
Theseus:
A Library for Differentiable Nonlinear Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract
We present Theseus, an efficient application-agnostic open source library for differ-1

entiable nonlinear least squares (DNLS) optimization built on PyTorch, providing2

a common framework for end-to-end structured learning in robotics and vision.3

Existing DNLS implementations are application specific and do not always incor-4

porate many ingredients important for efficiency. Theseus is application-agnostic,5

as we illustrate with several example applications that are built using the same6

underlying differentiable components, such as second-order optimizers, standard7

costs functions, and Lie groups. For efficiency, Theseus incorporates support for8

sparse solvers, automatic vectorization, batching, GPU acceleration, and gradient9

computation with implicit differentiation and direct loss minimization. We do10

extensive performance evaluation in a set of applications, demonstrating significant11

efficiency gains and better scalability when these features are incorporated.12

1 Introduction13

Reconciling traditional approaches with deep learning to leverage their complementary strengths is14

a common thread in a large body of recent work in robotics. In particular, an emerging trend is to15

differentiate through nonlinear least squares [1] which is a second-order optimization formulation at16

the heart of many problems in robotics [2–7] and vision [8–13]. Optimization layers as inductive17

priors in neural models have been explored in machine learning with convex optimization [14, 15]18

and in meta learning with gradient descent [16, 17] based first-order optimization.19

Differentiable nonlinear least squares provides a general scheme to encode inductive priors, as20

the objective function can be partly parameterized by neural models and partly with engineered21

domain-specific differentiable models. Here, input tensors define a sum of weighted squares objective22

function and output tensors are minima of that objective. In contrast, typical neural layers take input23

tensors through a linear transformation and some element-wise nonlinear activation function.24

The ability to compute gradients end-to-end is retained by differentiating through the optimizer which25

allows neural models to train on the final task loss, while also taking advantage of priors captured26

by the optimizer. The flexibility of such a scheme has led to promising state-of-the-art results in a27

wide range of applications such as structure from motion [18], motion planning [19], SLAM [20, 21],28

bundle adjustment [22], state estimation [23], image alignment [24] with many other applications like29

manipulation and tactile sensing [25, 26], control [27], human pose tracking [28, 29] to be explored.30

However, existing implementations from above are application specific, common underlying tools31

like optimizers get reimplemented, and features like sparse solvers, batching, and GPU support that32

impact efficiency are not always included. This has led to a fragmented literature where it is difficult33

to start working on a new idea or to build on the progress of prior work.34

To address this gap, we present Theseus, an open source library for differentiable nonlinear least35

squares optimization built on PyTorch. Theseus provides an efficient application-agnostic interface36

that consolidates recent efforts and catalyzes future progress in the domain of structured end-to-end37

learning for robotics and vision. Our contributions are summarized below.38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Application agnostic interface. Our implementation provides an easy to use interface to build39

custom optimization layers and plug them into any neural architecture. (i) The layer can be constructed40

from a set of available second-order optimizers like Gauss-Newton and Levenberg–Marquardt and41

a nonlinear least squares objective. (ii) The objective can be constructed with learnable or hand-42

specified cost functions, either by applying one of many common costs already provided in the library,43

or by building custom costs in-place with support for automatic differentiation through PyTorch [30].44

(iii) We also provide differentiable Lie groups for representing 2D/3D positions and rotations [31],45

and differentiable kinematics wrapping over an existing library [32] for representing robot models.46

More details are described in Sec. 3.47

Efficiency based design. Efficiency is a central design consideration and we make several advance-48

ments in improving computation times and memory consumption. (i) As common in prior work, an49

optimizer implementation using PyTorch’s native linear solver would use a dense representation for50

solving the linear system within the nonlinear optimization. In practice, these optimization problems51

often have a considerable amount of sparsity that can be exploited [33–36]. In Theseus, we imple-52

ment sparse linear solvers that are differentiable end-to-end and make them efficient with custom53

CPU and CUDA backends to support batching and GPU acceleration. (ii) Beyond sparse solvers, we54

extend batching and GPU support to all features in the library and add automatic vectorization of cost55

functions and other operations to significantly boost efficiency. (iii) Finally, we introduce implicit56

differentiation [37] and direct loss minimization [38, 39], which have been previously applied to only57

first order optimizers like gradient descent and convex optimization, to a new class of second-order58

optimizers. This goes beyond prior work with nonlinear least squares that currently only support59

differentiation with standard unrolling, which is known to have challenges with compute, memory,60

and vanishing gradients. More details are described in Sec. 4.61

Highlights of results. Together, the application-agnostic features let users easily set up a variety of62

problems like pose graph optimization, tactile state estimation, bundle adjustment, motion planning,63

and homography estimation, all of which are included as examples in the open source code and64

described in Sec. 3.1. In evaluations, we find that on a standard GPU, Theseus with a sparse solver is65

much faster and requires significantly less memory than a dense solver, and when solving a batch of66

large problems the forward pass of Theseus is up to 4x faster than state-of-the-art C++ based solver67

Ceres that has limited GPU support and does not support batching and end-to-end learning. We also68

compare all backward modes to find that with increasing number of optimization iterations, compute69

and memory increases linearly for unrolling and stays constant for implicit differentiation, while the70

latter also provides better gradients. More details are described in Sec. 5.71

2 Background and related work72

Nonlinear least squares (NLS) is an optimization problem [1] that finds optimization variables ✓73

✓
? = argmin

✓
S(✓), S(✓) = 1

2

P
i
||ri(✓i)||2 = 1

2

P
i
||wici(✓i)||2 (1)

where the objective S(✓) is a sum of squared vector-valued residual terms ri, each a function of ✓i 2 ✓,74

a subset of the optimization variables ✓ = {✓j}. Any variable ✓j is a manifold object, for example75

a Euclidean vector or a matrix Lie group. For flexibility, we represent a residual ri(✓i) = wici(✓i)76

as a product of a matrix weight wi and vector cost ci. Robotics and vision have used this general77

optimization formulation to tackle many applications [3, 4]. For example, costs capture sensor78

measurement errors and physical constraints to optimize camera, robot, object, or human poses in79

estimation and tracking problems like simultaneous localization and mapping (SLAM) [40], structure80

from motion [13], bundle adjustment [8], visual inertial odometry [2], articulated tracking [12],81

contact odometry in legged locomotion [25], 3D pose and shape reconstruction of humans [28, 29] or82

objects [10]. Similarly, costs can also capture constraints and desired future goals to find robot states83

or actions in motion planning [5], dynamics [6], and control [27] problems.84

Solving NLS. Problems represented by Eq. (1) are solved by iteratively linearizing the nonlinear85

objective around the current variables to get the linear system (
P

i
J
>
i
Ji)�✓ = (

P
i
J
>
i
ri), then86

solving the linear system to find the update �✓, and finally updating the variables ✓ ✓ � �✓, until87

convergence. Note that in the update the minus operation is more generally a retraction mapping for88

non-Euclidean variables. In the linear system, Ji = [@ri/@✓i] are the Jacobians of residuals with89

respect to the variables and the iterative method above, called Gauss-Newton (GN), is a nonlinear90

optimizer that is second-order, since H = (
P

i
J
>
i
Ji) represents the approximate Hessian. To91

improve robustness and convergence, variations like Levenberg–Marquardt (LM) damp the linear92

system, while others use a trust region and adjust step size for the update with line search (e.g.,93

