈ βt when
t ≥ T ′2, so both of them evolve with the recursive equation xt+1 = (1− ηx2

t + ηλ?)xt.

13
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Lemma 16. Let xt evolves with the recursive equation

xt+1 = (1− ηx2
t + ηλ?)xt, x2

0 =
λ?

log n log log n
.

Then, at t = 6 log logn
log(1+ηλ?) , we have

xt ≥
√
λ?
√

1− 1

log n
,

and for all t ≤ 6 log logn
log(1+ηλ?) , we have

(1 + ηλ?)tx0

xt
.
√

log11 n.

Proof. For all i ≥ 1, let Ni be the last t such that λ? − x2
t ≥ λ?

ei . Then, we have

λ? − x2
Ni
≥ λ?

ei
> λ? − x2

Ni+1. (30)

Let i ≥ 2. For all Ni−1 < t ≤ Ni,
1 +

ηλ?

ei
≤ xt+1

xt
,

and it implies (
1 +

ηλ?

ei

)Ni−Ni−1−1

xNi−1+1 ≤ xNi .

From the lower and upper bounds provided by (30), we have
√
λ?

√
1− 1

ei−1

(
1 +

ηλ?

ei

)Ni−Ni−1−1

≤
√
λ?

√
1− 1

ei
,(

1 +
ηλ?

ei

)2(Ni−Ni−1−1)

≤ ei − 1

ei
ei−1

ei−1 − 1
=
ei−1 − 1

e

ei−1 − 1
≤ 1 +

1

ei−1
.

Taking log on both sides and using the inequality 1
2x < log(1 + x) < x that holds for 0 < x < 1,

we get

Ni −Ni−1 ≤ 1 +
1

2

log
(
1 + 1

ei−1

)
log
(

1 + ηλ?

ei

) ≤ 1 +
e

ηλ?
.

For t ≤ N1, we have

1 +
ηλ?

e
≤ xt+1

xt
,

and thus
√
λ?

√
1− 1

e
≥ xN1

≥
(

1 +
ηλ?

e

)N1

x0 =

(
1 +

ηλ?

e

)N1

√
λ?

log n log log n
.

Taking log on both sides we get

N1 ≤ 3
log log n

ηλ?

Hence, we have

Nlog logn + 1 ≤
(

1 +
e

ηλ?

)
(log log n− 1) +N1 + 1

≤
(

1 +
e

ηλ?

)
(log log n− 1) + 3

log log n

ηλ?
+ 1

≤ 6 log log n

log(1 + ηλ?)

but at t = Nlog logn + 1, it holds that

x2
t > λ?

(
1− 1

log n

)
.

14
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Hence, we have T2 . 1
log(1+ηλ?) log

√
n
β0

+log log n. At the end of Phase II, x̃(t) is sufficiently close
to x? in the sense that

min
{∥∥∥x̃(t) − x?

∥∥∥
2
,
∥∥∥x̃(t) + x?

∥∥∥
2

}
.

1√
log n

‖x?‖2, (31)

min
{∥∥∥x̃(t) − x?

∥∥∥
∞
,
∥∥∥x̃(t) + x?

∥∥∥
∞

}
.

1√
log n

‖x?‖∞. (32)

D PHASE I

D.1 PROOF OF LEMMA 4

Let us rewrite the update equations (3) and (14) as

x̃(t+1) =
(
I − ηβ̃2

t + ηM?
)
x̃(t),

x̂(t+1) =
(
I − ηβ̃2

t + ηM◦
)
x̂(t),

where β̃t =
∥∥x̃(t)

∥∥2

2
. Then, x̂(t) − x̃(t) is a product between x(0) and P (t)(I,M?,H), which is a

matrix polynomial of I,M?,H , where H = M◦ −M?.

P (t)(I,M?,H) :=

(
t∏

s=1

(
(1− ηβ̃2

s )I + ηM? + ηH
)
−

t∏
s=1

(
(1− ηβ̃2

s )I + ηM?
))

(33)

x̂(t) − x̃(t) = P (t)(I,M?,H)x(0) (34)

We classify the terms that appear after expanding the matrix polynomial P (t)(I,M?,H) into two
types; 1) the terms that contain H but not M?, 2) the terms that contain both H and M?. We
define P (t)

1 (I,H) to be a matrix polynomial of I and H , which is equal to summation of the first
type, and it is explicitly written as

P
(t)
1 (I,H) =

t∏
s=1

(
(1− ηβ̃2

s )I + ηH
)
−

t∏
s=1

(1− ηβ̃2
s )I.

We correspondingly define P (t)
2 (I,M?,H) to be summation of the second type, and it is equal to

P
(t)
2 (I,M?,H) = P (t)(I,M?,H)− P (t)

1 (I,H).

For x, y ∈ R, we define P (t)
1 (x, y) as the value that is obtained by substituting x, y instead of I,H ,

respectively. For example, P (t)
1 (1, 2) =

∏t
s=1(1− ηβ̃2

s + 2η)−
∏t
s=1(1− ηβ̃2

s ). For x, y, z ∈ R,
P

(t)
2 (x, y, z) is defined in a similar manner.

We bound the contribution of each type separately because the triangle inequality gives∥∥∥x̂(t) − x̃(t)
∥∥∥

2
≤
∥∥∥P (t)

1 (I,H)x(0)
∥∥∥

2
+
∥∥∥P (t)

2 (I,M?,H)x(0)
∥∥∥

2
.

Every term in P (t)
1 (I,H) is Hs times a constant. We have

∥∥Hsx(0)
∥∥

2
≤ ‖H‖s

∥∥x(0)
∥∥

2
, and

hence with triangle inequality∥∥∥P (t)
1 (I,H)x(0)

∥∥∥
2
≤ P (t)

1 (1, η‖H‖)β0.

If n2p & µ2n log3 n, we can further bound P (t)
1 (1, ‖H‖) as

P
(t)
1 (1, ‖H‖) =

t∏
s=1

(1− ηβ̃2
s + η‖H‖)−

t∏
s=1

(1− ηβ̃2
s )

=

t∏
s=1

(1− ηβ̃2
s )

(
t∏

s=1

(
1 +

η‖H‖
1− ηβ̃2

s

)
− 1

)
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≤
t∏

s=1

(1− ηβ̃2
s )

((
1 +

η

1− ηλ?
‖H‖

)t
− 1

)

≤
t∏

s=1

(1− ηβ̃2
s )

(
exp

(
η

1− ηλ?
‖H‖t

)
− 1

)

. η‖H‖t
t∏

s=1

(1− ηβ̃2
s )

The fourth and fifth lines are derived from an elementary inequality 1 + x ≤ ex ≤ 1 + 2x, which
holds for small x > 0.

