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Abstract

Video instance segmentation (VIS) aims at segmenting and tracking objects in1

videos. Prior methods typically first generate frame-level or clip-level object2

instances and then associate them by either additional tracking heads or complex3

instance matching algorithms. This explicit instance association approach increases4

system complexity and fails to fully exploit temporal cues in videos. In this paper,5

we design a simple, fast and yet effective query-based framework for online VIS.6

Relying on an instance query and proposal propagation mechanism with several7

specially developed components, this framework can perform accurate instance8

association implicitly. Specifically, we generate frame-level object instances based9

on a set of instance query-proposal pairs propagated from previous frames. This10

instance query-proposal pair is learned to bind with one specific object across11

frames through conscientiously developed strategies. When using such a pair to12

predict an object instance on the current frame, not only the generated instance13

is automatically associated with its precursors on previous frames, but the model14

gets a good prior for predicting the same object. In this way, we naturally achieve15

implicit instance association in parallel with segmentation and elegantly take16

advantage of temporal clues in videos. To show the effectiveness of our method17

InsPro, we evaluate it on two popular VIS benchmarks, i.e., YouTube-VIS 201918

and YouTube-VIS 2021. Without bells-and-whistles, our InsPro with ResNet-5019

backbone achieves 43.2 AP and 37.6 AP on these two benchmarks respectively,20

outperforming all other online VIS methods. Code will be made publicly available.21

1 Introduction22

Video instance segmentation (VIS) [1] is a challenging but important computer vision task. It requires23

not only segmenting object instances on each video frame but also associating them across all frames.24

Due to its fine-grained object representation form, it has got a wide range of applications in various25

areas such as autonomous driving and video editing.26

Existing VIS methods can be categorized into two groups: frame-level methods and clip-level27

methods. Frame-level methods [1, 2, 3, 4] generally follow a ‘tracking-by-detection’ paradigm,28

which first generate per-frame object instances by existing instance segmentation models [5, 6],29

and then associate them across frames via additional tracking heads (as shown in Figure 1 (a)). In30

comparison, clip-level methods [7, 8, 9, 10] take a ‘clip-matching’ paradigm, which divide a video31

into multiple overlapped clips, generate instance predictions for each clip, and then associate these32

clip-level predictions by some hand-crafted instance matching algorithms. Whether frame-level or33
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Figure 1: (a) Previous methods take a two-step approach to VIS. They first generate object instances
and then perform explicit instance association to link them across frames. (b) Our InsPro implements
implicit instance association through an instance query-proposal pair propagation mechanism, achiev-
ing object instance segmentation and tracking in one shot.

clip-level methods, both of them inevitably need an explicit instance association step to fulfill object34

tracking. This generally requires to design a complicated association strategy to achieve good tracking35

performance, which is not trivial. More importantly, the explicit association step increases model36

complexity and slows inference speed. Furthermore, this extra step also indicates that the temporal37

clues intrinsic in videos are not well utilized, as the instance prediction is performed separately on38

each frame or each clip.39

In this work, inspired by the recent success of query-based object detectors [11, 12], we propose a40

simple, fast and yet effective query-based framework for online VIS. Our system, dubbed as InsPro,41

segments and tracks objects in one shot through an instance query and proposal propagation strategy42

with carefully designed modules (Figure 1 (b)) , which eliminates the explicit instance association43

step. Specifically, our approach generates frame-level object instances based on a set of instance44

query-proposal pairs propagated from previous frames. In the learning process, we develop several45

techniques to make sure that the generated instance query-proposal pair corresponds to one specific46

object across frames. Thus, when an object instance is generated using such a query-proposal pair47

on the current frame, it is automatically associated with its precursors on all previous frames. In48

this way, we achieve the implicit object association without a linking step. Meanwhile, this instance49

query-proposal propagation mechanism also enables our VIS system to perform better in terms of50

prediction accuracy (see Table 1). This is because the instance query-proposal pair implicitly encodes51

one object’s temporal and spatial information across all previous frames, which provides a very good52

prior for the model to infer the same object on the current frame. In this sense, our query-based VIS53

method actually implements an efficient way to exploit the intrinsic temporal clues in videos.54

