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Abstract

Deep reinforcement learning (RL) agents trained on a few environments, often1

struggle to generalize on unseen environments, even when such environments are2

semantically equivalent to training environments. Such agents learn representations3

that overfit the characteristics of the training environments. We posit that gener-4

alization can be improved by assigning similar representations to scenarios with5

similar sequences of long-term optimal behavior. To do so, we propose behavior6

predictive representations (BPR) that capture long-term optimal behavior. BPR7

trains an agent to predict latent state representations multiple steps into the future8

such that these representations can predict the optimal behavior at the future steps.9

We demonstrate that BPR provides large gains on a jumping task from pixels, a10

problem designed to test generalization.11

1 Introduction12

Deep reinforcement learning (RL) agents, even when trained on diverse environments with similar13

high level goals but different dynamics and visual appearances, often struggle to generalize on14

unseen environments, even when such environments are semantically equivalent to training envi-15

ronments [Farebrother et al., 2018, Cobbe et al., 2020, Agarwal et al., 2021a, Packer et al., 2018].16

Such agents learn state representations from high-dimensional observations that typically overfit to17

the peculiarities of training environments [Song et al., 2019, Raileanu and Fergus, 2021] rather than18

capturing generalizable skills which can be transferred to unseen environments. Such overfitting19

hinders the real-world applicability of RL, making generalization in RL an important challenge.20

To improve generalization using better representations, we revisit predictive representations [Littman21

et al., 2001, Rafols et al., 2005] that describe the environment in terms of predictions about future ob-22

servations, such as representations that encode the underlying environments dynamics. While learning23

such temporally predictive representations has been shown to improve sample efficiency [Oord et al.,24

2018, Schwarzer et al., 2021] within a training environment, it is unclear whether such representations25

would improve performance in unseen environments. More recently, Agarwal et al. [2021a] en-26

hance generalization by learning similar state representations for observations with similar long-term27

optimal behavior. Inspired by their findings, we posit that predictive representations that capture28

long-term optimal behavior might be better suited for generalization. We expect such behavior pre-29

dictive representations to generalize as two observations, possibly across different environments, are30

assigned similar representations if they exhibit similar sequences of optimal behaviors, irrespective31

of their differences in obtained rewards, visual appearances, or even the underlying dynamics.32

For learning behavior predictive representations (BPR), we train the agent to predict latent state33

representations multiple steps into the future such that these representations can predict the optimal34

behavior at the future steps (Figure 1). BPR can be viewed as a representation learning approach35

where the agent predicts the optimal behavior at future states resulting from following a sequence36
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Figure 1: Behavior Predictive Representations. A schematic diagram showing how behavior predictive
representations are learned using an auxiliary task on training environments. Representations zt from the policy
network are trained to predict the optimal behavior using either a reinforcement learning (RL) or imitation
learning (IL) loss. These representations zt, in conjunction with actions at, at+1, · · · , at+k−1, are also trained
to predicting latent representations ẑt+k via the transition model h such that the ẑt+k can predict the optimal
behavior π∗(zt+k) at time step t+ k.

of actions from a given state. We show the efficacy of BPR on the jumping task on pixels and37

show it improves generalization upon existing methods including PSEs [Agarwal et al., 2021a] and38

SPR [Schwarzer et al., 2021]. We also provide ablations demonstrating the effect of predicting39

suboptimal policies as well as the horizon for predicting future behavior.40

2 Preliminaries41

We describe an environment as a Markov decision process (MDP) that corresponds to a tuple42

M = (S,A, P,R, γ) where S is the state space, A is the action space, P : S ×A×S → [0, 1] is the43

state transition function, R : S ×A→ R is the reward function and γ ∈ [0, 1] is the discount factor.44