2

Dogleg). Please refer to [1, 41] for an in depth exploration. In most applications discussed above the94

objective structure gives rise to a sparse Hessian since not all costs depend on all variables. Several95

general purpose frameworks [33–36] have been built that leverage this sparsity property to efficiently96

solve the sparse linear system in every iteration of the nonlinear optimization. While these framework97

were not built for deep learning, they are highly efficient and performant on CPU.98

NLS with learning. Data driven learning has been explored to address challenges in hand crafting99

costs or features for costs, finding weights to balance different costs, or to find initializations that lead100

to better convergence. Some examples include, learning object shape code [42] or environment depth101

code [43] for SLAM [44], learning motion priors for planning to manipulate articulated objects [45],102

learning relative pose from tactile images to estimate object state during pushing [26], and semantic103

2D segmentation fused in 3D mesh for semantic SLAM [7]. These approaches only train features on104

a surrogate or intermediate loss and then apply optimization at inference where the true downstream105

task loss is available but not utilized. To take full advantage of end-to-end learning, latest approaches106

thus are redesigning the optimization to be differentiable.107

Differentiable NLS (DNLS) solves the optimization in Eq. (1) and also provides gradients of the108

solution ✓
? with respect to any upstream neural model parameters � that parameterize the objective109

S(✓;�) and in turn any costs ci(✓i;�), weights wi(�), or initialization for variables ✓init(�). The110

goal is to learn these parameters � end-to-end with a downstream learning objective L defined as a111

function of ✓?. This results in a bilevel optimization setup112

inner loop: ✓?(�) = argmin
✓
S(✓;�), outer loop: � = argmin

�
L(✓⇤(�)) (2)

where the inner loop is second-order DNLS and the outer loop is first-order gradient descent class113

of optimization that is standard in deep learning. The outer loop performs update � � + ��114

by computing �� using gradients @✓?/@� through inner loop DNLS. Note that more generally the115

learning objective i.e. outer loss L can also depend on other quantities like neural model parameters116

downstream of ✓⇤, but we omit them here for clarity.117

Recent works with DNLS have outperformed optimization only or learning only methods by com-118

bining the strengths of classical methods with deep learning. For example, learning features for119

costs to represent depth in bundle adjustment [22] and monocular stereo [46] where an initialization120

network also learns to predict depth and pose, learning cost weights like motion model weights in121

video to depth estimation [18], obstacle avoidance weights in 2D motion planning from occupancy im-122

ages [19], learning robust loss weights in image alignment [24] and state-of-the-art dense SLAM [21],123

and confidence weights for feature matching to optimize camera pose [47]. Other works like, [20]124

backpropagate reconstruction error to sensor model in a SLAM system, [48] solves large scale bundle125

adjustment on a GPU, and learn sensor and dynamics models for 2D visual object tracking and visual126

odometry [23]. These implementations however, are application specific which has led repeated127

work in building DNLS where features like learnable costs and weights, Lie groups, and kinematics128

are not always present. Additionally, features that have a significant impact on performance, like129

sparsity and vectorization of costs are only considered by some [23, 48, 49] or in the case of implicit130

differentiation for second-order optimization, have not yet been explored.131

3 Application agnostic interface132

Given the lack of a common and efficient framework for DNLS an important goal of Theseus is133

to provide an application-agnostic interface. In this section, we describe how we enable this with134

an easy-to-use core API, standard cost functions, and features like Lie groups and kinematics, and135

illustrate several examples using this interface. We discuss design for efficiency in the next section.136

The core API lets users focus on describing the DNLS problem and their interaction with the outer137

loss L and parameters � within any broader PyTorch model, while the solution and differentiation138

are seamlessly taken care of under-the-hood. The basic components of the core API are described139

below with the help of a simple example in Listing 1 (see App. A for more details on the example):140

• Variable: refers to either optimization variables, ✓, or auxiliary variables (those constant with141

respect to S, e.g., parameters � or data tensors), which are named wrappers of torch batched142

tensors stored in Variable.data (lines 3-5).143

• CostFunction: defines costs ci (lines 12-14) and are also responsible for declaring which of its144

variables are optimization and which are auxiliary (lines 8-9),145

• CostWeight: defines weights wi associated with cost ci (line 14).146

• Objective: defines S(✓;�), and thus the structure of an optimization problem (lines 11, 15) by147

holding all cost functions and weights, and their associated variables. These are implicitly obtained148

3

1 x_true, y_true, v_true = read_data() # shapes (1, N), (1, N), (1, 1)
2

3 x = th.Variable(torch.randn_like(x_true), name="x")
4 y = th.Variable(y_true, name="y")
5 v = th.Vector(1, name="v") # a manifold subclass of Variable for optim_vars
6

7 def error_fn(optim_vars, aux_vars): # returns y - v * exp(x)
8 x, y = aux_vars
9 return y.data - optim_vars[0].data * torch.exp(x.data)

10

11 objective = th.Objective()
12 cost_function = th.AutoDiffCostFunction(
13 [v], error_fn, y_true.shape[1], aux_vars=[x, y],
14 cost_weight=th.ScaleCostWeight(1.0))
15 objective.add(cost_function)
16 layer = th.TheseusLayer(th.GaussNewton(objective, max_iterations=10))
17

18 phi = torch.nn.Parameter(x_true + 0.1 * torch.ones_like(x_true))
19 outer_optimizer = torch.optim.RMSprop([phi], lr=1e-3)
20 for epoch in range(10):
21 solution, info = layer.forward(
22 input_data={"x": phi.clone(),"v": torch.ones(1, 1)},
23 optimizer_kwargs={"backward_mode": th.BackwardMode.IMPLICIT})
24 outer_loss = torch.nn.functional.mse_loss(solution["v"], v_true)
25 outer_loss.backward()
26 outer_optimizer.step()

Listing 1: Simple DNLS example with Theseus, see App. A for details.

when a CostFunction is added to the Objective, and Variable names are used to infer which149

are shared by one or more CostFunction.150

• Optimizer: is the inner loop optimization algorithm (e.g. Gauss-Newton) that finds the solution151

✓
? given objective S (line 16).152

• TheseusLayer: encapsulates an optimizer and objective, and serves as the interface between the153

DNLS block and other torch modules upstream or downstream (line 16).154

The interface between the inner loop optimization and the outer loop’s parameters and loss occurs via155

TheseusLayer.forward (lines 21-23). This receives as input a dictionary mapping variable names156

to torch tensors, which Theseus then uses to populate the corresponding Variable with the tensor157

mapped to its name. With the input dictionary users can provide initial values for the optimization158

variables, data tensors, or current values for parameters � before running the inner loop optimization.159

The output of forward is another dictionary that maps variable names to tensors with their optimal160

values found in the inner loop (lines 21, 24); auxiliary variables are not modified during the forward161

pass. The output tensors can then be combined with other torch modules downstream to compute L,162

while maintaining the full differentiable computation graph (lines 24-26).163

We currently provide Gauss-Newton and Levenberg-Marquardt as Optimizer for the inner164

loop, with the ability to easily add support for more optimizers in the future. Listing 1 uses165

AutoDiffCostFunction to construct an in-place CostFunction (line 12) which allows automati-166

cally calculating Jacobians Ji with PyTorch. Beyond this, in the library we include standard cost167

functions with analytical Jacobians broadly used in many applications, like Gaussian measurements,168

reprojection error, relative pose measurement, motion models, and collision costs. We also include169

a variety of robust loss functions, useful for example in handling outliers [50], which can be easily170

integrated with CostFunction. Next we describe support for Lie groups and kinematics.171