We can decompose every term of second type as a product of η, λ?, u?, Hsu?, u?>Hsx(0),
u?>Hsu?, and u?>x(0). We describe this with some examples.

(ηH)s1(ηM?)(ηH)s2x(0) = ηs1+s2+1λ?(Hs1u?)(u?>Hs2x(0))

(ηH)s(ηM?)x(0) = ηs+1(Hsu?)(u?>x(0))

(ηM?)(ηH)s(ηM?)x(0) = ηs+2λ?2u?(u?>Hu?)(u?>x(0))

(ηM?)(ηH)sx(0) = ηs+1λ?u?(u?>Hsx(0))

The terms Hxu? and u?>Hsu? are bounded with

‖Hsu?‖2 ≤ ‖H‖
s
,
∣∣u?>Hsu?

∣∣ ≤ ‖H‖s. (35)

For the terms that contain x(0), we can apply Lemma 14 because the sampling is independent from
the initialization. We have∣∣∣u?>x(0)

∣∣∣ ≤√ log n

n
β0,

∣∣∣u?>Hsx(0)
∣∣∣ ≤√ log n

n
‖Hsu?‖β0 ≤

√
log n

n
‖H‖sβ0 (36)

for all s ≤ T0 . log n with high probability.

For every term of second type that includes s1 times of ηM? and s2 times of ηH , the bounds (35)
and (36) imply that `2-norm of the term multiplied by x(0) is at most

(ηλ?)s1(η‖H‖)s2
√

log n

n
β0.

Hence, similar to the first type, we have∥∥∥P (t)
2 (I,M?,H)x(0)

∥∥∥
2
≤ P (t)

2 (1, ηλ?, η‖H‖)
√

log n

n
β0.

If n2p & µ2n log3 n, we can further bound P (t)
2 (1, ηλ?, η‖H‖) as

P
(t)
2 (1, ηλ?, η‖H‖) =

t∏
s=1

(1− ηβ2
s + ηλ? + η‖H‖)−

t∏
s=1

(
1− ηβ2

s + ηλ?
)
− P (t)

1 (1, η‖H‖)

≤
t∏

s=1

(1− ηβ2
s + ηλ? + η‖H‖)−

t∏
s=1

(
1− ηβ2

s + ηλ?
)

≤

(
t∏

s=1

(1− ηβ2
s + ηλ?)

)(
t∏

s=1

(
1 +

η

1− ηβ2
s + ηλ?

‖H‖
)
− 1

)

≤

(
t∏

s=1

(1− ηβ2
s + ηλ?)

)(
(1 + η‖H‖)t − 1

)
. η‖H‖t

t∏
s=1

(1− ηβ2
s + ηλ?).
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Combining all, we have∥∥∥x̂(t) − x̃(t)
∥∥∥

2
. η‖H‖t

(
t∏

s=1

(1− ηβ2
s ) +

√
log n

n

t∏
s=1

(1− ηβ2
s + ηλ?)

)
β0

≤ η‖H‖t

(
1 +

√
log n

n
(1 + ηλ?)T0

)
β0

. η‖H‖t

1 +

√
log8 n

np

β0

. ηλ?µ

√
log n

np
β0t

if n2p & µ2n log8 n.

D.2 PROOF OF LEMMAS 5 TO 7

We prove Lemmas 5 to 7 all together in an inductive manner.

Lemma 17. For all t ≤ T1, we have∥∥∥x(t) − x̃(t)
∥∥∥

2
. µ

√
log n

np
β0t, (37)

∥∥∥x(t) − x̃(t)
∥∥∥
∞

.

√
µ3 log2 n

np

β0√
n
t2, (38)

∥∥∥x(t) − x̂(t)
∥∥∥

2
.

√
log3 n

np
(1 + ηλ?)tβ3

0 , (39)

∥∥∥x(t) − x(t,l)
∥∥∥

2
. µ

√
log n

np

β0√
n
t, (40)

∣∣∣u(l)>(x(t) − x(t,l))
∣∣∣ . µ

√
log2 n

np
(1 + ηλ?)t

β0

n
, (41)

∣∣∣(x(t,l) − x̃(t)
)
l

∣∣∣ .
√
µ3 log2 n

np

β0√
n
t2, (42)

with high probability.

Before we start the proof, we introduce some notations. For x ∈ Rn, let us define

‖x‖2,i =

√√√√1

p

n∑
j=1

δijx2
j , Ix =

1

‖x‖22
diag(‖x‖22,1, · · · , ‖x‖

2
2,n).

‖x‖2,i is the `2-norm of x estimated with sampling of the ith row. With this notation, we can write
the gradient of f as

∇f(x) = ‖x‖22Ixx−M◦x.

The function g is defined as

g(x) =
1

4p

∥∥PΩ

(
xx>

)∥∥2

F
,

and its gradient satisfies
∇f(x) = ∇g(x)−M◦x.
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The hessian of g(x) is equal to

∇2g(x) = ‖x‖22Ix +
2

p
PΩ

(
xx>

)
.

The base case t = 0 for induction hypotheses (37) to (42) trivially hold because all three sequences
x(t), x̂(t), x̃(t) start from the same point. Now, we assume that the hypotheses hold up to the tth
iteration and show that they hold at the (t + 1)st iteration. For brevity, we drop the superscript (t)
from x(t), x(t,l), x̂(t), x̃(t) and denote them as x, x(l), x̂, x̃, respectively. Also, recall that T1 is

defined to be the last t such that (1 + ηλ?)t ≤
√

log21 n
np

√
n, and the magnitude of initialization

satisfies β2
0 . λ?

√
np

log24 n
1√
n

so that (1 + ηλ?)tβ2
0 = λ?√

log3 n
.

(39) at (t+ 1) We first decompose x(t+1) − x̂(t+1) as

x(t+1) − x̂(t+1) = (I + ηM◦)(x− x̂)− η‖x‖22Ixx + η‖x̃‖22x̂

=
(
I − η‖x̃‖22I + ηM◦

)
(x− x̂)− η

(
‖x‖22Ix − ‖x̃‖

2
2I
)
x

With the help of Lemma 25, we bound the maximum entry of a diagonal matrix ‖x‖22Ix − ‖x̃‖
2
2I .

max
i∈[n]

∣∣∣‖x‖22,i − ‖x̃‖22∣∣∣ . n‖x− x̃‖∞‖x + x̃‖∞ +

√
log n

p
‖x̃‖2‖x̃‖∞ +

log n

p
‖x̃‖2∞

.