To fulfill the advantages of our VIS system, learning exclusive and expressive instance query-proposal55

pairs is the key. In this work, we develop several strategies to ensure the learning effectiveness.56

First,we design a temporally consistent matching mechanism to enforce the one-to-one correspon-57

dence between the instance query-proposal pair and a specific ground truth object across frames58

during training. Second, we propose a box deduplication loss to enlarge the distance between instance59

proposals. This helps suppress duplicate proposals on the same object and increase the exclusivity of60

the generated instance query-proposal pair. At the same time, the sparsely distributed unoccupied61

query-proposal pairs can serve as candidates of the next frame to detect new objects, allowing our62

system to achieve new object detection and tracking effortlessly. Third, we propose an intra-query63

attention module that enhances instance query with its predecessors encoding the same object. This64

explicitly aggregates long-range object information into the query, augmenting its representation65

capacity, which help handle occlusion and motion blur.66

To validate the effectiveness and efficiency of our InsPro, we conduct extensive experiments on two67

popular VIS benchmarks [1], i.e., YouTube-VIS 2019 and YouTube-VIS 2021. Without bells-and-68

whistles, our InsPro with ResNet-50 [13] backbone achieves 43.2 AP on YouTube-VIS 2019 and 37.669

AP on YouTube-VIS 2021 respectively, outperforming all other online VIS models. Moreover, our70

lite variant, InsPro-lite, reaches 38.7 AP at impressive 45.7 FPS on YouTube-VIS 2019 on a Nvidia71

RTX2080Ti GPU.72
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In summary, we make the following contributions in this paper. 1) We propose a simple, fast and73

yet effective query-based framework for online VIS. 2) We develop several techniques to make the74

query-proposal pair propagation mechanism work smoothly. These techniques distinguish our work75

from other query propagation-based object association methods [14, 15, 16], and make our work76

simpler, more elegant and more effective than them. 3) Our VIS system achieves the state-of-the-art77

performances on two popular VIS benchmarks.78

2 Related Work79

Frame-level VIS Methods mainly adopt a ‘tracking-by-detection’ paradigm and can run in an80

online fashion. They first generate instance predictions frame by frame and then perform explicit81

instance association. MaskTrack R-CNN [1] proposes the VIS task for the first time and simply adds82

an additional tracking head to Mask R-CNN [5] for instance association. Follow-up works [2, 3, 4]83

improve either the image instance segmentation model or the tracking algorithm to achieve better84

performance. On the other hand, some works [8, 17, 18, 19, 20, 21] attempt to perform temporal85

feature fusion to improve instance segmentation and association. For example, PCAN [21] proposes86

frame- and instance-level prototypical cross-attention modules to leverage rich spatio-temporal87

information to facilitate better segmentation. All these methods require additional modules to achieve88

explicit instance association, which expands model complexity and reduces inference speed. By89

contrast, our method performs the instance association implicitly through an instance query and90

proposal propagation mechanism, which is simpler and naturally exploits the temporal and spatial91

consistency in videos.92

Clip-level VIS Methods take a ‘clip-matching’ paradigm, which process multiple frames within93

a clip simultaneously and then perform instance matching between clips to complete VIS. While94

some methods [7, 22, 9] propagate instance information within a clip with well-designed propagation95

modules to model temporal context, recent works [8, 10] utilize transformer [23] to model temporal96

context in an end-to-end manner. These methods normally need hand-crafted matching algorithms to97

complete instance association between clips. Although they usually achieve high performance, they98

can only run in an offline mode, which restricts their application to limited areas. In contrast, our99

method achieves comparable performance but can run online.100

Query-based Methods have attracted increasing attention in recent years due to their flexibility101

and simplicity. DETR [11] first uses a set of learned queries interacting with image features to102

encode objects, and then directly outputs detections by decoding the transformed queries. Following103

works [24, 25, 26, 27, 28] improve DETR in terms of either training efficiency or detection perfor-104

mance. Sparse R-CNN [12] builds a query-based detector on top of R-CNN architecture [29, 30].105

