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Abstract

Recent years have witnessed the vast development of large-scale pre-training frame-1

works that can extract multi-modal representations in a unified form and achieve2

promising performances when transferred to downstream tasks. Nevertheless, ex-3

isting approaches mainly focus on pre-training with simple image-text pairs, while4

neglecting the semantic connections between concepts from different modalities.5

In this paper, we propose a knowledge-based pre-training framework, dubbed6

Knowledge-CLIP, that injects semantic information into the widely used CLIP7

model [41]. Through introducing knowledge-based objectives in the pre-training8

process and utilizing different types of knowledge graphs as training data, our9

model can semantically align the representations in vision and language, and also10

enhance the reasoning ability across scenarios and modalities. Extensive experi-11

ments on various vision-language downstream tasks demonstrate the effectiveness12

of Knowledge-CLIP comparing with the original CLIP and competitive baselines.13

1 Introduction14

Large-scale vision-language pre-training has attracted wide research interests in recent years [12,15

30, 41, 76]. Different from training different models for each specific task, pre-trained models take16

the analogy of human biological intelligence system, trying to perceive the world from various17

data modalities and handle comprehensive tasks. Specifically, it aims to provide a unified inference18

paradigm that simultaneously learns representations for multi-modal data and can easily transfer to a19

variety of downstream tasks. Benefiting from the accessibility of massive image-text pairs from the20

web, the pre-training scheme can leverage a broader source of supervision, and effectively improves21

the model’s generalization power.22

Early attempts on vision-language pre-training mainly focus on detecting objects in the images and23

aligning the corresponding word tokens with object regions [12, 32, 54]. Though effective, the24

entanglement with the concept of objects, and the additional resources for pre-trained object detectors25

impose restrictions on real-world applications. One of the pioneer works, CLIP [41], extends the26

scale of the pre-training dataset to 400 million image-text pairs, and learns representations by directly27

matching raw text with the corresponding image. Through a contrastive-based training scheme, CLIP28

learns visual concepts under a large vocabulary which greatly improves the model performances on29

various downstream tasks. Taking inspiration from CLIP, the following researches further extend the30

work from several perspectives, including data modality [76], downstream tasks [62], and training31

data efficiency [24, 47].32

Although showing promising results, the current pre-training frameworks also suffer from limitations.33

Specifically, the data pairs for pre-training are organized in the simplest manner, where only the34

descriptions of matched and unmatched are used to represent the relation between a given image35

and text pair. This usually leads to a degenerated scenario, where the model tends to rely on the36
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Figure 1: CLIP fails to accurately capture the semantic information. When given opposite semantic
descriptions, e.g., adding ’not’ in the template or describing an image with wrong color, CLIP tends
to give similar distribution as the correct counterpart. Best view in color.

co-occurrence of inputs instead of their semantic meanings. We give a toy example in Fig. 1 by37

evaluating the zero-shot transfer performance of CLIP on the ImageNet dataset [13] with the templates38

’a photo of a {}’ and ’not a photo of a {}’. It is shown that the distributions of CLIP outputs under39

two templates are quite similar, suggesting that the current model fails to understand the semantic40

meaning of word tokens. As a result, the transferability of the model is restricted, and tends to show41

worse performances on tasks that require reasoning ability, e.g., visual question answering.42

To address the limitation of pre-trained models on semantic perceiving, we resort to the technique of43

knowledge graph, which has been widely studied in the field of natural language processing [10, 63].44

Knowledge graph (KG) is a large-scale semantic network that comprises entities as nodes and45

semantic relations as edges. Through organizing data in a graph structure, knowledge graphs provide46

rich information on describing the relations between entities and enable a reasoning process through47

the whole graph. These advantages over regular-structured data are favorable on various tasks48

including question-answering [23, 74], relation prediction [33, 46] and knowledge reasoning [9, 64].49