√
log2 n

np
β2

0t
2 +

√
log2 n

np
β2

0 +
log2 n

np
β2

0 .

√
log2 n

np
β2

0(t2 + 1)

Hence, we have∥∥∥x(t+1) − x̂(t+1)
∥∥∥

2
≤
(

1− η‖x̃‖22 + ηλ◦
)
‖x− x̂‖2 + c1

√
log3 n

np
β3

0(t2 + 1)

≤

(
1 + ηλ? + cηλ?

√
log n

np

)
‖x− x̂‖2 + c

√
log3 n

np
β3

0(t2 + 1)

for some universal constant c > 0, where (27) was used in the second line. From an analysis on the
recursive equation

xt+1 =

(
1 + ηλ? + c1ηλ

?

√
log n

np

)
xt + c1

√
log3 n

np
β3

0(t2 + 1), x0 = 0

we can prove that ∥∥∥x(t+1) − x̂(t+1)
∥∥∥

2
≤ 8c1

(ηλ?)3

√
log3 n

np
β3

0(1 + ηλ?)t+1.

(40) at (t+ 1) We decompose x(t+1) − x(t+1,l) as

x(t+1) − x(t+1,l) = (1− η‖x̃‖22)(x− x(l))− 2η x̃x̃>(x− x(l))︸ ︷︷ ︸
1

− η
∫ 1

0

(
∇2g(x(τ))−

(
‖x̃‖22I + 2x̃x̃>

))
(x− x(l))dτ︸ ︷︷ ︸

2

− η
(

1

p
PΩl

(
x(t,l)x(t,l)>

)
− Pl

(
x(t,l)x(t,l)>

))
x(t,l)︸ ︷︷ ︸

3
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+ η λ(l)u(l)u(l)>(x(t) − x(t,l))︸ ︷︷ ︸
4

+η
(
M◦ − λ(l)u(l)u(l)>

)
(x(t) − x(t,l))︸ ︷︷ ︸

5

+η (M◦ −M (l))x(t,l)︸ ︷︷ ︸
6

,

where x(l)(τ) = x(l) + τ(x− x(l)). 1 is easily bounded by

∥∥ 1
∥∥

2
≤ ‖x̃‖22

∥∥∥x− x(l)
∥∥∥

2
. β2

0

∥∥∥x− x(l)
∥∥∥

2
. λ?

√
1

log24 n

√
np

n

∥∥∥x− x(l)
∥∥∥

2
.

From Lemma 27 and (29), for all 0 ≤ τ ≤ 1, we have∥∥∥∇2g(x(l)(τ))−
(
‖x̃‖22I + 2x̃x̃>

)∥∥∥ . n‖x(τ)− x̃‖∞(‖x(τ)‖∞+‖x̃‖∞)+

√
log3 n

np
β2

0 (43)

From the definition of x(τ), we have∥∥∥x(l)(τ)− x̃
∥∥∥
∞
≤ (1− τ)

∥∥∥x(l) − x
∥∥∥

2
+ ‖x− x̃‖∞ .

√
µ3 log5 n

np

β0√
n
,

where the last inequality is from the induction hypotheses (38), (40), and the fact that t ≤ T0 .
log n. Inserting this bound back to (43), we get∥∥∥∇2g(x(l)(τ))−

(
‖x̃‖22I + 2x̃x̃>

)∥∥∥ .

√
µ3 log6 n

np
β2

0 , (44)

which also implies

∥∥ 2
∥∥

2
.

√
µ3 log6 n

np
β2

0

∥∥∥x− x(l)
∥∥∥

2
. λ?

√
µ3

n log18 n

∥∥∥x− x(l)
∥∥∥

2
.

It is implied from Lemma 28 that

∥∥ 3
∥∥

2
≤
∥∥∥x(l)

∥∥∥2

∞

√
log n

p

∥∥∥x(l)
∥∥∥

2
.

√
log3 n

np

β3
0√
n
. λ?

√
1

n log21 n

β0√
n

A bound on 4 follows from the induction hypothesis (41).

∥∥ 4
∥∥

2
≤ λ(l)

∣∣∣u(l)>(x(t) − x(t,l))
∣∣∣ . λ?µ

√
log2 n

np

β0

n
(1 + ηλ?)t . λ?µ

√
log23 n

np

β0√
n

The second largest eigenvalue of M (l) is at most
∥∥M (l) −M?

∥∥ by Weyl’s Theorem, and from
Lemma 10 and Lemma 9, we have∥∥∥M (l) −M?

∥∥∥ .
∥∥∥M (l) −M◦

∥∥∥+ ‖M◦ −M?‖ . λ?µ

√
log n

np
.

Hence, we get

∥∥ 5
∥∥

2
≤
(∥∥∥M◦ −M (l)

∥∥∥+
∥∥∥M (l) − λ(l)u(l)u(l)>

∥∥∥)∥∥∥x− x(l)
∥∥∥

2
. λ?µ

√
log n

np

∥∥∥x− x(l)
∥∥∥

2
.

Lastly, we apply Lemma 28 again to get

∥∥ 6
∥∥

2
≤ λ?µ

√
log n

np

β0√
n
.

There exists a universal constant c > 0 such that

2
∥∥ 1

∥∥
2

+
∥∥ 2

∥∥
2

+
∥∥ 5

∥∥
2
≤ cλ?µ

log2 n

∥∥∥x− x(l)
∥∥∥

2
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and ∥∥ 3
∥∥

2
+
∥∥ 4

∥∥
2

+
∥∥ 6

∥∥
2
≤ cλ?µ

√
log n

np

β0√
n
.

if n2p & µ2n log22 n. Combining all, we have∥∥∥x(t+1) − x(t+1,l)
∥∥∥

2
≤
(

1− η‖x̃‖22 +
cηλ?

log2 n

)∥∥∥x− x(l)
∥∥∥

2
+ cηλ?µ

√
log n

np

β0√
n

≤
(

1 +
cηλ?

log2 n

)∥∥∥x− x(l)
∥∥∥

2
+ cηλ?µ

√
log n

np

β0√
n
.

