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Abstract

We study a practical algorithm for sparse principal component analysis (PCA) of1

incomplete and noisy data. Our algorithm is based on the semidefinite program2

(SDP) relaxation of the non-convex l1-regularized PCA problem. We provide3

theoretical and experimental evidence that SDP enables us to exactly recover the4

true support of the sparse leading eigenvector of the unknown true matrix, despite5

only observing an incomplete (missing uniformly at random) and noisy version6

of it. We derive sufficient conditions for exact recovery, which involve matrix7

incoherence, the spectral gap between the largest and second-largest eigenvalues,8

the observation probability and the noise variance. We validate our theoretical9

results with incomplete synthetic data, and show encouraging and meaningful10

results on a gene expression dataset.11

1 Introduction12

Principal component analysis (PCA) is one of the most popular methods to reduce data dimension13

which is widely used in various applications including genetics, image processing, engineering, and14

many others. However, standard PCA is usually not preferred when principal components depend15

on only a small number of variables, because it provides dense vectors as a solution which degrades16

interpretability of the result. This can be worse especially in the high-dimensional setting where the17

solution of standard PCA is inconsistent as addressed in several works [Paul, 2007, Nadler, 2008,18

Johnstone and Lu, 2009]. To solve the inconsistency issue and improve interpretability, sparse PCA19

has been proposed, which enforces sparsity in the PCA solution so that dimension reduction and20

variable selection can be simultaneously performed. Theoretical and algorithmic researches on sparse21

PCA have been actively conducted over the past few years [Zou et al., 2006, Amini and Wainwright,22

2008, Journée et al., 2010, Ma, 2013, Lei and Vu, 2015, Berk and Bertsimas, 2019, Richtárik et al.,23

2021].24

In this paper, we consider a special situation where the data to which sparse PCA is applied are not25

completely observed, but partially missing. Missing data frequently occurs in a wide range of machine26

learning problems, where sparse PCA is no exception. There are various reasons and situations where27

data becomes incomplete, such as failures of hardware, high expenses of sampling, and preserving28

privacy. One concrete example is the analysis of single-cell RNA sequence (scRNA-seq) data [Park29

and Zhao, 2019], where the cells are divided into several distinct types which can be characterized30

with only a small number of genes among tens of thousands of genes. Sparse PCA can be effectively31

utilized here to reduce the dimension (from numerous cells to a few cell types) and to select a small32

number of genes that affect the reduced data. However, since scRNA-seq data usually have many33

missing values due to technical and sampling issues, the existing sparse PCA theory and method34

designed for fully observed data cannot be directly applied, and new methodology and theory are in35

demand.36
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Despite the need for theoretical research and algorithmic development of sparse PCA for incomplete37

data, there have not been many studies yet. Lounici [2013] and Kundu et al. [2015] considered two38

different optimization objectives for sparse PCA on incomplete data, which impose l1 regularization39

and l0 constraint on the classic PCA loss function using a (bias-corrected) incomplete matrix,40

respectively. It was shown that the solution of each problem has a non-trivial error bound under41

certain conditions, but the optimization problems they considered are either nonconvex or NP-hard,42

and thus theoretical studies of computational feasible algorithms are still lacking. More recently,43

Park and Zhao [2019] proposed a computationally tractable two-step algorithm based on matrix44

factorization and completion, but its first step is an iterative algorithm that requires singular value45

decomposition in every iteration, which incurs a lot of cost in memory and time under a high-46

dimensional setting.47

With this motivation, we suggest a computational friendly convex optimization problem via a48

semidefinite relaxation of the l1 regularized PCA, to solve the sparse PCA on incomplete data. We49

note that very efficient scalable SDP solvers exist in practice [Yurtsever et al., 2021]. We assume that50

the unknown true matrix MMM∗ ∈ Rd×d is symmetric and has a sparse leading eigenvector uuu1. Our51

goal is to exactly recover the support of this sparse leading eigenvector, i.e., to find the set J correctly52

where J = supp(uuu1) = {i : u1,i 6= 0}. Given a noisy observationMMM for the unknown true matrix53

MMM∗, it is intuitive to consider imposing a regularization term on the PCA quadratic loss that aims to54

find the first principal component. When using the l1 regularizer, the optimization problem can be55

written as:56

x̂xx = arg max
xxx>xxx=1

xxx>MMMxxx− ρ‖xxx‖21.

Hence, J is estimated with supp(x̂xx). However, this intuitively appealing objective is nonconvex and57

very difficult to solve, so the following semidefinite relaxation can be considered as an alternative:58

X̂XX = arg max
XXX�0 and tr(XXX)=1

〈MMM,XXX〉 − ρ‖XXX‖1,1.