A policy π(·|s) maps a state s ∈ S to a distribution over the action space A. A trajectory is defined45

as the sequence of states, actions and corresponding rewards i.e. s0, a0, r1, s1, · · · . The goal of a46

reinforcement learning agent is to maximize the cumulative expected return Ep(τ)[
∑
t γ

tr(st, at)]47

where p(τ) = p(s0)
∏
t p(st+1|st, at)π(at|st).48

3 Behavior Predictive Representations49

In this work, we aim to learn a policy that can generalize across related environments. Specifically,50

we train an agent using a finite number of environments (or tasks) sampled from a distribution of51

environments. The performance of this agent is evaluated using unseen environments sampled from52

the same distribution. For example, consider the generalization problem in a jumping task from53

pixels [Tachet des Combes et al., 2018], where an agent needs to jump over an obstacle (Figure 2).54

Standard deep RL agents trained on a small number of training tasks with different obstacle positions55

struggle to generalize to unseen obstacle positions [Agarwal et al., 2021a].56

Inspired from the recent success of representation learning to improve generalization [Agarwal et al.,57

2021a, Raileanu and Fergus, 2021, Zhang et al., 2020], we also focus on learning better representations58

to improve generalization. We posit that learning better representations requires understanding which59

states are similar in terms of their long-term optimal behavior. To do so, we aim to learn latent state60

representations that not only capture the behaviour at the current state but will also be able to predict61

the behaviour at future states, which we call behavior predictive representations (BPR). Since BPR62

simply uses an auxiliary objective LBPR, it can be easily combined with any RL or imitation learning63

setup, as shown in Figure 1.64

To describe the auxiliary loss LBPR for predicting the long-term optimal behavior, we define some65

notation first. Let st be the state at the time step t and zt be the corresponding latent representation66

learned by the policy network f . The policy π predicts the action distribution given the latent67

representation zt. We use an encoder network f to generate these latent representations from states68
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Figure 2: Generalization on Jumping Task. In this task, the agent needs to jump over an obstacle. The agent
needs to time the jump precisely, at a specific distance from the obstacle, otherwise it will eventually hit the
obstacle. Training environments consists of different obstacle positions as well as floor heights. At test time, the
agent needs to generalize to environments with unseen positions and heights. The obstacle can be in 26 different
locations while the floor has 11 different heights, totaling 286 environments.

as, zt = f(st). A transition function h : S∗ × A → S∗ learns the state dynamics and predicts the69

representations at the next step, ẑt+1 = h(st, at).70

We predict the representations forK future steps by iteratively applying the transition function. While71

such latent state dynamics are typically learned by minimizing the mean squared loss between ẑt+k72

and zt+k, we instead use these predicted representations to predict the optimal action distributions in73

the future steps t+ 1 to t+ k. To do so, the agent minimizes the cross entropy between the predicted74

action distribution and optimal action distributions at these steps. Specifically, given access to the75

optimal policy π∗ on training environments, the auxiliary loss LBPR is given by:76

LBPR =

K∑
k=1

LCE(π∗(zt+k), π(ẑt+k)), (1)

where LCE(π1(·|s), π2(·|s)) = −
∑
a∈A π1(a|s) log π2(a|s).77

In the general RL setting, where we do not have access to the optimal policy, we propose to use the78

learned policy on training environments for specifying the future behavior in the objective LBPR.79

Specifically, the target distribution for the auxiliary cross entropy loss, LBPR, comes from the same80

policy network that is being trained (f in Figure 1). To provide some stability from the continuous81

changes in the learned policy, we use a separate target policy network that is periodically updated82

with the learned policy network parameters, analogous to deep Q-learning [Mnih et al., 2013] and83

self-supervised learning [Grill et al., 2020]. So, the target representations ẑt+k are derived form the84

learned transition function h while the action distribution πlearned(zt+k) comes from the target policy85

network. For this setting, the auxiliary loss L̂BPR is given by,86

L̂BPR =

K∑
k=1

LCE(πlearned(zt+k), π(ẑt+k)) (2)