In recent years, knowledge graph has also been investigated in the field of computer vision, e.g.,50

scene graph [69], and the integration of both language and image [2]. This bridges the gap between51

different modalities in the knowledge graph, which inspires us to explore a new knowledge-based52

pre-training framework, and inject semantic information into simple image-text pairs.53

In this paper, we propose a novel vision-language pre-training approach, dubbed Knowledge-CLIP, by54

constructing a knowledge-enhanced pre-training framework based on the widely used CLIP models.55

As illustrated in Fig. 2, we follow the structure of CLIP, and use two Transformer-based models as56

image and text encoders respectively. These two encoders take entities and relations in the knowledge57

graph as input and extract raw features for both entities and relations. Notably, entities can be in58

the form of image/text, while the relations are constantly described by language tokens. Then, a59

multi-modal Transformer encoder is adopted to fuse the entity features conditioned on their relations.60

In this way, the pre-trained model is pushed to concentrate on understanding semantic relations61

between visual and word concepts, thereby establishing strong semantic connections between vision62

and language modalities.63

To additionally improve the training efficiency and avoid the massive computation cost in the pre-64

training procedure, we adopt a simple continuous learning strategy by training our model based65

on the pre-trained weights of CLIP. This provides a possibility of efficiently promoting the model66

performance of CLIP with low training resources.67

We practically train our model on three knowledge graph datasets, namely Visual-Genome [29]68

(scene graph), ConceptNet [49] (language-based graph), and VisualSem [2] (multi-modal graph), and69

also adopt part of datasets from CLIP to avoid the model forgetting problem. With the knowledge-70

enhanced pre-training, Knowledge-CLIP achieves consistent improvements over the original CLIP71

models on various vision and language downstream tasks. Our model can also transfer to several72

graph-based tasks, including link prediction and entity classification, and achieve competitive results.73
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2 Related works74

Large-scale pre-training. Large-scale pre-training framework has received wide concerns in recent75

years and shown promising results in the field of computer vision and natural language processing.76

GPT [42] is one of the pioneer works for language pre-training which optimizes the probability of77

output based on previous words in the sequence. BERT [15] adopts the masked language modeling78

technique and predicts the masked tokens conditioned on the unmasked ones. XLNet [70] takes the79

advantages of BERT and GPT, and combines the ability to model bidirectional contexts in BERT, and80

the auto-regressive formulation in GPT which additionally improves the generalization performance.81

Similarly, computer vision society also witnesses the development of pre-training models thanks to82

the emergence of large-scale image datasets. IGPT [7] proposes a generative pre-training technique83

and shows promising results on classification task. MAE [21] adopts a similar pre-training scheme as84

BERT and predicts the masked regions of an image with unmasked ones. Another line of researches is85

based on contrastive learning and uses siamese architectures for self supervision [5, 8, 22]. With the86

advent of Transformer-based models in computer vision, large-scale datasets have gradually become87

a common practice in the training process [16, 58].88

Multi-modal pre-training bears differences from the aforementioned frameworks and requires the89

alignment between various data modalities. Using enormous image-text pairs collected from Internet,90

vision-language models show significant improvements on various downstream tasks. Among91

these approaches, various pre-training scheme is adopted, including contrastive learning [1, 31, 35],92

masked language modeling [50, 55], and masked region modeling [12]. Several approaches also use93

a pre-trained object detector to align the object with text concepts [12, 32, 54].94

Comparing to previous approaches, we are the first to incorporate multi-modal knowledge graphs95

into the pre-training process, and effectively enhance the model perception on semantic relations96

between visual and language concepts.97

Knowledge Graph. Knowledge graph is first introduced in the field of natural language processing,98

and the knowledge graph embedding approaches have been successful on capturing the semantics99

of symbols (entities and relations) and achieving impressive results on a wide range of real-world100

applications including text understanding [17, 71], recommendation system [20, 61] and natural101

language question answering [23, 74]. On the other hand, scene graphs represent a type of graph-102

structured data in computer vision, where the visual concepts in the image are connected with103

semantic relations. Scene graphs emphasize the fine-grained semantic features for images and are104

widely adopted in various downstream tasks, including scene graph generation [69], and Scene105