Differentiable Lie groups Lie groups are widely used in robotics and vision to represent 2D/3D172

positions and rotations [31]. Due to their non-Euclidean geometry, it is difficult to apply them to deep173

learning, which primarily operates with Euclidean tensors, but recently there is growing interest in174

making them compatible [23, 51–55]. LieTorch [52] generalizes automatic differentiation on the Lie175

group tangent space through local parameterization around the identity, but the implementation is176

complex since every operation requires a custom kernel. In contrast, Theseus computes common Lie177

group operators, e.g., the exponential and logarithm map, inverse, composition, etc., in closed form,178

and provides their corresponding analytical derivatives on the tangent space. Following [56], we also179

implement a projection operator that allows us to project gradients computed by PyTorch’s autodiff to180

4

the tangent space and use them to easily compute Jacobians and update Lie group variables correctly;181

a similar strategy has also been implemented in [57]. Additionally, our Lie group implementation182

includes a heuristic extension that allows using any of PyTorch’s first-order optimizers on non-183

Euclidean manifolds with minimal code changes. All of these make it easy and straightforward to184

run optimization and train neural networks with Lie groups variables. More details in App. B.185

Differentiable kinematics Many problems such as motion planning or state estimation on high de-186

gree of freedom robots like arms or mobile manipulators, involve computation of robot kinematics for187

collision avoidance or computing distance of end effector to goal. Theseus provides a differentiable188

implementation of forward kinematics by wrapping over Differentiable Robot Model [32], which189

builds a differentiable kinematics function from a standard robot model file. Gradients are computed190

through autodiff, while we also provide a more efficient, analytical manipulator Jacobian. This191

module can be used within any CostFunction in Theseus.192

3.1 Example applications193

To illustrate the versatility of Theseus, we include a number of example DNLS applications below194

with more details in App. C. Crucially, to implement these with Theseus, most of the effort is only195

in defining application-specific components such as data management, neural models, or custom196

CostFunction. With these defined, putting the full DNLS block together is a few lines of code to197

setup a TheseusLayer and an outer loop similar to the simple example in Listing 1.198

Pose graph optimization (PGO) estimates poses from their noisy relative measurements [58]. With199

DNLS we learn the radius of a Welsh robust cost function for outlier rejection, using the difference200

between estimated and ground truth poses as the outer loss on a synthetic dataset.201

Tactile state estimation follows [26], which estimates 2D poses of an object pushed by a robot hand202

with an image-based tactile sensor [59]. A neural network that predicts relative pose between hand203

and object from tactile images is learned end-to-end through the TheseusLayer.204

Bundle adjustment is the problem of optimizing a 3D reconstruction formed by a set of camera205

images and a set of landmarks observed and matched across the images [60]. We learn the radius of a206

soft-kernel that penalizes outlier observations, using the average frame pose error as outer loss.207

Motion planning considers a differentiable version of the GPMP2 planning algorithm, inspired208

by [19], where the outer loss tries to match expert demonstrations. Here we learn a model for209

initializing optimization variables, and we include the inner loop objective as a term in the outer loss.210

Homography estimation. Homography is a linear transformation between corresponding points in211

two images and can be solved by minimising a dense photometric loss. Robustness to lighting and212

viewpoint change can be improved with a feature-metric loss based on CNN features [61–66]. In our213

outer loop, we train a CNN to produce robust features for image alignment.214

4 Efficiency based design215

Theseus enables several different applications with a general interface. Compute and memory216

efficiency are central to making its usage practical. Next, we explain design considerations to support217

batching and vectorization, sparsity, and backward modes for differentiation which we demonstrate218

boost performance in evaluations section.219

4.1 Batching and vectorization220

Figure 1: Speedup with automatic vectorization on PGO.
Black dotted line is without vectorization.

Parallel processing is important to improve the221

computational efficiency in machine learning222

and optimization. In Theseus, we enable two223

levels of parallelization. First, Theseus natively224

supports solving a batch of DNLS in parallel.225

This fits seamlessly in the PyTorch framework,226

where training and inferences by batches is the227

default mode of operation, helping reduce the228

overhead coming from individual operations be-229

ing implemented in Python. Second, inspired by DeepLM [48], and noting that lots of the operations230

such as costs, gradients and Jacobian computation, and variable updates only differ from each other231

in terms of the input data, we make use of the single-instruction-multiple-data (SIMD) protocol232

by automatically detecting and vectorizing operations of the same type, significantly reducing the233

overhead for forward and backward passes. Using the PGO example, Fig. 1 shows that Theseus234

achieves significant speedup with automatic vectorization. Note that there is a small application235

dependent trade-off; here the memory use increases by ⇠ 35% for forward and ⇠ 10% for backward.236

5

4.2 Handling sparsity with linear solvers beyond PyTorch237

Solving NLS requires solving a sequence of linear systems to obtain descent directions. As discussed238

in Sec. 2, these systems are generally sparse and can be solved much more efficiently if not treated as239

dense. Theseus includes differentiable sparse solvers that take advantage of the sparsity, comple-240

menting PyTorch’s native dense solvers. Importantly, Theseus seamlessly takes care of assembling241

the cost functions and variables in the objective into sparse data structures that our linear solvers242

can consume, without any extra burden on the user. Currently, we provide two sparse solvers, one243

that uses the CPU-based solver CHOLMOD [67], and another, cudaLU, that is based on the cuSolverRF244

package, itself part of the cuSolver library provided by Nvidia with CUDA. As a bonus feature, we245

provide access to these solvers as standalone PyTorch functions, so they can, in fact, be used to solve246

sparse matrices arising outside of NLS or DNLS optimization.247

CHOLMOD-based solver. CHOLMOD [67] achieves state-of-the-art performance on computation of the248

Cholesky decomposition of sparse matrices. It exploits parallelism by grouping sparse entries to249

take advantage of high-performance multi-threaded dense matrix operations in BLAS/LAPACK libraries.250

CHOLMOD has some limited support for GPU for some of its operations, but the algorithm is strongly251

CPU-based and the user is expected to provide matrix data on the CPU. One convenient feature is252

computing the symbolic analysis of a sparse matrix pattern as a separate step and creating a symbolic253

decomposition object that can be used for all subsequent factorizations. We also take advantage of254

builtin functionality for sparse multiplication and only provide the Jacobian matrix J to solve for the255

Hessian matrix H = J
>
J . Two limitations of the library with respect to Theseus are, first, the lack256

of proper GPU support, which forces us to provide matrix data on the CPU, and, second, the lack of257

batching, which requires us to loop to solve every problem in the batch independently. On the other258

hand, since it runs on CPU it has less memory restrictions than GPU-based solvers (see Sec. 5.1).259

cudaLU solver. cuSolverRF is designed to accelerate the solution of sets of linear systems by fast LU260

refactorization when given new coefficients for the same sparsity pattern. To take advantage of this,261

we implemented custom CUDA kernels for batched sparse matrix-matrix and matrix-vector products,262

and for solving a batch of sparse linear systems using LU factorization from cuSolverRF. Although263

this solver leads to a substantial performance boost over PyTorch’s dense solver (see Sec. 5.1), the264

closed-source nature of cuSOLVER results in some challenges and limitations: (i) cuSolverRF does265

not support separate symbolic decomposition and numeric contexts, so it’s not possible to use the266

same symbolic decomposition to hold in memory separate factors. Since this is necessary in Theseus267

for unrolling of the inner loop, we work around this limitation by creating a pool of contexts, and we268

use the least recently used context for factorization. As a consequence, the number of contexts must269

be set according to the number of iterations that need to be unrolled; (ii) The batch size is fixed once a270

context is created. Since recreating the contexts is an expensive operation, it means that the batch size271

has to be constant over the course of outer loop optimization; (iii) It relies on LU factorization, which272

for symmetric matrices (the case of Theseus) is less efficient than using Cholesky decomposition.273