The success of DETR has also inspired query-based VIS methods. VisTR [8] adapts DETR to the106

VIS task. It takes a video clip as input and directly outputs the sequence of masks for each instance107

orderly. IFC [10] proposes inter-frame communication transformers to reduce the heavy computation108

and memory usage of VisTR-like VIS methods. Similar to VisTR, Mask2Former [31] applies masked109

attention to a video clip and directly predicts a 3D instance volume. To learn a powerful video-level110

instance query, SeqFormer [32] aggregates temporal information from each frame to the instance111

query. These methods work on clips rather than frames, and achieve object association through112

sharing of the queries within a clip rather than query propagation. Thus, they still need instance113

matching between clips. Instead, our method applies to frames, and can propagate query-proposal114

pairs through the entire video and thereby can associate object instances over any frame length.115

Query Propagation-based Object Association Methods inspired by query-based methods [11, 12]116

too, have been recently explored in several works, such as TransTrack [14], TrackFormer [15],117

MOTR [16] and EfficientVIS [33]. This shows the effectiveness and potential of such a new object118

linking approach. The differences between our work and them are as follows.119

First, our InsPro is different from them in the way of either tracking seen objects or detecting new120

objects. TransTrack is basically a ‘tracking-by-detection’ method, because it still needs to explicitly121

match detection boxes to tracking boxes in each frame, while our InsPro performs implicit association.122
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Figure 2: (a) Overview of our InsPro. It performs VIS by propagating instance query-proposal pairs
across frames. qinit ∈ RN×C and pinit ∈ RN×4 are initial instance queries and proposals on the first
video frame, respectively. They are used in SegHead to predict instance results r0 on frame I0, and
to produce updated q0 and p0 which are propagated to the next frame. By repeating this process, we
complete the VIS task. (b) Details of SegHead. It is a multi-stage network, consisting of a dynamic
instance interaction module (DIIM) and an instance segmentation module. The former transforms
instance queries with RoI features of corresponding proposals and produces object features, while the
latter predicts object instances based on the object features and conditional convolution [35].

More importantly, TransTrack [14], TrackFormer [15] and MOTR [16] adopt a track query subset to123

track seen objects and an object query subset to detect new objects. This requires additional heuristic124

rules to combine two type queries, and may miss occluded or blurred objects with low scores which125

results in object trajectory break [34]. Our InsPro simply propagates all object queries produced in126

the previous frame to the current frame, and keeps using this set to track seen objects and detect127

new objects, which is much simpler and more elegant. As for EfficientVIS, our concurrent work, it128

does not consider this new object detection problem, and its performance will probably be greatly129

impacted if there are new objects in the next clip.130

Furthermore, we design a more intelligent strategy to suppress duplicates. TransTrack and Track-131

Former employ score filtering or NMS to reduce duplicate predictions. MOTR builds a temporal132

aggregation network to learn more discriminative features to address this problem, while EfficientVIS133

does not discuss this problem. By contrast, we design a Box Deduplication Loss to suppress dupli-134

cates and an Inter-query attention module to enhance queries with their predecessors. Our solution135

avoids heuristic rules and post-processing steps, and is more effective according to the experimental136

results (see Table 2 (e)).137

3 InsPro138

We aim to design a simple and fast VIS system that performs instance association implicitly and139

exploits video temporal clues elegantly. To this end, we take a query-based VIS approach that predicts140

object instances on each frame based on a set of instance query-proposal pairs propagated from141

previous frames. In this section, we introduce our VIS system, InsPro, including an instance query142

and proposal propagation mechanism and those proposed techniques that make the propagation143

mechanism work well.144

3.1 Instance Query and Proposal Propagation145

The instance query and proposal propagation mechanism enables our VIS system to perform object146

instance association implicitly in parallel with instance segmentation. Since it is inspired by the147

recent query-based object detector Sparse R-CNN [12], we first review Sparse R-CNN.148