An analysis on the recursive equation

xt+1 =

(
1 +

cηλ?

log2 n

)
xt + cηλ?µ

√
log n

np

β0√
n
, x0 = 0

gives the desired bound ∥∥∥x(t+1) − x(t+1,l)
∥∥∥

2
≤ 2cηλ?µ

√
log n

np

β0√
n
.

(41) at (t+ 1) We decompose x(t+1) − x(t+1,l) as

x(t+1) − x(t+1,l)

= (x− η∇f(x))−
(
x(l) − η∇f (l)(x(l))

)
= (x− η∇g(x))−

(
x(l) − η∇g(l)(x(l))

)
+ η

(
M◦x−M (l)x(l)

)
= (x− η∇g(x))−

(
x(l) − η∇g(x(l))

)
− η

(
∇g(x(l))−∇g(l)(x(l))

)
+ η

(
M◦ −M (l)

)
x + ηM (l)(x− x(l))

=

∫ 1

0

(I − η∇2g(x(l)(τ))(x− x(l)) dτ − η
(

1

p
PΩl

(
x(l)x(l)>

)
− Pl

(
x(l)x(l)>

))
x(l)

+ ηM (l)(x− x(l)) + η
(
M◦ −M (l)

)
(x− x(l)) + η

(
M◦ −M (l)

)
x(l)

= (1− η‖x̃‖22)(x− x(l))− 2ηx̃x̃>(x− x(l))

− η
∫ 1

0

(
∇2g(x(l)(τ))−

(
‖x̃‖22I + 2x̃x̃>

))
(x− x(l))dτ

− η
(

1

p
PΩl

(
x(l)x(l)>

)
− Pl

(
x(l)x(l)>

))
x(l)

+ ηM (l)(x− x(l)) + η
(
M◦ −M (l)

)
(x− x(l)) + η

(
M◦ −M (l)

)
x(l),

where x(l)(τ) = x(l) + τ(x− x(l)). Then, we take inner product with u(l) on both sides.

u(l)>
(
x(t+1) − x(t+1,l)

)
=
(

1− η‖x̃‖22
)
u(l)>(x− x(l))− 2ηu(l)>x̃x̃>

(
x− x(l)

)
︸ ︷︷ ︸

1

− η
∫ 1

0

u(l)>
(
∇2g(x(τ))−

(
‖x̃‖22I + 2x̃x̃>

))
(x− x(l))dτ︸ ︷︷ ︸

2

− ηu(l)>
(

1

p
PΩl

(
x(l)x(l)>

)
− Pl

(
x(l)x(l)>

))
x(l)︸ ︷︷ ︸

3
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+ ηλ(l)u(l)>(x− x(l)) + ηu(l)>
(
M◦ −M (l)

)
(x− x(l))︸ ︷︷ ︸

4

+ηu(l)>
(
M◦ −M (l)

)
x(l)︸ ︷︷ ︸

5

For the term 1 , we have∣∣∣u(l)>x̃
∣∣∣ ≤ ∣∣∣u(l)>x(0)

∣∣∣+ (1 + ηλ?)t
∣∣∣u?>x(0)

∣∣∣∣∣∣u(l)>u?
∣∣∣ .√ log n

n
(1 + ηλ?)tβ0,

and thus, ∣∣ 1
∣∣ ≤ ∣∣∣u(l)>x̃

∣∣∣‖x̃‖2∥∥∥x− x(l)
∥∥∥

2
.

√
log n

n
(1 + ηλ?)tβ2

0

∥∥∥x− x(l)
∥∥∥

2

. λ?µ

√
log2 n

np

β3
0

n
(1 + ηλ?)tt

. λ?µ

√
log n

np

β0

n
.

The definition of Phase I was used to bound (1 + ηλ?)tt in deriving the last line. We use (44) to get∣∣ 2
∣∣ . ∫ 1

0

∥∥∥∇2g(x(τ))−
(
‖x̃‖22I + 2x̃x̃>

)∥∥∥∥∥∥x− x(l)
∥∥∥

2

∥∥∥u(l)
∥∥∥

2
dτ

.

√
µ3 log6 n

np
β2

0 · µ
√

log n

np

β0√
n
t . λ?

√
µ5

np log15 n

β0

n
.

We apply Lemma 29 to 3 to yield

∣∣ 3
∣∣ . ∥∥∥x(l)

∥∥∥2

∞

√
log n

p

(∥∥∥u(l)
∥∥∥

2

∥∥∥x(l)
∥∥∥
∞

+
∥∥∥x(l)

∥∥∥
2

∥∥∥u(l)
∥∥∥
∞

)
.

√
µ log4 n

np

β3
0

n
. λ?µ

√
µ

np log20 n

β0

n

Cauchy-Schwartz inequality is first applied to 4 to get∣∣ 4
∣∣ ≤ ∥∥∥(M◦ −M (l))u(l)

∥∥∥
2

∥∥∥x− x(l)
∥∥∥

2
.

Lemma 28 gives a bound on the magnitude of (M◦ −M (l))u(l), and thus, we have

∣∣ 4
∣∣ ≤ ∥∥∥(M◦ −M (l))u(l)

∥∥∥
2

∥∥∥x− x(l)
∥∥∥

2
. λ?µ

√
log n

np

1√
n

∥∥∥x− x(l)
∥∥∥

2
. λ?µ

log2 n

np

β0

n
.

For the term 5 , we again use Lemma 29 to get

∣∣ 5
∣∣ ≤ λ?µ

√
log2 n

np

β0

n
.

Combining all, there exists a universal constant c > 0 such that

2
∣∣ 1
∣∣+
∣∣ 2
∣∣+
∣∣ 3
∣∣+
∣∣ 4
∣∣+
∣∣ 5
∣∣ ≤ cλ?µ

√
log2 n

np

β0

n
.

Finally, we have∣∣∣u(l)>
(
x(t+1) − x(t+1,l)

)∣∣∣
≤
(

1− η‖x̃‖22 + ηλ(l)
) ∣∣∣u(l)>(x− x(l))

∣∣∣+ c3ηλ
?µ

√
log2 n

np

β0

n

≤

(
1 + ηλ? + cηλ?µ

√
log n

np

)∣∣∣u(l)>(x− x(l))
∣∣∣+ c3ηλ

?µ

√
log2 n

np

β0

n
,
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where the last line used (28). An analysis on the recursive equation

xt+1 =

(
1 + ηλ? + ηλ?µ

√
log n

np

)
xt + c3ηλ

?µ

√
log2 n

np

β0

n
, x0 = 0

gives the bound ∣∣∣u(l)>
(
x(t+1) − x(t+1,l)

)∣∣∣ ≤ 2c3µ

√
log2 n

np

β0

n
(1 + ηλ?)t+1.