Graph Parsing [73]. Besides scene graph, knowledge graph is also adopted in other computer vision106

tasks, including image classification [28], panoptic segmentation [67], and image captioning [75].107

On this basis, multi-modal knowledge graph earns wide concerns in recent years. Considering the108

natural alignment between different data modalities, multi-modal knowledge graphs have been widely109

adopted in various graph-based tasks including link prediction [3, 34], entity classification [66], while110

also showing great potential on out of graph applications like visual question answering [25, 44] and111

recommendation systems [52, 56].112

3 Contrastive Language-Image Pre-training (CLIP)113

We first provide a brief review of model architectures and training settings in CLIP.114

CLIP uses two separate models for image encoder and text encoder respectively. For text inputs, a115

12-layer Transformer is adopted with 512 width and 8 attention heads. Raw texts are first converted116

using byte pair encoding [43] technique under a vocabulary size of 49,152. The text sequence length is117

capped at 76 and added by a positional encoding before being sent into the text encoder. On the other118

hand, CLIP has different versions of image encoder with ResNet-based and Vision Transformer-based119

architectures. As the following researches have demonstrated the better performances of Vision120

Transformer models, we only consider Transformer-based image encoders in this paper. Similar to121

the text input, images are first converted to patches, and added by a positional encoding. At the last122

stage of both encoders, a global pooling function is adopted to compress the feature map into a single123

feature, which serves as the representation of the whole image/text sequence. The cosine distance of124

the image and text features is computed as the similarity of the data pair. For training supervision, a125

contrastive loss is adopted to maximize the similarity of matched pairs while minimizing the similarity126
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Figure 2: An overview of our framework. (A) Given a data triplet h, r, t with entities h, t and their
relation r, image and text encoders first extract raw features, then a multi-modal encoder consumes
the concatenated triplet sequence and outputs triplet and relation representations. (B) Three types of
training objectives adopted in our framework.

of unmatched pairs. Given a batch of N data pairs {Ii,Ti}Ni=1, where Ii and T represents the ith127

image and text respectively, the loss function can be parameterized as:128

L = −1

2

N∑
i=1

(
log

exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ii), fT(Tj))/τ)

+ log
exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ij), fT(Ti))/τ)

)
,

(1)
where fI and fT correspond to image and text encoders, cos(·) denotes the cosine similarity between129

the inputs, and τ is a learnable temperature initialized at 0.07.130

While effective, this simple training framework actually brings several concerns that need to be131

addressed. First, the pre-training framework fails to model the semantic information of inputs due132

to the simplicity of the data structure. This results in inferior performances on tasks that require133

reasoning ability, e.g., visual question answering and visual commonsense reasoning. Second, the134

image and text features reside in separate spaces, which makes it difficult to model the interactions135

between different modalities. Third, the massive time and resource consumption in the training136

procedure set restrictions on performing a full pre-training schedule from scratch.137

4 Knowledge-CLIP138

As we have summarized above, there are several concerns that hinder the transferability of CLIP139

and potential improvements on model performances. In this paper, we propose a novel pre-training140

framework based on knowledge graphs, that addresses the limitation of the original CLIP model141

from several perspectives: (1) We introduce knowledge graphs into the training dataset where the142

graph-structured data and semantic relations between concepts enable the model to extract semantic143

features and establish semantic connection across inputs; (2) A multi-modal encoder is added on top144

of the current image and text encoders to fuse the features from different modalities, and model the145

joint distribution between inputs; (3) A continuous learning strategy based on the pre-trained model146

of CLIP is adopted which greatly avoids the massive computation cost in the pre-training procedure,147

and enhance the generalization power of the model efficiently. We introduce our framework in detail148

in the following sections, and show the overview in Fig. 2.149

4.1 Data Preparation150

Different from raw image-text pairs adopted in the original CLIP, our model takes knowledge graphs151

as input. A knowledge graph can be defined as a directed graph G = {ξ,R, TR}, where ξ, R152

correspond to sets of entities and relations, and TR represent the set of relation triplets. A triplet153