Sparse R-CNN [12] formulates object detection as a set prediction problem and achieves state-of-the-149

art performance. It simplifies the detection pipeline and removes heuristic components like NMS.150

Specifically, it first initializes a fixed set of learnable instance queries (N ×C, N denotes the number151

of queries and C the query dimension) paired with learnable instance proposals (N × 4) to describe152

4



objects in an image. As illustrated in Figure 2 (b), each instance query is convolved with the RoI153

feature of the corresponding proposal to output a more discriminate feature ot [12]. After multi-stage154

iterative updating, the instance query encodes more accurate object appearance information while the155

proposal captures more precise location information. Finally, decoding the object feature ot produced156

based on the instance query-proposal pairs, we get the detection results.157

Inspired by this instance query-proposal representation of an object, we design a query-proposal158

temporal propagation mechanism (as shown in Figure 2 (a)) to achieve implicit object instance associ-159

ation and temporal cue utilization in VIS. Our key insight is that there is a one-to-one correspondence160

between the learned instance query-proposal pair and a specific object. If we manage to preserve this161

correspondence from the first frame to the one where the object disappears, then we realize object162

tracking and object information propagation spontaneously.163

To this end, we first initialize a set of instance queries qinit ∈ RN×C and proposals pinit ∈ RN×4 on164

the first video frame I0, where qinit and pinit are learnable parameters and arranged in pairs. After165

learning, they are able to encode objects on the first frame. Decoding them with the first frame image166

feature inside the SegHead, we obtain instance results r0 as well as a new set of updated pairs (q0,167

p0). Then we propagate this pair set (q0, p0) to the next frame as input to the SegHead. Similarly,168

we get the instance results r1 and another new set of (q1, p1) on this frame. Among them, the object169

instance produced on this frame shares the same ID with the one on the previous frame if they are170

both decoded by the same slice of the instance queries. In this way, we automatically link object171

instances belonging to an identical object across frames and elegantly make use of object priors from172

the past. Repeating the above process until the last video frame, we then accomplish the VIS task on173

this video. The details of SegHead can be found in the supplementary material.174

Please note that our InsPro simply propagates all object queries produced in the previous frame to175

the current frame, and keeps using this set to track seen objects and detect new objects. Instead,176

recent works [14, 15, 16] that take a similar query-propagation mechanism to use a track query set177

to track seen objects and a new object query set to detect new objects respectively, which requires178

additional heuristic rules to combine these two type queries. Moreover, they rely on hand-crafted rules179

like a score threshold to select a subset of track queries, and occluded objects with low prediction180

scores are probably filtered out, which brings non-negligible true object missing and fragmented181

trajectories [34]. In comparison, our method is obviously simpler, more elegant and more effective182

(see Table 2 (e)).183

Intra-query Attention Since frame-by-frame temporal propagation encodes only short-range184

temporal cues, the instance query from just the last frame shows limitations in dealing with tough185

scenarios, e.g., occlusion and motion blur. To boost the representation capacity of instance query,186

we augment it in practice with instance features from previous T frames. Specifically, we build a187

feature bank that caches instance features from previous T frames and perform intra-query attention188

inside this bank to aggregate long-range temporal cues into the current instance query, as shown in189

the upper part of Figure 2 (b). Formally, at frame It, instance features o from previous T frames are190

put together to form a feature bank fb = {ot−T+1, . . . ,ot}. Then, the enhanced instance query is191

computed as:192

qi
t =

∑T−1
n=0 o

i
t−n exp(ε(o

i
t−n))∑T−1

m=0 exp(ε(o
i
t−m))

+ oi
t, (1)

where i denotes the i-th query and ε is a linear transformation function. The enhanced qt is basically193

a weighted sum of instance features inside the feature bank, and the weights are learned upon the194

quality of the queries. Experiments (Table 2 (c)) show that this augmentation improves the query195

representation capacity greatly.196

3.2 Temporally Consistent Matching197

The key to the success of our InsPro is to make sure that the evolving instance query-proposal pair198

corresponds to the same object across frames in a video. To ensure this, one technique we propose is199

temporally consistent matching. This technique matches predictions and ground truth during training,200

assigns each ground truth object a proper prediction, and propagates the matching made on previous201

frames to subsequent frames.202
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Figure 3: (a) Multiple duplicate boxes exist on the same object across frames. (b) After applying
the proposed box deduplication loss (BDL) in training, the duplicate predictions are significantly
suppressed along with temporal propagation.