By letting XXX = xxxxxx>, the equivalence of the above two objective functions can be easily justified.59

Since supp(xxx) = supp(diag(xxxxxx>)), we estimate the support J by Ĵ = supp(diag(X̂XX)) in the60

semidefinite problem. This kind of relaxation has been studied by d’Aspremont et al. [2004] and Lei61

and Vu [2015], but their works were limited to complete data. Surprisingly, without any additional62

modifications on the relaxation problem such as using matrix factorization or matrix completion, we63

show that it is possible to exactly recover true support J with the above semidefinite program itself64

whenMMM is an incomplete observation. Our main contribution is to prove this claim theoretically and65

experimentally.66

In Section 3, we provide theoretical justification (i.e., Theorem 1) that we can exactly recover the67

true support J with high probability by obtaining a unique solution of the semidefinite problem,68

under proper conditions. The conditions involve matrix coherence parameters, the spectral gap69

between the largest and second-largest eigenvalues of the true matrix, the observation probability70

and the noise variance, which are discussed in detail in Corollaries 1 and 2. Specifically, we show71

that the sample complexity is related to the matrix coherence parameters as well as the matrix72

dimension d and the support size s. We prove that the observation probability p has the bound of73

p = ω
(

1
d−1+1

)
in the worst scenario in terms of the matrix coherence, while it has a smaller lower74

bound p = ω
(

1
(log s)−1+1

)
in the best scenario. In Section 4, we provide experimental results on75

incomplete synthetic datasets and a gene expression dataset. The experiment on the synthetic datasets76

validate our theoretical results, and the experiment on the gene expression dataset gives us a consistent77

result with prior studies.78

2 Preliminaries79

2.1 Notation80

We first introduce the notations used throughout the paper. Matrices are bold capital, vectors are bold81

lowercase and scalars or entries are not bold. For any positive integer n, we denote [n] := {1, . . . , n}.82

For any vector aaa ∈ Rd and index set J ⊆ [d], aaaJ denotes the |J |-dimensional vector consisting of83

the entries of aaa in J . For any matrix AAA ∈ Rd1×d2 and index sets J1 ⊆ [d1] and J2 ⊆ [d2], AAAJ1,J284

2



andAAAJ1,:(AAA:,J2) denote the |J1| × |J2| sub-matrix ofAAA consisting of rows in J1 and columns in J2,85

and the |J1| × d2 (d1 × |J2|) sub-matrix ofAAA consisting of rows in J1 (columns in J2), respectively.86

‖aaa‖1, ‖aaa‖2 and ‖aaa‖∞ represent the l1 norm, l2 norm and maximum norm of a vector aaa, respectively.87

{eeei : i ∈ [d]} indicates the standard basis of Rd.88

A variety of norms on matrices will be used: we denote by ‖AAA‖2 the spectral norm and by ‖AAA‖F89

the Frobenius norm of a matrix AAA. We let ‖AAA‖1,1 =
∑
i∈[d1],j∈[d2] |Ai,j |, ‖AAA‖max = ‖AAA‖∞,∞ =90

maxi∈[d1],j∈[d2] |Ai,j |, ‖AAA‖2,∞ = maxj∈[d2] ‖AAA:,j‖2 and ‖AAA‖1,∞ = maxj∈[d2] ‖AAA:,j‖1 represent91

the l1,1 norm, the entrywise l∞ norm, the l2,∞ norm and the l1,∞ norm of a matrixAAA, respectively.92

The trace of AAA is denoted tr(AAA), and the matrix inner product of AAA and BBB is denoted 〈AAA,BBB〉.93

Also, σi(AAA) and λi(AAA) represent the ith largest singular value and the ith largest eigenvalue of AAA,94

respectively.95

The notation C,C1, . . . , c, c1, . . . denote positive constants whose values may change from line to96

line. The notation f(x) = o(g(x)) or f(x)� g(x) means limx→∞ f(x)/g(x) = 0; f(x) = ω(g(x))97

or f(x) � g(x) means limx→∞ f(x)/g(x) = ∞; f(x) = O(g(x)) or f(x) . g(x) means that98

there exists a constant C such that f(x) ≤ Cg(x) asymptotically; f(x) = Ω(g(x)) or f(x) & g(x)99

means that there exists a constant C such that f(x) ≥ Cg(x) asymptotically; f(x) = Θ(g(x))100

or f(x) ' g(x) means that there exists constants C and C ′ such that Cg(x) ≤ f(x) ≤ C ′g(x)101

asymptotically.102

2.2 Model103

We now introduce our model assumption. Suppose that an unknown matrixMMM∗ ∈ Rd×d is symmetric.
The spectral decomposition ofMMM∗ is given by