(h, r, t) ∈ TR denotes that entity h ∈ ξ has relation r ∈ R with entity t ∈ ξ. As illustrated in Fig. 3,154

we pre-train our model on three types of knowledge graphs, including multi-modal knowledge graph,155

scene graph, and language-based knowledge graph. Among these, relations are constantly described156

in language tokens, where the entities are from different modalities in different forms.157
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Figure 3: Illustrations of the pre-training knowledge graph datasets, including ViusalSem [2] (multi-
modal graph), Visual Genome [29] (scene graph), and ConceptNet [49] (language-based graph).

For multi-modal knowledge graph, the entities contain both illustrative images and language descrip-158

tions. Through representing the same entity under various modalities and connecting entities with159

relations, it helps to build semantic connections between vision and language concepts. In practice,160

language and vision descriptions are randomly chosen for each entity. In this way, the triplet set TR161

contains different forms including (Img, Rel, Img), (Img, Rel, Text), and (Text, Rel, Text), providing162

rich information across modalities while also enhancing perceptions within modalities.163

Different from multi-modal knowledge graph, scene graph extracts visual concepts (mainly objects)164

for each image, and connects them with predefined semantic relations describing relative locations,165

actions, etc. Therefore, the entities in the scene graph correspond to a certain region in an image, with166

the triplet form of (Img, Rel, Img). We practically use the selected regions as the input and discard167

the irrelevant parts. As two entities in the same triplet denote different regions in the same image, it168

forces the model to extract more fine-grained features.169

Lastly, language-based knowledge graph connects words and phrases of natural language with labeled170

edges. It is built on only language modality with the triplet form of (Text, Rel, Text), while helping to171

build semantic alignment within word tokens.172

4.2 Model Architecture173

The model architecture and the training framework are illustrated in Fig. 2(A). Specifically, we first174

process the inputs into token sequences with modality-specific tokenizers. The BPE tokenzier [43] is175

adopted for language inputs, while image inputs are sliced into non-overlapped patches and converted176

into a sequence of patches following ViT [16]. For convenient processing, we set the length of the177

image sequence and text sequence as lI and lT respectively for all inputs. To preserve the relative178

position information in the input, learnable positional encodings are added to the corresponding179

sequences before being sent to the model.180

Two separate image encoder fI(·) and text encoder fT(·) are then adopted to extract features from181

raw inputs. For a given triplet (h, r, t), the entities h and t are sent to the encoders with respect to182

their modalities (image or text). The relation r, which is represented by language tokens, is sent to183

text encoder similar to text entity.184

Comparing to the model structure in CLIP, we introduce a modification to better adapt our framework.185

Specifically, vanilla CLIP models use a pooling function at the last layer of two encoders to compress186

the feature map into a global representation. Namely, for an input u ∈ RL×di , where L and di denote187

the sequence length and feature dimension, the output of the encoder can be formulated as:188

xu = f(u) ∈ RL×do , x̄u = Pool(xu) ∈ Rdo , (2)

where f represents the feature extraction module, Pool(·) denotes the pooling function, and do is the189

output dimension. Though efficient, it also leads to inevitable information loss in the local region,190

especially for the image inputs. Therefore, we remove the pooling functions for image and text191

entities to preserve the local information, and use xu ∈ RL×do as the extracted feature. The relation,192

on the other hand, is normally under a limited sequence length, e.g., one or two word tokens, where193

the information density is smaller than entities. Therefore, we retain the pooling function for relation194

input and use x̄u ∈ Rdo as the extracted features.195
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In this way, we have extracted the features defined as (xh, x̄r, xt), which correspond to the elements196

in the input triplet (h, r, t). To model the joint distribution of different elements in the triplet,197

we consider a multi-modal encoder TransEncoder(·) to fuse the features from different sources.198