The final training objective is the combination of both of these loss functions. Let LRL be the87

traditional model-free RL (or imitaion learning) objective. Then, the combined loss function for88

learning behavior predictive representations isL = LRL+λBPRL
BPR, where λBPR is the weighting89

coefficient for the auxiliary loss.90

4 Experiments91

We first thoroughly investigate behavior predictive representations (BPR) on the jumping task [Ta-92

chet des Combes et al., 2018, Agarwal et al., 2021a] that captures whether agents can learn the correct93

invariances for generalization directly from image inputs.94
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(a) “Wide” grid (b) “Narrow” grid (c) Random grid
Figure 3: Jumping Task: Visualization of average performance of BPR with data augmentation across different
configurations. We plot the median performance across 25 runs. Each tile in the grid represents a different task
(obstacle position/floor height combination). For each grid configuration, the height varies along the y-axis (11
heights) while the obstacle position varies along the x-axis (26 locations). The red letter > indicates the training
tasks. Random grid depicts only one instance, each run consisted of a different test/train split. Beige tiles are
tasks BPR solved while black tiles are tasks BPR did not solve.

4.1 Jumping Task From Pixels95

Task Description. The task consists of an agent trying to jump over an obstacle using two actions:96

right and jump. Different tasks consist in shifting the floor height and/or the obstacle position (Fig-97

ure 2). To generalize, the agent needs to be invariant to the floor height while jump based on the98

obstacle position.99

Problem Setup. Following Agarwal et al. [2021a], we use three different configurations (Figure 3),100

each consisting of 18 seen (training) and 268 unseen (test) tasks, to test generalization in regimes101

without and with data augmentation using RandConv [Lee et al., 2020]. As discussed by Agarwal102

et al. [2021a], the different grids configurations capture different types of generalization: the “wide”103

grid tests generalization via “interpolation”, the “narrow” grid tests out-of-distribution generalization104

via “extrapolation”, and the random grid instances evaluate generalization similar to supervised105

learning where train and test samples are drawn i.i.d. from the same distribution. Refer to Agarwal106

et al. [2021a] for more more experimental details.107

Baselines. We compare the efficacy of our method with a number of techniques that have been used108

to achieve generalization including regularization such as `2-regularization and dropout [Farebrother109

et al., 2018] and data augmentation [Lee et al., 2020].110

Policy Similarity Embeddings (PSEs) [Agarwal et al., 2019] are the state-of-the-art generalization111

method on the jumping task. PSEs form an important baseline for BPR as PSEs also use the112

future behaviour as a similarity metric between states. Specifically, PSEs learn contrastive metric113

embeddings using a policy similarity metric d (Equation 3) that uses policy to measure the long term114

behavior similarity between among states.115

d(x, y) = DIST (π∗(x), π∗(y)) + γW1(d)(pπ∗(·|x), pπ∗(·|y)) (3)

Self-predictive representations (SPR) [Schwarzer et al., 2021] is another relevant baseline which116

has been shown to improve sample-efficiency on training environments on the Atari 100k bench-117

mark [Kaiser et al., 2019, Agarwal et al., 2021b]. SPR’s objective is that the agent learns to predict its118

own latent representations at future steps. Similar to BPR, it uses a transition function to iteratively119

generate these latent representations for the future steps. However, while BPR optimizes the latent120

representations to predict future behavior, SPR tries to maximize the similarity between the predicted121

latent representations ẑt+1 : ẑt+K with the true future state representations zt+1 : zt+K . To do so,122

SPR uses a self-supervised learning objective [Grill et al., 2020] as the auxiliary loss,123

LSPR(st : st+k, at : at+k) = −
K∑
k=1

( q(go(ẑt+k))

||q(go(ẑt+k))||2

)T( gm(zt+k)

||gm(zt+k)||2

)
(4)

where go, gm and q are online projection network, target projection network and prediction networks124

respectively. SPR linearly combines the auxiliary objective, LSPR, with the RL objective.125

Results. Table 1 summarizes the performance of BPR and all the baselines with and without data126

augmentation. Without data augmentation, with only 18 training environments, BPR generalizes127

quite well in all the three grid configurations, significantly outperforming regularization and PSEs by128

a large margin. These results exhibit that BPR is effective even without data augmentation.129

Data augmentation complements all the methods and boosts generalization performance. Comparing130

RandConv + BPR to RandConv, we see that BPR is much more effective on top of RandConv.131
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Table 1: Percentage (%) of test tasks solved by different methods without and with data augmentation. The
“wide”, “narrow”, and random grids are described in Figure 2. For methods implemented in this work (BPR
and SPR), we report average performance across 25 runs with different random initializations, with standard
deviation between parentheses. Other results are taken from Agarwal et al. [2021a].