Backward for custom linear solvers. Obtaining derivatives of the linear system solve with respect274

to the parameters is crucial operation for DNLS. In particular, we consider optimizing the parameters275

A and b of a linear system y = A
�1

b to minimize a downstream function f(y). The derivatives of the276

loss with respect to the parameters of the linear system can be obtained with implicit differentiation,277
@f

@b
= A

�1 @f

@y
and @f

@A
= �A�1 @f

@y
y
>, as done in Barron and Poole [68]. In Theseus, we implement278

this by connecting the Python interface of our sparse solvers with PyTorch’s autograd.Function279

classes that implement the gradients above in their backward methods. This connects the computation280

graph between the downstream function and any upstream parameters that modify the system via281

auxiliary variables or values for optimization variables. Furthermore, since the gradients require282

solving linear systems that use the same matrix as the forward pass, our backward pass can cache283

factorizations, resulting in much faster backward times compared to dense solvers (see Fig. 2).284

4.3 Backward modes for DNLS285

The parameters � upstream of DNLS can be learned end-to-end through the solution ✓
?(�) by using286

the adjoint derivatives @✓
?(�)/@�. We include four methods for computing them in Theseus.287

Unrolling is the standard way in which past work in DNLS has computed the adjoint derivatives.288

This is often referred to as backpropagation through time or unrolled optimization and is explored in289

[16, 19, 69–78]. In practice, often only a few steps of unrolling are performed due to challenges with290

compute, memory, and vanishing gradients.291

Truncated differentiation. Aside from unrolling a few steps, another way of approximating the292

derivatives is to use truncated backpropagation through time (TBPTT) [79, 80]. Truncation unfortu-293

6

nately results in biased derivatives and many works [81–85] seek to further theoretically understand294

the properties of TBPTT, including the bias of the estimator and how to unbias it.295

Implicit differentiation. If ✓? can be computed exactly, then the implicit function theorem provides a296

way of computing the adjoint derivatives as done in related work in convex optimization and first-order297

gradient descent methods [14, 15, 86–91]. We apply the implicit function theorem from Dontchev298

and Rockafellar [37, Theorem 1B.1] (see App. E) to Eq. (2) to perform implicit differentiation on a299

new class of second-order NLS optimization. This first requires that we transform Eq. (2) into an300

implicit function that finds the roots. We do this via the first-order optimality condition, resulting in301

g(✓;�) := r✓S(✓;�). Finding ⇥?(�) := {✓ | g(✓;�) = 0} corresponds to solving Eq. (2). Under302

mild assumptions, the theorem above gives the adjoint derivative at �̄303

D�✓
?(�̄) = �D�1

✓
g(✓?(�̄); �̄)D�g(✓?(�̄); �̄). (3)

As Theseus internally uses a (Gauss-)Newton solver, the following proposition provided in App. E304

shows how we can use compute Eq. (3) by differentiating a single Newton step at an optimal solution.305

Proposition 1. Differentiating a single Newton iteration h at an optimal and unique ✓
?

results in the306

exact computation of the implicit derivative in Eq. (3).307

Direct loss minimization. Suppose we have a outer loss as in Eq. (2). The direct loss minimization308

(DLM) approach uses this loss to augment the inner-loop optimization problem in order to define309

a finite difference scheme that approaches the true gradient r�L = lim"!0 g
"

DLM, where g
"

DLM ,310
1
"
{ @

@�
S(✓⇤;�)� @

@�
S(✓direct;�)}. This was used in prior works that solve optimization problems on311

structured discrete domains [38, 39, 92, 93], but has so far not seen much use in structured continuous312

settings. We modify the original DLM formulation to better suit its implementation within Theseus313

✓direct = argmin
✓̂
S(✓̂;�) +

��"✓̂ � 1
2r✓L(✓⇤)

��2, ✓
? = argmin

✓̂
S(✓̂;�) (4)

This is different from the original formulation in two ways: (i) we only assume access to the314

gradient vectorr✓L(✓⇤) which helps formulate DLM as an algorithm for computing vector-Jacobian315

products, and (ii) we add a small regularization term to ensure the modified objective for ✓direct is a316

sum-of-squares without affecting the limit as "! 0. See App. E for more details.317

5 Evaluation318

We evaluate the performance of Theseus under different settings with PGO and tactile state estimation319

applications from Sec. 3.1. PGO allows us to easily control the problem scales for performance320

evaluation; in Sec. 5.1 we profile time and memory consumption of Theseus in an end-to-end321

setup with forward pass of 10 iterations, backward with implicit differentiation and 20 epochs,322

and in Sec. 5.2 we evaluate timings of Theseus as a stand-alone NLS optimizer and compare with323

state-of-the-art Ceres [35]. The tactile state estimation application involves a more complex outer324

loop model that is useful for comparing all different backward modes which we present in Sec. 5.3.325

5.1 Profiling forward and backward pass of Theseus for DNLS326

We study the performance of Theseus for DNLS on the PGO problem with the synthetic Cube327

dataset, as described in App. C. We use implicit differentiation to compute gradients of the inner loop,328

which is run with 10 inner loop iterations and 20 outer loop epochs. In all cases we used an Nvidia329

V100 GPU with 32GBs of memory for all Python computation, and Intel Xeon 2.2GHz CPU with 20330

threads for the CPU-based CHOLMOD linear solver. We evaluate performance using our sparse solvers331

in Theseus and using PyTorch’s Cholesky dense solver.332

Fig. 2 shows the average time of a full forward and backward pass for a given batch size, taken by333

Theseus with different solvers (cudaLU, CHOLMOD and dense) for different problem scales (number334

of poses and batch size). The two left plots show time as a function of number of poses for two batch335

sizes (small, 16; large, 128), while the two right plots show time as a function of batch size for two336

pose settings (small, 256 poses; large, 2048 poses). Note that dense does not scale well with poses or337

batch size. For a batch size of 16, the largest problem that it can solve before running out of GPU338

memory has 512 poses; for a batch size of 128, the largest is 256 poses (left two plots). With 2048339

poses, dense is unable to solve the problem regardless of batch size (right two plots). On the other340

hand, our cudaLU solver, is able to scale up to 4096 poses with a batch size of 128. Note that CHOLMOD341

can solve problems even larger, since the linear system is solved on CPU and we have successfully342

tested up to 8192 poses and batch size 256, for a total of 22GBs of GPU usage.343

In addition to being more memory efficient, running times of our sparse solvers are also smaller for344

large enough number of poses/batch size, especially for the backward pass. For the smallest problem345

7

Figure 2: Forward/backward times of Theseus with sparse and dense solvers on different PGO problem scales.

considered (64 poses, batch size 16), the total sum of average forward and backward times are346

similar, namely, 1.80, 1.88, and 2.10 seconds per batch for cudaLU, dense, and CHOLMOD, respectively.347

Increasing to 128 poses makes cudaLU noticeably faster than dense (3.52 vs 3.87 seconds), while348

CHOLMOD starts outperforming dense with 256 poses (5.68 vs. 5.91 seconds, for a batch size of 8). As349

the problem scale increases, the gap between the sparse and dense solvers widens: for the largest350

problem solvable with dense (512 poses and 16 batch size), we have average total times of 9.84,351

11.26, and 25.52 seconds for cudaLU, CHOLMOD, and dense, respectively. See App. D for more results352

and details.353

5.2 Profiling Theseus as stand-alone NLS optimizer354

DNLS typically involves solving numerous optimization problems each epoch where a fast NLS355

optimizer is essential. We compare Theseus as a stand-alone NLS optimizer with the state-of-the-art356

Ceres [35] library for solving a batch of PGO problems without any learning involved. We compare357

all solvers in terms of the total time required to perform 10 iterations on a set of 256 PGO problems.358

CPU/GPU configurations are same as before. For CHOLMOD, we also include a configuration that runs359

everything on CPU, including Jacobians and residual computation (labelled CHOLMOD-allcpu).360

Figure 3: Speedup of Theseus (forward) over Ceres
(black dashed) on different PGO problem sizes.