Specifically, given a training batch consisting of multiple consecutive frames, we first compute the203

matching cost Lmatch between predictions and ground truth objects on the first frame:204

Lmatch = λcls · Lcls + λL1 · LL1 + λgiou · Lgiou, (2)
where Lcls is the focal loss [36] between predicted classifications and ground-truth labels, LL1205

and Lgiou are L1 loss and the generalized IoU loss [37] between predicted boxes and ground-truth206

boxes, respectively. λcls, λL1 and λgiou are loss weights and set as 2, 5, and 2, respectively. We207

search for the best bipartite matching that minimizes the matching cost Lmatch with the Hungarian208

algorithm [38]. After finding the best matching on the first frame, we propagate this matching to other209

frames. Concretely, if one ground truth object still exists on subsequent frames, it will be matched to210

the prediction that is generated by the same instance query on the first frame. If there are new ground211

truth objects emerging, new matching will be made between the new objects and yet unmatched212

predictions. If a ground truth object disappears, its corresponding predictions will not participate in a213

new matching process. Through this temporally consistent matching mechanism, we bind one ground214

truth object to a single instance query during training.215

3.3 Loss Function216

Box Deduplication Loss Although the self-attention mechanism between queries has driven the217

model to generate fewer duplication predictions [11], we still observe multiple overlapped proposal218

boxes on the same object across many frames, as displayed in Figure 3 (a). We conjecture this is219

caused by those unmatched queries that cannot be pushed away from those matched queries due to220

lack of supervision. To address this problem, we propose a box deduplication loss to push away221

prediction boxes in terms of the center-to-center distance between them. As a result, not only the222

duplicate problem is alleviated, but the sparsely distributed unmatched query-proposal pairs can serve223

as candidates of the next frame to detect and track new objects (see Figure 5 in the supplementary).224

The loss is defined as:225

Ldedup = max(β −
c2(bi, b̂ineg)

d2(bi)
, 0), (3)

where bi is a ground truth box, b̂ineg is a negative box that has the largest IoU with bi among those226

unmatched predicted boxes, c(·) is the center distance, and d(·) is the diagonal length. β is set as 0.1.227

This loss penalizes the short distance between bi and b̂ineg , and drags all other duplicate boxes away228

from bi [39]. With this new loss, our final box loss function is formed as:229

Lbox = λL1 · LL1 + λgiou · Lgiou + λdedup · Ldedup, (4)

where λL1 and λgiou have the same values as in Equation 2, and λdedup is set as 1.230

Overall Loss Given the one-to-one matching results, the final loss on each training frame is a sum231

of classification, box and mask losses:232

L = λcls · Lcls + λbox · Lbox + λdice · Ldice + λfocal · Lfocal, (5)
where Ldice and Lfocal are dice loss [40] and focal loss [36] for foreground mask prediction,233

respectively. We set λbox = 1, λdice = 5 and λfocal = 5. Finally, the losses of all training frames234

inside a batch are summed together and normalized by the number of frames.235
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4 Experiments236

4.1 Datasets and Evaluation Metrics237

We evaluate our method on YouTube-VIS 2019 and 2021 benchmarks [1]. YouTube-VIS 2019238

consists of 2,238 training videos and 302 validation videos, and labels 40 object categories. YouTube-239