Data
Augmentation Method Grid Configuration (%)

“Wide” “Narrow” Random

No
Dropout and `2 reg. 17.8 (2.2) 10.2 (4.6) 9.3 (5.4)

PSEs 33.6 (10.0) 9.3 (5.3) 37.7 (10.4)
BPR 62.4 (18.6) 15.3 (6.7) 58.5 (20.0)

Yes
RandConv 50.7 (24.2) 33.7 (11.8) 71.3 (15.6)

RandConv + SPR 23.3 (11.8) 30.6 (13.3) 64.1 (15.6)
RandConv + PSEs 87.0 (10.1) 52.4 (5.8) 83.4 (10.1)
RandConv + BPR 90.0 (18.6) 52.0 (9.4) 82.5 (15.1)

Figure 4: Percentage (%) of test tasks solved by
BPR using ε-suboptimal policies on the “wide"
configuration. We report the mean across 25 runs.
Error bars show the standard error in mean results.

Figure 5: Percentage (%) of test tasks solved by
BPR for different lookahead K on “wide" configu-
ration. We report the mean across 25 runs. Error
bars show the standard error in mean results.

Moreover, when used in conjunction with data augmentation, BPR performs comparably to the132

current state-of-the-art method PSEs. Compared to BPR, SPR degrades the generalization per-133

formance significantly and even performs poorly than simply using RandConv. We hypothesize134

that the self-supervised learning objective in SPR might be exacerbating the overfitting in learned135

representations by trying to predict the spurious features captured by the learned representations on136

training environments.137

4.2 Effect of Policy Suboptimality on BPR138

On the jumping task, we use the optimal policy on training environments to learn BPR. To understand139

the dependence of BPR on the optimal policy, we utilize -suboptimal policies to the auxiliary loss140

during training. Specifically, the prediction at future steps predicts the optimal action with probability141

1− ε and suboptimal action with probability ε.142

We plot the performance of BPR on the “wide" configuration for the degree of suboptimality specified143

by ε, starting with the optimal policy (ε = 0) to a uniform random policy (ε = 0.5). It can be seen144

from Figure 4 that as ε increases, the performance decreases which is expected. For small values of145

ε, i.e., <= 0.2, the performance decreases slightly but for larger values, the performance decreases146

sharply. This means that BPR is tolerant to certain levels of suboptimality.147

4.3 Effect of look ahead on BPR148

The lookahead of the agent is the number of future steps K for which the optimal action is to be149

predicted by latent representations. Greater the value of K, latent representations are required to150

predict actions on further in the future and possibly improve their generalizability. But it will be151

difficult for the latent representation to predict actions for steps that are far from the current step.152

Thus the performance drops for larger values of K.153
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Figure 5 shows the plot of the performance of BPR on the "wide" configuration with increase the154

value of K. The performance of BPR is good for even low values of K and it remains similar for155

K = 1 to 7. But it increases slightly from K = 1to 3 and then decreases thereafter. As a result, we156

use K = 3 for all the results that we have reported so far.157

5 Conclusion and Future Work158

In this paper, we introduced Behavior Predictive Representations for improving generalization in159

reinforcement Learning. We show that predicting optimal actions at future steps is more beneficial160

than dynamics prediction or predicting future latent state representations. As seen from the results,161

BPR also performs well without data augmentations.162

We plan to extend our work to more complex environments designed for testing generalization such163

as the Procgen benchmark [Cobbe et al., 2019] and Distracting DM Control Suite [Stone et al., 2021].164

In these environments, we do not have access to the optimal policies and thus we plan to build BPR165

on top of RL objectives and show the effectiveness of BPR in such settings.166
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