Specifically, we first concatenate all the features in the triplet into a single sequence and use a head199

token <head> at the beginning of the sequence. To emphasize the status of the tokens in the200

sequence, we consider additional learnable encodings for each element h, r, t in the triplet:201

X(h, r, t) = [<head>, xh+PEh, x̄r+PEr, xt+PEt]. (3)

After processing by the multi-modal encoder, the feature of the head token <head> finally serves as202

the representation of the whole sequence:203

Y (h, r, t) = TransEncoder(X(h, r, t))[0, :]. (4)

Also, representation for relation is extracted from the corresponding token:204

R(h, r, t) = TransEncoder(X(h, r, t))[1 + len(xh), :]. (5)

4.3 Training Targets205

Considering the unique data structure of knowledge graphs, we mainly adopt two types of training206

targets in our framework, including triplet-based loss and graph-based loss as illustrated in Fig. 2(B).207

Besides, a knowledge distillation loss is also considered due to the continuous learning strategy208

adopted in our framework.209

Triplet-based loss considers a batch of triplets as the input and supervises the training of our model by210

estimating the joint distribution of elements in the triplets. Inspired by the mask prediction technique211

that models the distribution of masked tokens conditioned on the unmasked regions, we similarly212

mask the elements in the triplets and predict the distribution with the help of a multi-modal encoder.213

Specifically, for incomplete triplets where certain elements are missing in the input, the concatenated214

sequence can be similarly derived as in Eq. 3 by masking the corresponding feature. For example, the215

concatenated sequence for an input (h, r, -) can be represented as:216

X(h, r, -) = [<head>, xh+PEh, x̄r+PEr, 0]. (6)

On this basis, given a set of input D = {(hi, ri, ti)}Ni=1, we first model the distribution when one of217

the entities, i.e., ti, is masked, and derive the Entity-Entity (E2E) Loss by minimizing the negative218

log-likelihood:219

−E(h,r)∼Dlog(P (xt|xh, x̄r)). (7)

We practically approximate the distribution P (xt|xh, x̄r) as the cosine similarity of P (xt) and220

P (xh, x̄r), and defined the loss function as:221

LE2E = −
N∑
i=1

log(
exp(cos(Y (-, -, ti), Y (hi, ri, -))/τ)∑
j exp(cos(Y (-, -, ti), Y (hj , rj , -))/τ)

). (8)

We also model the distribution when the relation in the triplet is masked, and similarly derive the222

Entity-Relation (E2R) Loss:223

−E(h,t)∼Dlog(P (x̄r|xh, xt)). (9)
Different from E2E loss, the relations in the triplets are defined in a limited set of relation groups.224

Therefore, we instead extract the representation of relation through an auxiliary two-layer MLP225

network, and model the objective as a classification problem from a predefined set of relation labels226

R. In this way, the loss function can be defined as:227

LE2R = −
N∑
i=1

∑
r∈R

1(r=ri)log(y(x̄ri)), where y(x̄ri) = MLP(R(hi, -, ti)), (10)

is extracted from an MLP model followed by the output of multi-modal encoder defined in Eq. (5).228

Graph-based loss. We also take advantage of the graph structure in knowledge graph datasets, and229

adopt a graph neural network to extract deeper structural information among entities. We propagate230

information through connected edges in the graph, and update entity representations with aggregated231
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feature. Specifically, for a graph neural network with L layers, the update function for the lth layer232

can be formulated as:233

G(l)(t) = E{hi,ri,t}∈TR g(l−1)(R(hi, -, t))G(l−1)(hi), G0(t) = Y (-, -, t), (11)

where g(l)(R(hi, -, t)) = W (l)R(hi, -, t), (12)

calculates the aggregation weights by relation representation R(hi, -, t) with a learnable matrix W (l).234