Fig. 3 shows speedup obtained by Theseus with361

batching, vectorization and sparse solvers, over362

Ceres as a function of increasing number of363

poses or batch size. We vary the number of364

poses for two fixed batch sizes (small, 16; large,365

128), and vary the batch size for two fixed num-366

ber of poses (small, 256; large, 2048). Al-367

though Ceres is faster than all of our solvers368

when the number of poses and batch size are369

small, as these increase Theseus shows sig-370

nificant speedup by being able to solve larger371

batches of problems in parallel. Since typical use case of Theseus involves large batches and number372

of variables during end-to-end learning with DNLS, the speedups in this setting against a performant373

NLS solver highlights the significance of our efficiency-based design choices.374

5.3 Backward modes analysis375

We explore the trade-offs between our different backward modes using the tactile state estimation376

application in Sec. 3.1; the learnable components here include a neural network, and thus more closely377

follow the type of applications that motivate Theseus. We compare the following backward modes:378

derivative unrolling (Unroll), implicit differentiation (Implicit), truncated differentiation (Trunc),379

and direct loss minimization (DLM); for Trunc we include results when truncating 5 and 10 steps.380

We compare all modes along 3 axis of performance, namely, validation loss after 100 epochs (outer381

loop), run time during training, and peak GPU memory consumption of TheseusLayer. CPU/GPU382

configurations are same as before except GPU with 16GB of memory is used. For time and memory383

we present separate results for forward and backward pass, and all numbers are averaged over 700 (7384

batches for 100 epochs). Below we discuss our main findings from this analysis, and more results385

and details can be found in App. E.386

Fig. 4 shows average run times for all backward modes as a function of the maximum number of387

iterations in the inner loop optimization. We observe that the time used in the forward pass (Fig. 4,388

far left) increases roughly linearly for all modes, all having similar times except for Unroll and389

Trunc-5, which are slower after 30 inner loop iterations. However, we observe stark differences in the390

backward pass time (Fig. 4, center left), where Unroll is the only method that has a linear dependence391

8

Figure 4: Time and memory consumption of different backward modes in tactile state estimation.
on the number of inner loop iterations. All other methods have a constant footprint for computing392

derivatives, independent of the number of inner loop iterations. As expected, increasing the number393

of iterations through which we backprop (5 or 10 for Trunc, all iterations for Unroll) increases the394

time necessary for a backward pass (Implicit < Trunc-5 < Trunc-10). DLM’s backward pass time395

is larger than Unroll’s for a small number of iterations, but performs better when the number of396

iterations is large (> 20 in this example).397

Figure 4 (center right) shows the average peak memory consumption of the backward modes. In398

this case, the trends observed for the backward pass memory consumption is similar to the trends399

in time. In particular, Unroll’s memory footprint increases linearly with the number of inner loop400

iterations, from ⇠ 34MBs to ⇠ 262MBs; for all other methods the memory consumption remains401

constant. The best memory profiles in this example is obtained with Implicit and DLM backward402

modes, with ⇠ 33MBs and ⇠ 43MBs, respectively. These trends also hold for the forward pass403

memory consumption.404

Figure 4 also shows the validation losses obtained with all backward modes (far right). The best405

validation loss, after 100 epochs of training, is obtained using Implicit, followed by the Trunc.406

Most methods improve up to a certain point with an increasing number of inner loop iterations, but407

methods that do backward through unrolled inner loop iterations (Unroll and Trunc) start performing408

worse after 10 inner loop iterations. One exception is DLM, which doesn’t improve much with the409

number of iterations, but is also the best method when only 2 inner loop iterations are performed.410

As a point of caution, we stress that, unlike the timing and memory results, the relative training411

performance between different backward modes is likely to be application dependent, and is affected412

by hyperparameters such as the step size used for the inner loop optimizer (0.05 in this example),413

and the outer optimizer’s learning rate. Our experiments suggest that implicit differentiation is a414

good default to use for differentiable optimization, considering its low time/memory footprint, and415

potential for better end-to-end performance with proper hyperparameter tuning.416

6 Discussion417

Summary. Theseus provides nonlinear least squares as a differentiable layer and enables easily418

building and training end-to-end architectures for robotics and vision applications. We illustrate419

several example applications using the same application-agnostic interface and demonstrate significant420

improvement in performance with our efficiency based design. Following how autodiff and GPU421

acceleration (among others) have led to the evolution of PyTorch in contrast to numpy, we can422

similarly view sparsity and implicit differentiation on top of autodiff and GPU acceleration as the key423

ingredients that power Theseus in contrast to solvers like Ceres that typically only support sparsity.424

Limitations. Theseus currently has a few limitations. The nonlinear solvers we currently support425

apply constraints in a soft manner (i.e., using weighted costs). Hard constraints can be handled with426

methods like augmented Lagrangian or sequential quadratic programs [94, 95], and differentiating427

through them are active research topics. The current implementation of LM does not support damping428

to be learnable. Some limitations and trade-offs with the sparse linear solvers are also discussed429

in Sec. 4.2. Online learning applications may require frequently editing the objective and depending430

on the problem size there may be a nontrivial overhead that is not currently optimized as we explored431

only non-incremental setting in this work. Additional performance gains can be extracted by moving432

some of our Python implementation to C++ but we prioritized flexibility in evolving the API in the433

short-term. The automatic Jacobian computation with AutodiffCostFunction is based on torch434

autograd jacobian, which unnecessarily computes gradients across independent batch entries and thus435

results in significant memory and compute for highly parameterized cost functions. We do not yet436

support distributed training beyond what PyTorch natively supports. We will explore these features437

and optimizations in the future as the library continues to evolve.438

9

References439

[1] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business440

Media, 2006. 1, 2, 3441

[2] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-manifold442

preintegration for real-time visual–inertial odometry. IEEE Transactions on Robotics, 33(1):443

1–21, 2016. 1, 2444

[3] Frank Dellaert, Michael Kaess, et al. Factor graphs for robot perception. Foundations and445

Trends® in Robotics, 6(1-2):1–139, 2017. 2446

[4] Timothy D. Barfoot. State estimation for robotics. State Estimation for Robotics, (1987):447

1–368, 2017. doi: 10.1017/9781316671528. 2448

[5] Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots. Continuous-449

time gaussian process motion planning via probabilistic inference. The International Journal450

of Robotics Research, 37(11):1319–1340, 2018. 2, 19, 20451

[6] Mandy Xie and Frank Dellaert. A unified method for solving inverse, forward, and hybrid452

manipulator dynamics using factor graphs. arXiv preprint arXiv:1911.10065, 2019. 2453

[7] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an open-source454

library for real-time metric-semantic localization and mapping. In 2020 IEEE International455

Conference on Robotics and Automation (ICRA), pages 1689–1696. IEEE, 2020. 1, 3456

[8] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle457

adjustment—a modern synthesis. In International workshop on vision algorithms, pages458