(42) at (t+ 1) We decompose (x(t+1,l) − x̃(t+1))l as

(x(t+1,l)−x̃(t+1))l =
(

1− η‖x̃‖22
)

(x(l)−x̃)l+ηλ
?u?>(x(l)−x̃)u?l +η

(
‖x̃‖22 −

∥∥∥x(l)
∥∥∥2

2

)
x

(l)
l ,

and this implies∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣ ≤ (1− η‖x̃‖22
) ∣∣∣(x(l) − x̃)l

∣∣∣+ηλ?∥∥∥x(l) − x̃
∥∥∥

2
‖u?‖∞+η‖x̃‖2

∥∥∥x(l) − x̃
∥∥∥

2
‖x̃‖∞.

From (37) and (40), we have∥∥∥x(l) − x̃
∥∥∥

2
≤
∥∥∥x(l) − x

∥∥∥
2

+ ‖x− x̃‖2 . µ

√
log n

np
β0t,

and hence,∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣ ≤ ∣∣∣(x(l) − x̃)l

∣∣∣+ cη

(
λ?
√
µ

n
+

√
log n

n
β2

0

)
µ

√
log2 n

np
β0t

≤
∣∣∣(x(l) − x̃)l

∣∣∣+ cηλ?

√
µ3 log2 n

np

β0√
n
t

for some universal constant c > 0. By induction, similar result holds for all smaller t, and we have∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣ ≤ c2ηλ?
√
µ3 log2 n

np

β0√
n

t∑
s=1

s ≤ c2ηλ?
√
µ3 log2 n

np

β0√
n

(t+ 1)2

(37) at (t+ 1) We can obtain this through the combination of (39) and Lemma 4.∥∥∥x(t+1) − x̃(t+1)
∥∥∥

2
≤
∥∥∥x(t+1) − x̂(t+1)

∥∥∥
2

+
∥∥∥x̂(t+1) − x̃(t+1)

∥∥∥
2

.

√
log3 n

np
(1 + ηλ?)t+1β3

0 + µ

√
log n

np
tβ0

.

√
log3 n

np
(1 + ηλ?)T0β3

0 + µ

√
log n

np
T0β0

.

√
1

np
β0 + µ

√
log3 n

np
β0 . µ

√
log3 n

np
β0

(38) at (t+ 1) The lth component of x(t+1) − x̃(t+1) is bounded by∣∣∣(x(t+1) − x̃(t+1))l

∣∣∣ ≤ ∥∥∥x(t+1) − x(t+1,l)
∥∥∥
∞

+
∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣
≤
∥∥∥x(t+1) − x(t+1,l)

∥∥∥
2

+
∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣
.

√
µ3 log2 n

np

β0√
n
t2

This completes the proof of Lemma 17.
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At t = T1 It is implied from Lemma 17 and the definition of T1 that at t = T1, there exists a
constant C0 > 0 such that ∥∥∥x(t) − x̃(t)

∥∥∥
2
≤ C0µ

√
log3 n

np
β0,

∥∥∥x(t) − x̃(t)
∥∥∥
∞
≤ C0

√
µ3 log6 n

np

β0√
n
,

∥∥∥x(t) − x(t,l)
∥∥∥

2
≤ C0µ

√
log3 n

np

β0√
n
,

∣∣∣(x(t,l) − x̃(t)
)
l

∣∣∣ ≤ C0

√
µ3 log6 n

np

β0√
n
.

(45)

These bounds serve as a base case for the induction of the next part.

E PHASE II

This section is mostly devoted to the proof of Lemma 8.

Proof of Theorems 1 and 2 We first explain how Theorems 1 and 2 are derived from Lemma 8.
We first focus on

∥∥x(t) − x̃(t)
∥∥

2
. From the definition of T1, we have∥∥∥x(t) − x̃(t)

∥∥∥
2
. µ

√
1

log15 n

β0√
n

(1 + ηλ?)t.

From the lower bounds of Lemma 15, for all t ≤ T ′2, we have∥∥∥x(t) − x̃(t)
∥∥∥

2
. µ

√
1

log15 n

(
1 +

(1 + ηλ?)t√
n

)
β0 . µ

√
1

log14 n

∥∥∥x̃(t)
∥∥∥

2
,

and this proves (10) of Theorem 2 for t ≤ T ′2. Now, for T ′2 < t ≤ T2, the bound increases with the
rate (1 + ηλ?) from the bound of t = T ′2 as∥∥∥x(t) − x̃(t)

∥∥∥
2
. µ

√
1

log14 n

∥∥∥x̃(T ′2)
∥∥∥

2
(1 + ηλ?)t−T

′
2 .

We apply the result of Lemma 16 to obtain∥∥∥x(t) − x̃(t)
∥∥∥

2
. µ

√
1

log14 n

√
log11 n

∥∥∥x̃(t)
∥∥∥

2
. µ

√
1

log n

∥∥∥x̃(t)
∥∥∥

2
, (46)

which proves (10) of Theorem 2 for T ′2 < t ≤ T2. If we combine this with (31), we are able to prove
(5) of Theorem 1. Going through a similar way with (21), (22), and (23), we can complete the proof
of Theorems 1 and 2.

Proof of Lemma 8 Before we start the proof, we define a function G as

G(x) =
1

4

∥∥xx>∥∥2

F
.

The gradient of G satisfies
∇F (x) = ∇G(x)−M?x.