Finally, we define the Graph-Entity(G2E) Loss by computing the cosine similarity of entity features235

before and after the propagation procedure in the graph:236

LG2E = − 1

Nξ

∑
ti∈ξ

log(
exp(cos(Y (-, -, ti), G(L)(ti))/τ)∑
tj
exp(cos(Y (-, -, ti), G(L)(tj))/τ)

). (13)

Continuous Learning. Large-scale pre-training usually requires massive computation resources237

which makes it highly inefficient when training from scratch. Therefore, to inject the semantic238

information in an efficient manner, we consider training our model based on the pre-trained weights239

from the original CLIP. This powerful initialization promotes the convergence of our model and240

greatly enhances the training efficiency. However, naively extending the training process with new241

data leads to severe forgetting problem that hampers the performance of the original models.242

To address this limitation, we adopt simple solutions to maintain CLIP performances while improving243

its ability to extract semantic features from knowledge graphs. (1) Besides the knowledge graph244

datasets, we also train our model on several widely adopted image-text datasets that share a similar245

data distribution with the training data in CLIP. To better fit our pre-training framework, we convert246

the original image-text pair into the form of triplets, with specifically designed relations ’image of’247

and ’caption of’. (2) We also use the original CLIP model as the teacher, and use an auxiliary loss248

LKD to measure the KL distance between the output of CLIP and our model.249

Overall, the final pre-training objective of Knowledge-CLIP is formulated as:250

L = LE2E + LE2R + LG2E + LKD. (14)

5 Experiments251

5.1 Implementation Details252

Experimental Setup. In all the experiments, we use the same model structure as CLIP [41]. A253

12-layer Transformer model with 512 width is adopted for text encoder, and ViT-L/14 is adopted254

for image encoder. For text and image encoder, we use the pre-trained weights in the original CLIP255

as the initialization. For the multi-modal encoder, we consider a 4 layer Transformer model with256

1024 width. The rate for drop path is set as 0.1 during training. As the added multi-modal encoder is257

trained from random initialization, we decrease the learning rate for the pre-trained weights from258

CLIP to achieve a more balanced step in the optimization. We train Knowledge-CLIP with an initial259

learning rate of 1e-5 for image and text encoders, and 1e-3 for the multi-modal encoder. Cosine260

learning rate with linear warmup is used in the training schedule. Weight decay and gradient clip are261

also adopted. See more details in the supplemental material.262

Pre-train Dataset. Three knowledge graph datasets are adopted in the pre-training process. Visu-263

alSem [2] is a high-quality multi-modal knowledge graph dataset for vision and language concepts,264

including entities with multilingual glosses, multiple illustrative images, and visually relevant rela-265

tions, covering a total number of 90k nodes, 1.3M glosses and 938k images. 13 semantic relations266

are used to connect different entities in the graph, while the entities in VisualSem are linked to267

Wikipedia articles, WordNet [38], and high-quality images from ImageNet [13]. Visual Genome [29]268

is a knowledge-based scene graph dataset that connects structured image concepts with semantic269

relations. Visual Genome serves as the benchmark for various vision tasks, e.g., visual grounding,270

and scene graph generation. ConceptNet [49] is a knowledge graph that connects words and phrases271

of natural language with labeled edges. Its knowledge is collected from many sources including272

expert-created resources and crowd-sourcing built on only language modality.273

Besides the three knowledge graph datasets, we also train our model on two widely adopted image-274

text datasets that share the similar data distribution with the training data in CLIP. We practically add275
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Table 1: Fine-tuned image-text retrieval results on Flockr30K and COCO datasets. The best result is
shown in blue and the better result between CLIP and our approach is shown in bold.