298–372. Springer, 1999. 1, 2459

[9] Hanna Pasula, Stuart Russell, Michael Ostland, and Yaacov Ritov. Tracking many objects with460

many sensors. In IJCAI, volume 99, pages 1160–1171. Citeseer, 1999.461

[10] Richard Szeliski and Sing Bing Kang. Recovering 3d shape and motion from image streams462

using nonlinear least squares. Journal of Visual Communication and Image Representation, 5463

(1):10–28, 1994. 2464

[11] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In Robotics: science465

and systems, volume 2, page 435. Seattle, WA, 2009.466

[12] Tanner Schmidt, Richard A Newcombe, and Dieter Fox. Dart: Dense articulated real-time467

tracking. In Robotics: Science and Systems, volume 2, pages 1–9. Berkeley, CA, 2014. 2468

[13] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceed-469

ings of the IEEE conference on computer vision and pattern recognition, pages 4104–4113,470

2016. 1, 2471

[14] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural472

networks. In Proceedings of the 34th International Conference on Machine Learning-Volume473

70, pages 136–145. JMLR. org, 2017. 1, 7474

[15] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico475

Kolter. Differentiable convex optimization layers. In Advances in Neural Information Process-476

ing Systems, pages 9558–9570, 2019. 1, 7477

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast478

adaptation of deep networks. In International conference on machine learning, pages 1126–479

1135. PMLR, 2017. 1, 6480

[17] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov,481

Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized in-482

ner loop meta-learning. arXiv preprint arXiv:1910.01727, 2019. 1483

[18] Zachary Teed and Jia Deng. Deepv2d: Video to depth with differentiable structure from484

motion. arXiv preprint arXiv:1812.04605, 2018. 1, 3485

10

[19] Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam. Differentiable gaussian process486

motion planning. In 2020 IEEE International Conference on Robotics and Automation (ICRA),487

pages 10598–10604. IEEE, 2020. 1, 3, 5, 6, 20488

[20] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. r slam: Dense slam meets489

automatic differentiation. In 2020 IEEE International Conference on Robotics and Automation490

(ICRA), pages 2130–2137. IEEE, 2020. 1, 3491

[21] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d492

cameras. Advances in Neural Information Processing Systems, 34, 2021. 1, 3493

[22] Chengzhou Tang and Ping Tan. BA-Net: Dense bundle adjustment networks. 7th International494

Conference on Learning Representations, ICLR 2019, 2019. 1, 3495

[23] Brent Yi, Michelle A Lee, Alina Kloss, Roberto Martín-Martín, and Jeannette Bohg. Differ-496

entiable factor graph optimization for learning smoothers. In 2021 IEEE/RSJ International497

Conference on Intelligent Robots and Systems (IROS), pages 1339–1345. IEEE, 2021. 1, 3, 4498

[24] Zhaoyang Lv, Frank Dellaert, James M Rehg, and Andreas Geiger. Taking a deeper look at the499

inverse compositional algorithm. In Proceedings of the IEEE/CVF Conference on Computer500

Vision and Pattern Recognition, pages 4581–4590, 2019. 1, 3501

[25] Ross Hartley, Maani Ghaffari Jadidi, Lu Gan, Jiunn-Kai Huang, Jessy W Grizzle, and Ryan M502

Eustice. Hybrid contact preintegration for visual-inertial-contact state estimation using factor503

graphs. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),504

pages 3783–3790. IEEE, 2018. 1, 2505

[26] Paloma Sodhi, Michael Kaess, Mustafa Mukadam, and Stuart Anderson. Learning tactile506

models for factor graph-based estimation. In 2021 IEEE International Conference on Robotics507

and Automation (ICRA), pages 13686–13692. IEEE, 2021. 1, 3, 5, 19508

[27] Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli, and Moritz Diehl. A509

family of iterative gauss-newton shooting methods for nonlinear optimal control. In 2018510

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–9.511

IEEE, 2018. 1, 2512

[28] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero, and513

Michael J Black. Keep it smpl: Automatic estimation of 3d human pose and shape from a514

single image. In European conference on computer vision, pages 561–578. Springer, 2016. 1,515

2516

[29] Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, and517

Mustafa Mukadam. Revitalizing optimization for 3d human pose and shape estimation: A518

sparse constrained formulation. In Proceedings of the IEEE/CVF International Conference on519

Computer Vision, pages 11457–11466, 2021. 1, 2520

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,521

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative522

style, high-performance deep learning library. Advances in neural information processing523

systems, 32:8026–8037, 2019. 2524

[31] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro Lie theory for state estimation in525

robotics. arXiv, pages 1–17, 2018. URL http://arxiv.org/abs/1812.01537. 2, 4526

[32] Franziska Meier, Austin Wang, Giovanni Sutanto, Yixin Lin, and Paarth Shah. Differentiable527

and learnable robot models. arXiv preprint arXiv:2202.11217, 2022. 2, 5528

[33] Giorgio Grisetti, Rainer Kümmerle, Hauke Strasdat, and Kurt Konolige. g2o: A general frame-529

work for (hyper) graph optimization. In Proceedings of the IEEE International Conference on530

Robotics and Automation (ICRA), pages 9–13, 2011. 2, 3, 18531

[34] Frank Dellaert. Factor graphs and gtsam: A hands-on introduction. Technical report, Georgia532

Institute of Technology, 2012.533

11

http://arxiv.org/abs/1812.01537

[35] Sameer Agarwal and Keir Mierle. Ceres solver: Tutorial & reference. Google Inc, 2(72):8,534

2012. 7, 8, 18535

[36] Jing Dong and Zhaoyang Lv. miniSAM: A flexible factor graph non-linear least squares536

optimization framework. CoRR, abs/1909.00903, 2019. URL http://arxiv.org/abs/1909.537

00903. 2, 3538

[37] Asen L Dontchev and R Tyrrell Rockafellar. Implicit functions and solution mappings, volume539

543. Springer, 2009. 2, 7, 21540

[38] Tamir Hazan, Joseph Keshet, and David McAllester. Direct loss minimization for structured541

prediction. Advances in neural information processing systems, 23, 2010. 2, 7542

[39] Yang Song, Alexander Schwing, Raquel Urtasun, et al. Training deep neural networks via543

direct loss minimization. In International conference on machine learning, pages 2169–2177.544

PMLR, 2016. 2, 7, 22545

[40] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization and mapping546

via square root information smoothing. The International Journal of Robotics Research, 25547

(12):1181–1203, 2006. 2548

[41] Carl T Kelley. Iterative methods for optimization. SIAM, 1999. 3549

[42] Edgar Sucar, Kentaro Wada, and Andrew Davison. NodeSLAM: Neural Object Descriptors550

for Multi-View Shape Reconstruction. Proceedings - 2020 International Conference on 3D551

Vision, 3DV 2020, pages 949–958, 2020. doi: 10.1109/3DV50981.2020.00105. 3552

[43] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and Andrew J Davison.553

Codeslam—learning a compact, optimisable representation for dense visual slam. In Proceed-554

ings of the IEEE conference on computer vision and pattern recognition, pages 2560–2568,555

2018. 3556

[44] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J. Davison. DeepFactors: Real-557

Time Probabilistic Dense Monocular SLAM. IEEE Robotics and Automation Letters, 5(2):558

721–728, 2020. doi: 10.1109/LRA.2020.2965415. 3559

[45] Muhammad Asif Rana, Mustafa Mukadam, Seyed Reza Ahmadzadeh, Sonia Chernova, and560