Now, we assume that the hypotheses hold up to the tth iteration and show that they hold at the
(t+ 1)st iteration. For brevity, we drop the superscript (t) from x(t), x(t,l), x̃(t) and denote them as
x, x(l), x̃, respectively.
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(20) at (t+ 1) We decompose x(t+1) − x̃(t+1) as

x(t+1) − x̃(t+1)

= (x− η∇f(x))− (x̃− η∇F (x̃))

= (x− η∇g(x))− (x̃− η∇G(x̃)) + η (M◦x−M?x̃)

= (x− η∇g(x))− (x̃− η∇g(x̃))− η (∇g(x̃)−∇G(x̃)) + ηM?(x− x̃) + η(M◦ −M?)x

=

∫ 1

0

(I − η∇2g(x(τ))(x− x̃) dτ − η‖x̃‖22 (Ix̃ − I) x̃ + ηM?(x− x̃) + η(M◦ −M?)x

=
(

(1− η‖x̃‖22)I − 2ηx̃x̃> + ηM?
)

(x− x̃)︸ ︷︷ ︸
:= 1

−η
∫ 1

0

(
∇2g(x(τ))−

(
‖x̃‖22I + 2x̃x̃>

))
(x− x̃)dτ︸ ︷︷ ︸

:= 2

− η ‖x̃‖22 (Ix̃ − I) x̃︸ ︷︷ ︸
:= 3

+η (M◦ −M?)x︸ ︷︷ ︸
:= 4

,

where x(τ) = x̃ + τ(x− x̃). For the term 1 , we require a bound on∥∥∥(1− η‖x̃‖22)I − 2ηx̃x̃> + ηM?
∥∥∥.

If we write x̃ as α̃tu? + x̃⊥, we have α̃2
t ≤ λ? and ‖x̃⊥‖2 . β0. Then, we have∥∥∥(1− η‖x̃‖22)I − 2ηx̃x̃> + ηM?

∥∥∥
=
∥∥∥(1− η‖x̃‖22)I + η(λ? − 2α̃2

t )u
?u?> − 2η(x̃x̃> − α̃2

tu
?u?>)

∥∥∥
≤
∥∥∥(1− η‖x̃‖22)I + η(λ? − 2α̃2

t )u
?u?>

∥∥∥+ 2η
∥∥x̃x̃> − α̃2

tu
?u?>

∥∥
≤ (1 + ηλ?) + 2η(2αt‖x̃⊥‖2 + ‖x̃⊥‖22)

≤ 1 + ηλ? +
c

log2 n

for some constant c > 0. This implies the desired bound∥∥ 1
∥∥

2
≤
(

1 + ηλ? +
c

log2 n

)
‖x− x̃‖2.

For all 0 ≤ τ ≤ 1, we have ‖x(τ)− x̃‖∞ ≤ ‖x− x̃‖∞, and going through the same process we
derived (46), we have ∥∥∥x(t) − x̃(t)

∥∥∥
∞

. λ?µ

√
1

log3 n

√
µ

n
.

for all t in Phase II. Hence, by Lemma 27, we have∥∥∥∇2g(x(τ))−
(
‖x̃‖22I + 2x̃x̃>

)∥∥∥ . n‖x− x̃‖∞(‖x‖∞+‖x̃‖∞)+λ?µ

√
log n

np
. λ?µ2

√
1

log3 n
.

This gives ∥∥ 2
∥∥

2
. λ?µ2

√
1

log3 n
‖x− x̃‖2. (47)

For the term 3 , we use Lemma 25 to obtain∥∥ 3
∥∥

2
. λ?

√
µ log n

np
‖x̃‖2.

Lastly, the term 4 is bounded with∥∥ 4
∥∥

2
. ‖M◦ −M?‖2‖x‖2 . λ?µ

√
log n

np
‖x̃‖2.
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Combining all, there exists a universal constant c > 0 such that∥∥ 1
∥∥

2
+
∥∥ 2

∥∥
2
≤
(

1 + ηλ? +
c

log3/2 n

)
‖x− x̃‖2,

∥∥ 3
∥∥

2
+
∥∥ 4

∥∥
2
≤ cλ?µ

√
log n

np
‖x̃‖2,

and we have∥∥∥x(t+1) − x̃(t+1)
∥∥∥

2
≤
(

1 + ηλ? +
c

log3/2 n

)
‖x− x̃‖2 + cηλ?µ

√
log n

np
‖x̃‖2.

Because ‖x̃‖2 is about β0 and it can grow in a rate at most (1 + ηλ?), it holds that

‖x̃‖2 . (1 + ηλ?)t−T1β0. (48)

If we write ∥∥∥x(t) − x̃(t)
∥∥∥

2
≤ Ctµ

√
log4 n

np
β0(1 + ηλ?)t−T1 ,

we finally have∥∥∥x(t+1) − x̃(t+1)
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2
≤
((

1 + ηλ? +
c

log3/2 n

)
Ct +

cηλ?

log3/2 n
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µ
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log4 n

np
β0(1 + ηλ?)t−T1 .

Hence, if we let

Ct+1 =

(
1 + ηλ? +

c

log3/2 n

)
Ct +

cηλ?

log3/2 n
,

we have Ct ≤ 2CT1 for all t in Phase II. This proves (20) at (t+ 1).

(22) at (t+ 1) Similar to the proof of (40), we have the decomposition

x(t+1) − x(t+1,l) = (1− η‖x̃‖22 − 2ηx̃x̃>)(x− x(l))︸ ︷︷ ︸
:= 1

− η
∫ 1

0

(
∇2g(x(l)(τ))−

(
‖x̃‖22I + 2x̃x̃>

))
(x− x(l))dτ︸ ︷︷ ︸

:= 2

− η
(

1

p
PΩl

(
x(l)x(l)>

)
− Pl

(
x(l)x(l)>

))
x(l)︸ ︷︷ ︸

:= 3

+ ηM?(x− x(l)) + η (M◦ −M?)(x− x(l))︸ ︷︷ ︸
:= 4

+η
(
M◦ −M (l)

)
x(l)︸ ︷︷ ︸

5

,

where x(l)(τ) = x(l) + τ(x−x(l)). Both of the terms 1 and 2 can be bounded similar to 1 and
2 of x(t+1) − x̃(t+1) as ∥∥ 1

∥∥
2
≤
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log2 n

)∥∥∥x− x(l)
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2
.

for some constant c > 0. For the terms 3 and 5 , we use Lemma 28 to obtain
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∥∥ 5
∥∥
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. λ?µ
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1√
n
‖x̃‖2.

From Lemma 9, the term 4 is bounded as∥∥ 4
∥∥

2
≤ ‖M◦ −M?‖

∥∥∥x− x(l)
∥∥∥

2
. λ?µ
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.

Combining all with (48), there exists a universal constant c > 0 such that∥∥ 1
∥∥

2
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Hence, we have∥∥∥x(t+1) − x(t+1,l)
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and if we write ∥∥∥x(t) − x(t,l)
∥∥∥
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we finally have∥∥∥x(t+1) − x(t+1,l)
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)
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Hence, if we let
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log3/2 n
,

we have Ct ≤ 2CT1
for all t in Phase II. This proves (22) at (t+ 1).