Method
Flickr30K (1K test set) MSCOCO(5K test set)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER [12] 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA [18] 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR [32] - - - - - - 73.5 92.2 96.0 57.5 82.8 89.8
ERNIE-ViL [72] 88.7 98.0 99.2 76.7 93.6 96.4 - - - - - -

CLIP [41] 88.6 98.5 99.4 72.4 92.3 96.6 67.3 85.4 92.4 54.3 83.5 90.0
Ours 89.2 98.9 99.4 75.7 94.4 96.8 70.2 89.2 94.4 57.6 83.9 90.4

COCO Caption [11] and CC3M [45] to the training set, while large-scale datasets like CC12M [6] or276

YFCC [27] are not considered to maintain training efficiency.277

Downstream Task. To validate the effectiveness of our framework, we conduct experiments on278

various downstream tasks, including multi-modal tasks like text and image retrieval, visual question279

answering, and uni-modal tasks like image classification and natural language understanding. We280

also show the performances of our models on several knowledge-based tasks including link prediction281

and triple classification, where our model can benefit from the graph-based training schedule.282

5.2 Multi-modal Tasks283

Image and text retrieval. We first conduct experiments on Flickr30k [40] and COCO Caption [11]284

dataset to show the performances of our model on image-text retrieval tasks. Given input sets X285

and Y of images and texts, we use Knowledge-CLIP to extract features for each input, and model286

the joint probability with the cosine similarity between image and text pairs. We summarize the287

comparison results of Knowledge-CLIP with competitive baselines in Tab. 1. It is shown that our288

model consistently achieves better results over the original CLIP on both datasets, while comparable289

with competitive baselines like OSCAR.290

Table 2: Fine-tuned results on other V-L tasks.

Method VQA SNLI_VE
test-dev test-std val test

UNITER [12] 72.70 72.91 78.59 78.28
VILLA [18] 73.59 73.67 79.47 79.03
OSCAR [32] 73.16 73.44 - -
ALBEF [30] 74.54 74.70 80.14 80.30

CLIP [41] 74.10 73.56 79.51 80.01
Ours 76.11 75.24 80.52 80.97

Visual question answering / Visual Entail-291

ment. We also validate the effectiveness292

of Knowledge-CLIP on other vision-language293

tasks, including VQA [19] and SNLI-VE [68].294

We show the comparison results in Tab. 2.295

Comparing to competitive baselines including296

VILLA [18] and ALBEF [30], Knowledge-297

CLIP with ViT-L/14 shows better performances298

under all settings, while the smaller model also299

achieves competitive results. Comparing to the300

original CLIP model, our pre-trained model301

practically improves its transferability on down-302

stream tasks, especially on the datasets like VQA that requires reasoning ability.303

5.3 Uni-modal Tasks304

Table 3: Fine-tuned results
on ImageNet.

Method Acc(%)
DeiT [58] 83.4
CLIP [41] 84.2
Ours 84.4

Image Classification. To further demonstrate the generalization305

power of Knowledge-CLIP, we compare the performances of pre-train306

models on the ImageNet classification task [13]. We summarize the307

comparison results in Tab. 3, and show that Knowledge-CLIP can also308

handle vision tasks well. We argue the improvements over baselines309

may attribute to the scene graphs in our pre-training dataset, which310

emphasize the visual concepts in the images.311

Language Understanding. We validate the generalization performance of Knowledge-CLIP for312

language understanding tasks on the widely adopted GLUE dataset [60]. Specifically, we conduct313

experiments on 7 tasks in GLUE and summarize the comparison results in Tab. 4. It is shown that314

our model achieves comparable performances with competitive baseline models. Also, for tasks like315
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Table 4: Fine-tuned language understanding results on GLUE dataset. The best result is shown in
blue and the better result between CLIP and our approach is shown in bold.