Byron Boots. Towards robust skill generalization: Unifying learning from demonstration and561

motion planning. In Conference on Robot Learning, pages 109–118. PMLR, 2017. 3562

[46] Ronald Clark, Michael Bloesch, Jan Czarnowski, Stefan Leutenegger, and Andrew J Davison.563

Ls-net: Learning to solve nonlinear least squares for monocular stereo. arXiv preprint564

arXiv:1809.02966, 2018. 3565

[47] Barbara Roessle and Matthias Nießner. End2end multi-view feature matching using differen-566

tiable pose optimization. 2022. URL https://arxiv.org/abs/2205.01694. 3567

[48] Jingwei Huang, Shan Huang, and Mingwei Sun. Deeplm: Large-scale nonlinear least squares568

on deep learning frameworks using stochastic domain decomposition. In Proceedings of the569

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10308–10317,570

2021. 3, 5571

[49] Borglab. Swiftfusion. https://github.com/borglab/SwiftFusion, 2020. 3572

[50] Jonathan T Barron. A general and adaptive robust loss function. In Proceedings of the573

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4331–4339, 2019.574

4575

[51] Valentin Peretroukhin, Matthew Giamou, W. Nicholas Greene, David Rosen, Jonathan Kelly,576

and Nicholas Roy. A Smooth Representation of Belief over SO(3) for Deep Rotation Learning577

with Uncertainty. (3), 2020. doi: 10.15607/rss.2020.xvi.007. URL http://arxiv.org/abs/578

2006.01031. 4579

12

http://arxiv.org/abs/1909.00903
http://arxiv.org/abs/1909.00903
http://arxiv.org/abs/1909.00903
https://arxiv.org/abs/2205.01694
https://github.com/borglab/SwiftFusion
http://arxiv.org/abs/2006.01031
http://arxiv.org/abs/2006.01031
http://arxiv.org/abs/2006.01031

[52] Zachary Teed and Jia Deng. Tangent Space Backpropagation for 3D Transformation Groups.580

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern581

Recognition, pages 10333–10342, 2021. doi: 10.1109/CVPR46437.2021.01020. URL http:582

//arxiv.org/abs/2103.12032. 4583

[53] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of584

rotation representations in neural networks. Proceedings of the IEEE Computer Society585

Conference on Computer Vision and Pattern Recognition, 2019-June:5738–5746, 2019. doi:586

10.1109/CVPR.2019.00589.587

[54] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas588

Guibas. Vector Neurons: A General Framework for SO(3)-Equivariant Networks. (3), 2021.589

doi: 10.1109/iccv48922.2021.01198. URL http://arxiv.org/abs/2104.12229.590

[55] Philippe Hansen-Estruch, Wenling Shang, Lerrel Pinto, Pieter Abbeel, and Stas Tiomkin.591

GEM: Group Enhanced Model for Learning Dynamical Control Systems. 2021. URL592

http://arxiv.org/abs/2104.02844. 4593

[56] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix594

manifolds. Princeton University Press, 2009. 4595

[57] Brent Yi. jaxlie. https://github.com/brentyi/jaxlie, 2021. 5596

[58] D.M. Rosen, L. Carlone, A.S. Bandeira, and J.J. Leonard. SE-Sync: A certifiably correct597

algorithm for synchronization over the special Euclidean group. Intl. J. of Robotics Research,598

38(2–3):95–125, March 2019. 5, 18599

[59] Mike Lambeta, Po-Wei Chou, Stephen Tian, Brian Yang, Benjamin Maloon, Victoria Rose600

Most, Dave Stroud, Raymond Santos, Ahmad Byagowi, Gregg Kammerer, et al. Digit: A601

novel design for a low-cost compact high-resolution tactile sensor with application to in-hand602

manipulation. IEEE Robotics and Automation Letters, 5(3):3838–3845, 2020. 5, 19603

[60] Sameer Agarwal, Noah Snavely, Steven M Seitz, and Richard Szeliski. Bundle adjustment in604

the large. In European conference on computer vision, pages 29–42. Springer, 2010. 5, 19605

[61] Jan Czarnowski, Stefan Leutenegger, and Andrew J. Davison. Semantic texture for robust606

dense tracking. In Proceedings of the IEEE International Conference on Computer Vision607

(ICCV) Workshops, Oct 2017. 5, 20608

[62] Jing Dong, Byron Boots, Frank Dellaert, Ranveer Chandra, and Sudipta N. Sinha. Learning to609

align images using weak geometric supervision. 2018.610

[63] Chengzhou Tang and Ping Tan. BA-Net: Dense Bundle Adjustment Network. In ICLR, 2019.611

[64] Paul-Edouard Sarlin, Ajaykumar Unagar, Måns Larsson, Hugo Germain, Carl Toft, Viktor612

Larsson, Marc Pollefeys, Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl, and Torsten613

Sattler. Back to the Feature: Learning robust camera localization from pixels to pose. In614

CVPR, 2021. URL https://arxiv.org/abs/2103.09213.615

[65] Zhaoyang Lv, Frank Dellaert, James Rehg, and Andreas Geiger. Taking a deeper look at the616

inverse compositional algorithm. In CVPR, 2019.617

[66] Chaoyang Wang, Hamed Kiani Galoogahi, Chen-Hsuan Lin, and Simon Lucey. Deep-lk618

for efficient adaptive object tracking. 2018 IEEE International Conference on Robotics and619

Automation (ICRA), pages 627–634, 2018. 5620

[67] Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam. Algo-621

rithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM622

Transactions on Mathematical Software (TOMS), 35(3):1–14, 2008. 6623

[68] Jonathan T Barron and Ben Poole. The fast bilateral solver. In European conference on624

computer vision, pages 617–632. Springer, 2016. 6625

13

http://arxiv.org/abs/2103.12032
http://arxiv.org/abs/2103.12032
http://arxiv.org/abs/2103.12032
http://arxiv.org/abs/2104.12229
http://arxiv.org/abs/2104.02844
https://github.com/brentyi/jaxlie
https://arxiv.org/abs/2103.09213

[69] Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode ad in a functional framework:626

Lambda the ultimate backpropagator. ACM Transactions on Programming Languages and627

Systems (TOPLAS), 30(2):1–36, 2008. 6628

[70] Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In Twenty-629

fourth AAAI conference on artificial intelligence, 2010.630

[71] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter631

optimization through reversible learning. In International conference on machine learning,632

pages 2113–2122. PMLR, 2015.633

[72] David Belanger and Andrew McCallum. Structured prediction energy networks. In Interna-634

tional Conference on Machine Learning, pages 983–992, 2016.635

[73] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial636

networks. CoRR, abs/1611.02163, 2016. URL http://arxiv.org/abs/1611.02163.637

[74] Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation638

for generator network. In Proceedings of the AAAI Conference on Artificial Intelligence,639

volume 31, 2017.640

[75] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured641

prediction energy networks. In Proceedings of the 34th International Conference on Machine642

Learning-Volume 70, pages 429–439. JMLR. org, 2017.643

[76] David Belanger. Deep energy-based models for structured prediction. PhD thesis, University644

of Massachusetts Amherst, 2017.645

[77] Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and646

Igor Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326,647

2017.648

[78] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient649

deep learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):650

18–44, 2021. 6651

[79] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of652

the IEEE, 78(10):1550–1560, 1990. 6653

[80] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and654

the" echo state network" approach, volume 5. GMD-Forschungszentrum Informationstechnik655

Bonn, 2002. 6656

[81] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv657

preprint arXiv:1705.08209, 2017. 7658

[82] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias659

in stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.660

[83] Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urta-661

sun, and Richard Zemel. Reviving and improving recurrent back-propagation. In International662