(23) at (t+ 1) We use the same bound∣∣∣(x(t+1,l) − x̃(t+1))l

∣∣∣ ≤ (1− η‖x̃‖22
) ∣∣∣(x(l) − x̃)l
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that was used in the proof of (42). From (20) and (22), we have∥∥∥x(l) − x̃
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and also it holds that λ?‖u?‖∞ + ‖x̃‖2‖x̃‖∞ . λ?
√

µ
n . Hence, there exists a universal constant

c > 0 such that

(λ?‖u?‖∞ + ‖x̃‖2‖x̃‖∞)
∥∥∥x(l) − x̃

∥∥∥
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and an analysis on the recursive equation

xt+1 = xt + cηλ?

√
µ3 log5 n

np

β0√
n

(1 + ηλ?)t−T1 , xT0
= c

√
µ3 log6 n

np

β0√
n

gives the desired bound∣∣∣(x(t+1,l) − x̃(t+1))l
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(21) at (t+ 1) The lth component of x(t+1) − x̃(t+1) is bounded by∣∣∣(x(t+1) − x̃(t+1))l

∣∣∣ ≤ ∥∥∥x(t+1) − x(t+1,l)
∥∥∥
∞
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.
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n
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F TECHNICAL LEMMAS

We introduce some technical lemmas in this section. Most of them are the results of classical
concentration inequalities.
Theorem 18 (Matrix Bernstein Inequality). Let {Xi} be n × n independent symmetric random
matrices. Assume that each random matrix satisfies EXi = 0 and ‖Xi‖ ≤ L almost surely. Then,
for all τ ≥ 0, we have

P

[∥∥∥∥∥∑
i

Xi

∥∥∥∥∥ ≥ τ
]
≤ n exp

(
−τ2/2

V + Lτ/3

)
,

where V =
∥∥∑

i E(X2
i )
∥∥.

Corollary 19 (Matrix Bernstein Inequality). Let {Xi} be n × n independent symmetric random
matrices. Assume that each random matrix satisfies EXi = 0 and ‖Xi‖ ≤ L almost surely. Then,
with high probability, we have ∥∥∥∥∥∑

i

Xi

∥∥∥∥∥ .
√
V log n+ L log n,

where V =
∥∥∑

i E(X2
i )
∥∥.

Lemma 20. For any fixed matrix M ∈ Rn×n, we have∥∥∥∥1

p
PΩ(M)−M

∥∥∥∥ .

√
n log n

p
‖M‖∞ +

log n

p
‖M‖∞

with high probability.

Proof. We decompose the matrix into the sum of independent symmetric matrices.

1

p
PΩ(M)−M =

∑
i<j

(
δij
p
− 1

)
Mij(eie

>
j + eje

>
i ) +

∑
i

(
δii
p
− 1

)
Miieie

>
i

We calculate L and V of Corollary 19. We have L ≤ 1
p‖M‖∞ because∥∥∥∥(δijp − 1

)
Mij(eie

>
j + eje

>
i )

∥∥∥∥ ≤ 1

p
‖M‖∞,∥∥∥∥(δiip − 1

)
Miieie

>
i

∥∥∥∥ ≤ 1

p
‖M‖∞.

We also have the following bound on V .

V =
1− p
p

∥∥∥∥∥∥
∑
i,j

M?2
ij eie

>
i

∥∥∥∥∥∥ ≤ n

p
‖M‖2∞

Hence, Corollary 19 implies the desired result.

We can prove Lemma 9 by applying Lemma 20 to M? and using ‖M?‖∞ = λ? µn .

We introduce classical Bernstein inequality and the results obtained from it.
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Theorem 21 (Bernstein Inequality). Let {Xi} be independent random variables. Assume that each
random variable satisfies EXi = 0 and |Xi| ≤ L almost surely. Then, for all τ ≥ 0, we have

P

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ τ
]
≤ 2 exp

(
−τ2/2

V + Lτ/3

)
,

where V =
∑
i E
[
X2
i

]
.

Corollary 22 (Bernstein Inequality). Let {Xi} be independent random variables. Assume that each
random variable satisfies EXi = 0 and |Xi| ≤ L almost surely. Then, with high probability, we
have ∣∣∣∣∣∑

i

Xi

∣∣∣∣∣ .√V log n+ L log n,

where V =
∑
i E
[
X2
i

]
.

Lemma 23. Let and {Xi} be independent Bernoulli random variables with expectation p. Then,
for any fixed vector a, we have∣∣∣∣∣∑

i

(
Xi

p
− 1

)
ai

∣∣∣∣∣ .
√

log n

p
‖a‖2 +

log n

p
‖a‖∞

with high probability.

Proof. We can apply Corollary 22 with L = 1
p‖a‖∞ and V = 1−p

p ‖a‖
2
2.

Lemma 24. If n2p & µn log n, we have

‖M◦‖2,∞ . λ?
√

µ

np

with high probability.

Proof. Let us consider `2-norm of the ith row of M◦.

‖M◦
i∗‖

2
2 = λ?2u?2i

∑
j

1

p2
δiju

?2
j

≤ 1

p
λ?2‖u?‖2∞

‖u?‖22 +

∑
j

1

p
δiju

?2
j − ‖u?‖

2
2


.
λ?2µ

np

(
1 +

√
log n

np

)
.
λ?2µ

np

The third line follows from Lemma 23.

Proof of Lemma 10. The spectral norm of a symmetric matrix that has nonzero entries only on the
lth row/column is bounded by twice of the norm of its lth row. Hence,∥∥∥M◦ −M (l)

∥∥∥ ≤ 2
∥∥∥(M◦ −M (l))l∗

∥∥∥
2

= 2‖(M◦ −M?)l∗‖2

. ‖M◦‖2,∞ + ‖M?‖2,∞ . λ?
√

µ

np
,

where the last inequality follows from Lemma 24.

Lemma 25. Let y be a vector that is independent from the sampling. Then, if n2p & n log n, we
have

max
i∈[n]

∣∣∣‖x‖22,i − ‖y‖22∣∣∣ . n‖x− y‖∞(‖x‖∞ + ‖y‖∞) +

√
log n

p
‖y‖2‖y‖∞ +

log n

p
‖y‖2∞

with very high probability.
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Proof. Let us fix i and decompose the difference as

‖x‖22,i − ‖y‖
2
2 =

1

p

n∑
j=1

δij(x
2
j − y2

j ) +

n∑
j=1

(
δij
p
− 1

)
y2
j .