VIS 2021 is an extended version, which comprises 2,985 training videos and 421 validation videos,240

and labels improved 40 categories. All videos in these two datasets are annotated every 5 frames with241

object bounding box, object category, instance mask and instance ID. Following [1], we report the242

video-level average precision (AP) and average recall (AR) on the validation sets as the evaluation243

metrics, where both accurate instance segmentation and instance association are necessary to achieve244

high performance.245

4.2 Implementation Details246

We implement our InsPro with Detectron2 [41], and most hyperparameters are set following Sparse247

R-CNN [12] and CondInst [35] unless otherwise specified. More implementation details can be found248

in the supplementary material.249

Training Details We employ AdamW [42] with an initial learning rate of 2.5× 10−5 and weight250

decay 0.0001 as our model optimizer. We initialize our model with parameters pre-trained on251

COCO [43], and train it for 32k iterations where the learning rate is divided by 10 at iterations 28k252

and 24k, respectively. The training is performed end-to-end on 8 Nvidia RTX2080Ti GPUs and each253

GPU holds one mini-batch which contains three frame images randomly sampled from the same254

video. Data augmentation includes only random horizontal flip and multi-scale training where the255

training image is resized with the shortest side being at least 288 and at most 512. Unless otherwise256

noted, our InsPro adopts 100 instance queries and ResNet-50 [13] as backbone in our experiments.257

Inference Details In inference, we resize the frame image size to 640 × 360, which follows258

MaskTrack R-CNN [1]. The length of the feature bank is set to 18 by default. If the generated259

proposal box size exceeds the frame’s, it will be reset to the frame size. No multi-scale testing is260

adopted in our experiments.261

InsPro-lite we also build a lite version of our method, named InsPro-lite. In this variant, inspired262

by [44], we divide video frames into key frames and non-key frames, i.e., we select one key frame263

per K frames in a video and treat other frames as non-key ones. K is 10 by default. On key frames,264

we conduct the dynamic instance interaction 6 times while only once on non-key frames. This takes265

advantage of the redundancy of videos and helps reduce inference computation time. Our InsPro-lite266

reaches a high inference speed of 45.7 FPS at a small accuracy loss (Table 1).267

4.3 Main Results268

We perform a thorough comparison of our InsPro to state-of-the-art VIS methods on YouTube-VIS269

2019 and 2021. Existing VIS methods can be divided into two categories according to whether they270

run online or offline [45]. Since some methods [7, 9] also use 80k transformed COCO images [43] as271

extra training data to prevent overfitting to YouTube-VIS, for a fair comparison, we also report our272

results with and without extra COCO training data. Table 1 presents all the results obtained with a273

ResNet-50 backbone on a Nvidia RTX2080Ti GPU.274

YouTube-VIS 2019 Table 1 left shows the comparison between our InsPro and other state-of-the-art275

methods on YouTube-VIS 2019 validation set. We can see that, in the online group, our InsPro276

outperforms all other popular methods under the same data setting. Specifically, our InsPro achieves277

40.2 AP without COCO data and 43.2 AP with COCO data respectively, surpassing other online VIS278

methods by a large margin. Even our lite version, InsPro-lite, performs better than all other online279

methods trained without COCO data, reaching 38.7 AP at an impressive speed of 45.7 FPS.280

YouTube-VIS 2021 Table 1 right displays results on YouTube-VIS 2021 validation set. It shows281

a similar comparison pattern to YouTube-VIS 2019 and our InsPro achieves the state-of-the-art282

performance once again.283
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Table 1: Comparison of our InsPro to state-of-the-art methods. All methods use ResNet-50 as
backbone. C: additionally using COCO train2017 images that contain YouTube-VIS categories for
training. The inference speed is tested on a Nvidia RTX2080Ti GPU. ‡ indicates that the FPS is
measured by parallel processing of images in one clip rather than sequential processing.