Conference on Machine Learning, pages 3082–3091. PMLR, 2018.663

[84] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-664

propagation for bilevel optimization. In The 22nd International Conference on Artificial665

Intelligence and Statistics, pages 1723–1732. PMLR, 2019.666

[85] Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled667

computation graphs with persistent evolution strategies. In International Conference on668

Machine Learning, pages 10553–10563. PMLR, 2021. 7669

[86] Brandon Amos. Differentiable Optimization-Based Modeling for Machine Learning. PhD670

thesis, Carnegie Mellon University, May 2019. 7671

14

http://arxiv.org/abs/1611.02163

[87] Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence672

and Statistics, pages 318–326. PMLR, 2012.673

[88] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and674

Edison Guo. On differentiating parameterized argmin and argmax problems with application675

to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.676

[89] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters677

by implicit differentiation. In International Conference on Artificial Intelligence and Statistics,678

pages 1540–1552. PMLR, 2020.679

[90] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-680

López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.681

arXiv preprint arXiv:2105.15183, 2021.682

[91] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman.683

Controlling neural level sets. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-684

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,685

volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/686

2019/file/b20bb95ab626d93fd976af958fbc61ba-Paper.pdf. 7687

[92] Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differentia-688

tion of blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175, 2019. 7689

[93] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating690

through discrete exponential family distributions. Advances in Neural Information Processing691

Systems, 34, 2021. 7692

[94] Paloma Sodhi, Sanjiban Choudhury, Joshua G. Mangelson, and Michael Kaess. ICS: Incre-693

mental Constrained Smoothing for State Estimation, 2020. 9694

[95] André F.T. Martins, Mário A.T. Figueiredo, Pedro M.Q. Aguiar, Noah A. Smith, and Eric P.695

Xing. An augmented Lagrangian approach to constrained MAP inference. Proceedings of the696

28th International Conference on Machine Learning, ICML 2011, pages 169–176, 2011. 9697

[96] Taosha Fan, Hanlin Wang, Michael Rubenstein, and Todd Murphey. Cpl-slam: Efficient and698

certifiably correct planar graph-based slam using the complex number representation. IEEE699

Transactions on Robotics, 36(6):1719–1737, 2020. 18700

[97] Daniel Martinec and Tomas Pajdla. Robust rotation and translation estimation in multiview701

reconstruction. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages702

1–8. IEEE, 2007. 18703

[98] Amit Singer and Yoel Shkolnisky. Three-dimensional structure determination from common704

lines in cryo-em by eigenvectors and semidefinite programming. SIAM journal on imaging705

sciences, 4(2):543–572, 2011. 18706

[99] Mihai Cucuringu, Yaron Lipman, and Amit Singer. Sensor network localization by eigenvector707

synchronization over the euclidean group. ACM Transactions on Sensor Networks (TOSN), 8708

(3):1–42, 2012. 18709

[100] Jiaji Zhou, James A. Bagnell, and Matthew T. Mason. A fast stochastic contact model for planar710

pushing and grasping: Theory and experimental validation. In Nancy M. Amato, Siddhartha S.711

Srinivasa, Nora Ayanian, and Scott Kuindersma, editors, Robotics: Science and Systems XIII,712

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, July 12-16, 2017,713

2017. doi: 10.15607/RSS.2017.XIII.040. URL http://www.roboticsproceedings.org/714

rss13/p40.html. 19715

[101] Paloma Sodhi, Eric Dexheimer, Mustafa Mukadam, Stuart Anderson, and Michael Kaess. Leo:716

Learning energy-based models in factor graph optimization. In Conference on Robot Learning,717

pages 234–244. PMLR, 2022. 19718

15

https://proceedings.neurips.cc/paper/2019/file/b20bb95ab626d93fd976af958fbc61ba-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b20bb95ab626d93fd976af958fbc61ba-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b20bb95ab626d93fd976af958fbc61ba-Paper.pdf
http://www.roboticsproceedings.org/rss13/p40.html
http://www.roboticsproceedings.org/rss13/p40.html
http://www.roboticsproceedings.org/rss13/p40.html

[102] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an applica-719

tion to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial720

Intelligence - Volume 2, IJCAI’81, page 674–679, San Francisco, CA, USA, 1981. Morgan721

Kaufmann Publishers Inc. 20722

[103] Simon Baker and Iain A. Matthews. Lucas-kanade 20 years on: A unifying framework.723

International Journal of Computer Vision, 56(3):221–255, 2004. URL https://doi.org/10.724

1023/B:VISI.0000011205.11775.fd. 20725

[104] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep image homography726

estimation. RSS 2016 Workshop: Limits and Potentials of Deep Learning in Robotics, 2016.727

URL http://arxiv.org/abs/1606.03798. 20728

[105] Ulisse Dini. Analisi infinitesimale. Lithografia Gorani, 1878. 21729

16

https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
http://arxiv.org/abs/1606.03798

Checklist730

1. For all authors...731

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s732

contributions and scope? [Yes]733

(b) Did you describe the limitations of your work? [Yes]734

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not735

foresee any beyond what the field of differentiable optimization already have.736

(d) Have you read the ethics review guidelines and ensured that your paper conforms to737

them? [Yes]738

2. If you are including theoretical results...739

(a) Did you state the full set of assumptions of all theoretical results? [N/A]740

(b) Did you include complete proofs of all theoretical results? [N/A]741

3. If you ran experiments...742

(a) Did you include the code, data, and instructions needed to reproduce the main experi-743

mental results (either in the supplemental material or as a URL)? [Yes]744

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they745

were chosen)? [Yes]746

(c) Did you report error bars (e.g., with respect to the random seed after running experi-747

ments multiple times)? [Yes]748

(d) Did you include the total amount of compute and the type of resources used (e.g., type749

of GPUs, internal cluster, or cloud provider)? [Yes]750

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...751

(a) If your work uses existing assets, did you cite the creators? [Yes]752

(b) Did you mention the license of the assets? [Yes]753

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]754

(d) Did you discuss whether and how consent was obtained from people whose data you’re755

using/curating? [N/A]756

(e) Did you discuss whether the data you are using/curating contains personally identifiable757

information or offensive content? [N/A]758

5. If you used crowdsourcing or conducted research with human subjects...759

(a) Did you include the full text of instructions given to participants and screenshots, if760

applicable? [N/A]761

(b) Did you describe any potential participant risks, with links to Institutional Review762

Board (IRB) approvals, if applicable? [N/A]763

(c) Did you include the estimated hourly wage paid to participants and the total amount764

spent on participant compensation? [N/A]765

17

	1 Introduction
	2 Background and related work
	3 Application agnostic interface
	3.1 Example applications

	4 Efficiency based design
	4.1 Batching and vectorization
	4.2 Handling sparsity with linear solvers beyond PyTorch
	4.3 Backward modes for DNLS

	5 Evaluation
	5.1 Profiling forward and backward pass of Theseus for DNLS
	5.2 Profiling Theseus as stand-alone NLS optimizer
	5.3 Backward modes analysis

	6 Discussion
	A Simple example description
	B Differentiable Lie group details
	C Example application details
	C.1 Pose graph optimization
	C.2 Tactile state estimation
	C.3 Bundle adjustment
	C.4 Motion planning
	C.5 Homography estimation

	D Benchmark details and additional results
	E Backward mode details and additional results
	E.1 Preliminaries: the implicit function theorem
	E.2 Proof of prop:newton-ift
	E.3 Direct loss minimization for use in Theseus