The first term is bounded as∣∣∣∣∣∣1p
n∑
j=1

δij(x
2
j − y2

j )

∣∣∣∣∣∣ ≤ ‖x− y‖∞‖x + y‖∞
1

p

n∑
j=1

δij . n‖x− y‖∞‖x + y‖∞,

and the second term is bounded as∣∣∣∣∣∣
n∑
j=1

(
δij
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)
y2
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∣∣∣∣∣∣ .
√

log n

p
‖y‖2‖y‖∞ +

log n

p
‖y‖2∞

by Lemma 23.

Lemma 26. Let y be a vector that is independent from the sampling. Then, if n2p & n log n, we
have ∥∥∥∥1

p
PΩ

(
xx>

)
− yy>

∥∥∥∥ . n‖x− y‖∞(‖x‖∞ + ‖y‖∞) +

√
n log n

p
‖y‖2∞

with very high probability.

Proof. We have the following sequence of inequalities∥∥∥∥1

p
PΩ

(
xx>

)
− yy>

∥∥∥∥ ≤ ∥∥∥∥1

p
PΩ

(
xx>

)
− 1

p
PΩ

(
yy>

)∥∥∥∥+

∥∥∥∥1

p
PΩ

(
yy>

)
− yy>

∥∥∥∥
≤
∥∥xx> − yy>

∥∥
∞

∥∥∥∥1

p
PΩ

(
11>

)∥∥∥∥+

∥∥∥∥1

p
PΩ

(
yy>

)
− yy>

∥∥∥∥
. ‖x− y‖∞(‖x‖∞ + ‖y‖∞)

∥∥∥∥1

p
PΩ

(
11>

)∥∥∥∥+

∥∥∥∥1

p
PΩ

(
yy>

)
− yy>

∥∥∥∥
. n‖x− y‖∞(‖x‖∞ + ‖y‖∞) +

√
n log n

p
‖y‖2∞,

where the second line is derived from a basic inequality ‖A‖ ≤ ‖|A|‖ that holds for any matrix A,
and the last line follows by applying Lemma 20 to 11> and yy>.

Lemma 27. Let y be a vector that is independent from the sampling. Then, if n2p & n log n, we
have∥∥∥∇2g(x)−

(
‖y‖22I + 2yy>

)∥∥∥ . n‖x− y‖∞(‖x‖∞ + ‖y‖∞)

+

√
log n

p
‖y‖2‖y‖∞ +

log n

p
‖y‖2∞ +

√
n log n

p
‖y‖2∞

Proof. This follows directly from Lemmas 25 and 26.

Let us define an operator PΩl
such that an entry of PΩl

(X) is equal to that of X if it is contained
both in the lth row/column and Ω, and otherwise 0. We also define an operator Pl that makes the
entries outside the lth row/column zero. Then, we have

P(l)
Ω (X)− P(X) =

1

p
P(l)

Ω (X)− Pl(X).

The following lemma was also introduced in Ma et al. (2020), but we include the proof for com-
pleteness.
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Lemma 28. Suppose that a matrix M and a vector v are independent from sampling of the lth
row/column. If n2p & n log n, we have∥∥∥∥(1

p
PΩl

(M)− Pl(M)

)
v

∥∥∥∥
2

. ‖M‖∞

(√
log n

p
‖v‖2 +

log n

p
‖v‖∞ +

√
n

p
‖v‖∞

)
with high probability.

Proof. If consider the contribution of lth term and the other terms separately, we have∥∥∥∥(1

p
PΩl

(M)− Pl(M)

)
v

∥∥∥∥
2

≤

∣∣∣∣∣∣
n∑
j=1

(
δlj
p
− 1

)
Mljvj

∣∣∣∣∣∣+ |vl|

√√√√ n∑
i=1

(
δil
p
− 1

)2

M2
il

≤ ‖M‖∞

∣∣∣∣∣∣
n∑
j=1

(
δlj
p
− 1

)
vj

∣∣∣∣∣∣+ ‖v‖∞

√√√√ n∑
i=1

(
δil
p
− 1

)2


From Lemma 23, we have∣∣∣∣∣∣
n∑
j=1

(
δlj
p
− 1

)
vj

∣∣∣∣∣∣ .
√

log n

p
‖v‖2 +

log n

p
‖v‖∞

with high probability. Regarding the second term, notice that
n∑
i=1

(
δil
p
− 1

)2

= n+

(
1

p
− 2

) n∑
i=1

δil
p
.

Lemma 23 implies that
∑n
i=1

δil
p � n with high probability if n2p & n log n. Hence, we have

n∑
i=1

(
δil
p
− 1

)2

.
n

p
,

and this finishes the proof.

Lemma 29. Let M be a matrix and v, w be vectors that are independent from sampling of the lth
row/column. Then, if n2p & n log n, we have∣∣∣∣w>(1

p
PΩl

(M)− Pl(M)

)
v

∣∣∣∣
. ‖M‖∞

(√
log n

p
(‖v‖2‖w‖∞ + ‖w‖2‖v‖∞) +

log n

p
‖v‖∞‖w‖∞

)

Proof. We can consider the lth row and lth column separately by∣∣∣∣w>(1

p
PΩl

(M)− Pl(M)

)
v

∣∣∣∣ ≤
∣∣∣∣∣vl∑

i

(
δlj
p
− 1

)
Milwi

∣∣∣∣∣+

∣∣∣∣∣∣wl
∑
j

(
δlj
p
− 1

)
Mljvj

∣∣∣∣∣∣
≤ ‖v‖∞

∣∣∣∣∣∑
i

(
δlj
p
− 1

)
Milwi

∣∣∣∣∣+ ‖w‖∞

∣∣∣∣∣∣
∑
j

(
δlj
p
− 1

)
Mljvj

∣∣∣∣∣∣
If we apply Lemma 23 to each summation, we get the desired result.

30


	Introduction
	Problem Formulation
	Main Results
	Fully Observed Case and Proof Sketch
	Phase I: Finding Direction
	Proof of eq:xt-txt l2 I
	Proof of eq:xt-txt lm I

	Phase II: Expansion
	Simulation
	Conclusion
	Spectral Analysis
	Initialization
	Fully Observed Case
	Phase I
	Proof of lem:hxt-txt
	Proof of lem:xt-hxt,lem:ulxtl I,lem:xtl I

	Phase II
	Technical Lemmas