YouTube-VIS 2019 Val. YouTube-VIS 2021 Val.
Method Online AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 FPS
STEm-Seg [7] (C) ✗ 30.6 50.7 33.5 31.6 37.1 - - - - - 4.4
VisTR [8] ✗ 35.6 56.8 37.0 35.2 40.2 - - - - - 30.0‡

Propose-Reduce [9] (C) ✗ 40.4 63.0 43.8 41.1 49.7 - - - - - < 20
MaskProp* [22] ✗ 40.0 - 42.9 - - - - - - - < 10
IFC [10] ✗ 39.0 60.4 42.7 41.7 51.6 35.2 57.2 37.5 - - 46.5‡

EfficientVIS [33] ✗ 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5 36‡

MaskTrack R-CNN [1] ✓ 30.3 51.1 32.6 31.0 35.5 28.6 48.9 29.6 26.5 33.8 26.1
SipMask [4] ✓ 33.7 54.1 35.8 35.4 40.1 31.7 52.5 34.0 30.8 37.8 30
STMask* [19] ✓ 33.5 52.1 36.9 31.1 39.2 - - - - - 28.6
SG-Net [2] ✓ 34.8 56.1 36.8 35.8 40.8 - - - - - 23.0
PCAN [21] ✓ 36.1 54.9 39.4 36.3 41.6 - - - - - -
CrossVIS [17] ✓ 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2 25.6
HybridVIS [20] (C) ✓ 41.3 61.5 43.5 42.7 47.8 35.8 56.3 39.1 33.6 40.3 < 20
InsPro-lite ✓ 38.7 60.9 41.7 36.9 43.6 - - - - - 45.7
InsPro ✓ 40.2 62.9 43.1 37.6 44.5 36.1 57.6 39.6 30.9 40.4 26.3
InsPro (C) ✓ 43.2 65.3 48.0 38.8 49.0 37.6 58.7 40.9 32.7 41.4 26.3

Table 2: Ablation studies.

(a) Effectiveness of instance query and pro-
posal propagation, and temporally consis-
tent matching (TCM).

query proposal TCM AP AP50 AP75

(A) 24.0 41.3 24.2
(B) ✓ ✓ 36.3 56.3 38.9
(C) ✓ ✓ ✓ 37.4 57.6 41.1
(D) ✓ ✓ 36.7 57.3 39.9
(E) ✓ ✓ 36.6 55.5 40.3

(b) Effectiveness of the proposed
box deduplication loss (BDL).

AP AP50 AP75 FPS
w/o BDL 37.4 57.6 41.1 26.3
w/ BDL 38.4 57.7 41.6 26.3

(c) Intra-query attention. T is the
length of the feature bank.

AP AP50 AP75 FPS
T=1 38.4 57.7 41.6 26.3
T=9 39.7 61.6 42.1 26.3
T=18 40.2 62.9 43.1 26.3
T=27 40.1 62.6 42.2 26.3
T=36 40.1 62.5 42.2 26.3

(d) Comparison between ‘track-by-detect’ paradigm and our
temporal propagation paradigm.

AP AP50 AP75 Param (M) FLOPs (G) FPS
Track-by-detect 31.5 49.3 34.1 119.9 48.3 25.4
Ours 37.4 57.6 41.1 106.1 45.5 26.3

(e) Comparison between ‘track-and-detect
query propagation’ paradigm and ours.

AP AP50 AP75

Track-and-Detect query 37.4 56.9 40.3
Ours 38.4 57.7 41.6

4.4 Ablation Study284

We conduct extensive experiments on YouTube-2019 to study the effectiveness and individual285

performance contribution of our proposed modules.286

Temporal Propagation and Matching Our InsPro is built on the proposed mechanism of instance287

query and proposal temporal propagation. Table 2 (a) shows how this mechanism contributes to288

our high performance. In this table, method A represents the video instance segmentation baseline,289

where each frame is processed individually without any temporal propagation, and object instances290

generated on each frame are linked if they are produced from the same instance query slice. Since291

this method lacks the mechanism to ensure the instance query-proposal pair corresponds to the292

same object across frames, it only achieves 24.0 AP due to inaccurate instance association. By293

contrast, when we add the temporal propagation (method B), we can easily improve the performance294

significantly to 36.3 AP. This evidences the importance and effectiveness of the proposed temporal295

propagation technique in a query-based VIS framework. If we further adopts the temporally consistent296

matching strategy during training (method C), we achieve an even better performance of 37.4 AP.297