MMM∗ =
∑
k∈[d]

λk(MMM∗)uuukuuu
>
k ,

where λ1(MMM∗) ≥ · · · ≥ λd(MMM
∗) are its eigenvalues and uuu1, . . . ,uuud ∈ Rd are the corresponding

eigenvectors. We assume that λ1(MMM∗) > λ2(MMM∗) and the leading eigenvector uuu1 ofMMM∗ is sparse,
that is, for some set J ∈ [d], {

u1,i 6= 0 if i ∈ J
u1,i = 0 otherwise.

With a notation supp(aaa) := {i ∈ [d] : ai 6= 0} for any vector aaa ∈ Rd, we can write J = supp(uuu1).104

Also, we denote the size of J by s.105

Incomplete and noisy observation Suppose that we have only noisy observations of the entries of
MMM∗ over a sampling set Ω ⊆ [d]× [d]. Specifically, we observe a symmetric matrixMMM ∈ Rd×d such
that

Mi,j = Mj,i = δi,j · (M∗i,j + εi,j)

for 1 ≤ i ≤ j ≤ d, where δi,j = 1 if (i, j) ∈ Ω and δi,j = 0 otherwise, and εi,j is the noise at106

location (i, j). In this paper, we consider the following assumptions on random sampling and random107

noise: for 1 ≤ i ≤ j ≤ d,108

• Each (i, j) is included in the sampling set Ω independently with probability p (that is,109

δi,j
i.i.d.∼ Ber(p).)110

• δi,j’s and εi,j’s are mutually independent.111

• E[εi,j ] = 0 and Var[εi,j ] = σ2.112

• |εi,j | ≤ B almost surely.113

3 Main Results114

As mentioned in the introduction, we consider the following semidefinite programming (SDP) in115

order to recover the true support J :116

X̂XX = arg max
XXX�0 and tr(XXX)=1

〈MMM,XXX〉 − ρ‖XXX‖1,1, (1)
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where we estimate J by Ĵ = supp(diag(X̂XX)). We recall that (1) is a convex relaxation of the117

following nonconvex problem:118

x̂xx = arg max
xxx>xxx=1

xxx>MMMxxx− ρ‖xxx‖21. (2)

In Theorem 1, we will show that under appropriate conditions, the solution of (1) attains Ĵ = J119

with high probability. Our main technical tool used in the proof is the primal-dual witness argument120

[Wainwright, 2009]. We start with deriving the sufficient conditions for the primal-dual solutions of121

(1) to be uniquely determined and satisfy supp(diag(X̂XX)) = J . We then establish a proper candidate122

solution which meets the derived sufficient conditions, where we make use of the Karush-Kuhn-123

Tucker (KKT) conditions of (2) to set up a reasonable candidate. We finally develop the conditions124

under which the established candidate solution satisfies the sufficient conditions from the primal-dual125

witness argument of (1) with high probability. Detailed proof is given in Appendix B.126

Theorem 1. Under the model defined in Section 2.2, assume that the following conditions hold:127

2
√

2 · K1 + ρs

p(λ1(MMM∗J,J)− λ2(MMM∗J,J))
≤ min

i∈J
|u1,i|,

ρ > 2
√
psc ·

{
(1− p)‖MMM∗Jc,J‖2F + (d− s)sσ2

}
+ p · ‖MMM∗Jc,J‖max

(K2 + p · ‖MMM∗Jc,J‖2)2 · (1 +
√
s)2 ≤

{
p · (λ1(MMM∗J,J)− λ2(MMM∗J,J))− 2 ·K1 − 2ρs

}
×
{
p · (λ1(MMM∗J,J)− λ1(MMM∗Jc,Jc))−K1 −K3 − ρd

}
,

where c > 0, and K1, K2 and K3 are defined as follows:128

K1 := (c+ 1) ·R1 log(2s) +
√

2(c+ 1) ·R2

√
log(2s)

K2 := (c+ 1) ·R3 log d+
√

2(c+ 1) ·R4

√
log d

K3 := (c+ 1) ·R5 log(2(d− s)) +
√

2(c+ 1) ·R6

√
log(2(d− s))

and129

R1 := max{(1− p)‖MMM∗J,J‖max +B, p‖MMM∗J,J‖max},

R2 :=
√
p(1− p)‖MMM∗J,J‖2,∞ +

√
psσ2,

R3 := max{(1− p)‖MMM∗Jc,J‖max +B, p‖MMM∗Jc,J‖max},

R4 := max{
√
p(1− p)‖MMM∗Jc,J‖2,∞ +

√
p(d− s)σ2,

√
p(1− p)‖MMM∗J,Jc‖2,∞ +

√
psσ2},

R5 := max{(1− p)‖MMM∗Jc,Jc‖max +B, p‖MMM∗Jc,Jc‖max},

R6 :=
√
p(1− p)‖MMM∗Jc,Jc‖2,∞ +

√
p(d− s)σ2.