Method CoLA SST-2 RTE MRPC QQP MNLI QNLI
Mcc. Acc. Acc. Acc./F1 Acc./F1 Acc Acc

VilBERT [36] 36.1 90.4 53.7 69.0/79.4 88.6/85.0 79.9 83.8
VL-BERT [51] 38.7 89.8 55.7 70.6/81.8 89.0/85.4 81.2 86.3
UNITER [12] 37.4 89.7 55.6 69.3/80.3 89.2/85.7 80.9 86.0
SimVLM [65] 46.7 90.0 63.9 75.2/84.4 90.4/87.2 83.4 88.6
FLAVA [48] 50.7 90.9 57.8 81.4/86.9 90.4/87.2 80.3 87.3
CLIP [41] 42.1 90.5 59.2 82.4/87.0 90.4/87.1 80.9 87.1
Ours 50.4 91.2 62.4 83.5/87.6 90.5/87.9 83.6 89.5

Table 5: Fine-tuned link prediction results on WN18RR and FB15K-237.

Method
WN18RR FB15k-237

MR MMR Hits MR MMR Hits
@1 @3 @10 @1 @3 @10

TransE [4] 3384 0.182 0.027 0.295 0.444 357 0.257 0.174 0.284 0.420
ConvE [14] 4187 0.430 0.400 0.440 0.520 244 0.325 0.237 0.356 0.501
RotatE [53] 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
InteractE [59] 5202 0.463 - 0.430 0.528 172 0.354 0.263 - 0.535
Ours 2689 0.467 0.430 0.477 0.572 182 0.356 0.281 0.391 0.530

QQP and MNLI that require sentence-pair matching, Knowledge-CLIP shows higher performances,316

due to the existence of language triplets in the pre-training dataset.317

5.4 Knowledge-based Tasks318

Benefiting from the graph-based learning framework in the pre-training process, our models enjoy319

advantages on several knowledge-based downstream tasks. Therefore, we conduct experiments on320

link prediction, entity classification and triple classification tasks.321

Link prediction task aim to recover an incomplete triplet when one of the entities is masked, i.e.,322

predicting entity h given (-, r, t). This task shares certain similarities with our pre-training objectives.323

We validate the performances of our model on the WN18RR [14] and FB15K-237 [57] datasets, where324

MR (MeanRank), MRR(Mean Reciprocal Rank), and Hit@n are adopted as the evaluation metrics.325

As shown in Tab. 5, Knowledge-CLIP is able to perform competitive performances comparing to326

several baseline models, and achieves better results on 3 of 5 metrics.327

Table 6: Fine-tuned results on YAGO39K.

Triple Classification(%)
Method Accuracy Precision Recall F1-Score
TransE [4] 92.1 92.8 91.2 92.0
TransD [26] 89.3 88.1 91.0 89.5
HolE [39] 92.3 92.6 91.9 92.3
Ours 92.7 92.6 91.9 92.5

Triple classification requires the model to dis-328

tinguish matched triples from unmatched ones,329

which can serve as a binary classification task.330

We validate our model on YAGO39K [37]331

dataset, with Accuracy, Precision, Recall, and332

F1-Score as the evaluation metric. It is shown in333

Tab. 6 that our model shows promising results334

over competitive baselines.335

6 Conclusion336

In this paper, we propose a novel vision-language pretraining framework that incorporates knowledge337

information to model the semantic connections between vision and language entities. We introduce338

three types of graph-structured datasets into the training process, and adopt a multi-modal encoder to339

model the joint distribution of entities and their semantic relations. Extensive experiments on various340

downstream tasks including multi-modal, uni-modal, and graph-based tasks validate the transfer and341

generalization ability of our model. Our approach is now limited in injecting knowledge information342

into the CLIP models. However, our training objectives and new knowledge graph datasets are343

technically compatible with other large-scale pretraining frameworks. We will explore the possibility344

of further applications in the future.345
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