We also analyze the separate performance of propagating only instance query (method D) or instance298

proposal (method E). The results show that these two settings achieve a similar performance boost299

(36.7 AP vs 36.6 AP). Applying them together yields 37.4 AP, bringing further performance gain.300
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Box Deduplication Loss We propose a box deduplication loss to suppress the duplicate proposal301

boxes on the same object across frames. As the qualitative results can be found in Figure 3, we show302

the quantitative comparison in Table 2 (b). We can see that supervising the learning with this loss303

during training can lead 1.0 AP improvement (38.4 AP vs 37.4 AP). This performance gain is brought304

by less false positives.305

Intra-query Attention We perform intra-query attention inside a feature bank to augment the306

instance query so that it can capture long-range temporal cues. As we can see in Table 2 (c), this307

simple method works well and improves the performance considerably. In particular, T = 1 indicates308

no intra-query attention is used and 38.4 AP is achieved. When we increase the volume T of the309

feature bank, the performance rises and saturates at 40.2 AP with T = 18. It is worthwhile to note310

that this lightweight yet effective intra-query attention operation brings almost no speed drop.311

Track-by-Detect vs. Temporal Propagation Despite the fact that our InsPro does not perform312

explicit instance association, it still outperforms all other online methods implementing explicit313

tracking or matching. To verify that our superior performance comes from the temporal propagation314

mechanism rather than the image instance segmentation model design, we compare our temporal315

propagation VIS approach to the typical ‘track-by-detect’ paradigm with the same instance segmenta-316

tion baseline. We implement a ‘track-by-detect’ VIS system by replacing the Mask R-CNN part in317

MaskTrack R-CNN [1] with our instance segmentation model. In this case, the only independent318

variable is the object tracking method.319

As shown in Table 2 (d), our InsPro surpasses the ‘track-by-detect’ model by a large margin even if our320

design is simpler and faster, which soundly proves the effectiveness of our method. We argue again321

that this is because the evolving instance query-proposal pair in propagation encodes object temporal322

and spatial cues intrinsic in videos, whereas ‘track-by-detect’ methods are generally incapable of323

exploiting this advantage.324

Track-and-Detect query vs. Ours We further compare our method to those MOT methods that325

adopt a similar query-propagation method for object tracking. These methods rely on two different326

query sets, i.e., a track query set and an object query set, to track seen objects and detect new objects327

respectively. They need heuristic rules to combine these two type queries. Meanwhile, they manually328

select track queries with high scores from the previous frame to build the track query set. This makes329

them complex and less effective in tracking since occluded objects with low scores probably have330

broken trajectories because of the filtering.331

To show the superiority of our method, we compare the ‘track-and-detect query’ paradigm adopted332

in the most recent MOTR [16] to ours using the same instance segmentation baseline. We follow333

MOTR [16] exactly to set up the model and experiment settings. To exclude the influence of334

other factors, we do not use temporal feature aggregation in both methods. Table 2 (e) shows the335

comparisons on YouTube-VIS 2019. It can be seen that our InsPro achieves a higher performance even336

using a simpler query propagation method. We attribute this advantage to our those conscientiously337

designed modules described in Sec 3.338

5 Conclusion339

In this paper, we propose a simple, fast and yet effective query-based framework for online VIS. In340

this framework, we rely on a novel instance query and proposal propagation mechanism to undertake341

VIS, where we generate object instances based on a set of evolving instance query-proposal pairs342

propagated from previous frames. This mechanism enables our model not only to associate object343

instances implicitly, but to utilize video temporal cues elegantly. To make this propagation mechanism344

work well, we develop several modules to ensure that the learned instance query-proposal pair345

keeps being bound to one object, These modules include an intra-query attention unit, a temporally346

consistent matching mechanism and a box deduplication loss. Extensive experiments on YouTube-347

VIS 2019 and 2021 verify the effectiveness of our designs, and show that our InsPro achieves superior348

VIS performance, outperforming all other online VIS methods.349
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