Then the optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with130

probability at least 1− s−c − d−c − (2s)−c − (2(d− s))−c.131

To better interpret the conditions of MMM∗ and p listed in Theorem 1 and understand under what132

circumstance these conditions hold, we consider the following two particular scenarios:133

(s1) B = σ2 = 0, that is, the observationMMM is noiseless (but still incomplete).134

(s2) The rank ofMMM∗ is 1.135

For both cases, we set p ≥ 0.5 for simplicity. Under the first setting, we can re-express the conditions136

onMMM∗ for exact sparse recovery of J in a more interpretable way (specifically, in terms of coherence137

parameters and spectral gap) as well as the conditions on p. In the second setting, we aim to investigate138

that the maximum level of noise that is allowed by Theorem 1. Corollaries 1 and 2 include the results139

of the two settings (s1) and (s2), respectively.140

Before elaborating the details, we first define the coherence parameters of the sub-matricesMMM∗J,J ,141

MMM∗Jc,J andMMM∗Jc,Jc .142
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Definition 1 (Coherence parameters). We define the coherence parameters µ0(MMM∗J,J), µ1(MMM∗J,J),143

µ2(MMM∗Jc,J) and µ3(MMM∗Jc,Jc) as follows:144

µ0(MMM∗J,J) :=
‖MMM∗J,J‖max

λ1(MMM∗J,J)− λ2(MMM∗J,J)
, µ1(MMM∗J,J) :=

‖MMM∗J,J‖max

‖MMM∗J,J‖2,∞
,

µ2(MMM∗Jc,J) := min

{‖MMM∗Jc,J‖max

‖MMM∗Jc,J‖F
, max

{‖MMM∗Jc,J‖max

‖MMM∗Jc,J‖2,∞
,
‖MMM∗Jc,J‖max

‖MMM∗>Jc,J‖2,∞

}
,
‖MMM∗Jc,J‖max

‖MMM∗>Jc,J‖∞,2

}
,

µ3(MMM∗Jc,Jc) := min

{‖MMM∗Jc,Jc‖max

‖MMM∗Jc,Jc‖2
,
‖MMM∗Jc,Jc‖max

‖MMM∗Jc,Jc‖2,∞

}
.

We use µ0, µ1, µ2 and µ3 as shorthand for µ0(MMM∗J,J), µ1(MMM∗J,J), µ2(MMM∗Jc,J) and µ3(MMM∗Jc,Jc),145

respectively. Intuitively, when each coherence parameter is small, all the entries of the corresponding146

matrix have comparable magnitudes. Note that 1
s ≤ µ0 ≤ 1, 1√

s
≤ µ1 ≤ 1, 1√

s(d−s)
≤ µ2 ≤ 1,147

1
d−s ≤ µ3 ≤ 1.148

Corollary 1. Assume that B = σ2 = 0, p ≥ 0.5 and mini∈J |u1,i| = Ω( 1√
s
). Denote λ1(MMM∗J,J)−149

λ2(MMM∗J,J) by λ̄(MMM∗J,J). If the following conditions hold:150

µ0 = o

(
1√
s log s

)
, (3)

‖MMM∗Jc,J‖max = o

(
λ̄(MMM∗J,J)

s
·min

{
µ2,

1

s
,

√
s

log d

})
, (4)

‖MMM∗Jc,Jc‖max = o

(
λ̄(MMM∗J,J) ·min

{
µ3,

1

log(d− s)

})
, (5)√

1− p
p

= o

(
min

{
µ1

√
log s,

λ̄(MMM∗J,J)µ2

‖MMM∗Jc,J‖max
·min

{ 1

s2
√
s
,

1

s
√
s(d− s)

}
, (6)

λ̄(MMM∗J,J)µ3

‖MMM∗Jc,Jc‖max
· 1√

log(d− s)

})
,

ρ = Θ

(
pλ̄(MMM∗J,J)

s2

)
, (7)

then the conditions in Theorem 1 hold asymptotically, that is, when s and d are sufficiently large, the151

optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with probability152

at least 1− s−1 − d−1 − (2s)−1 − (2(d− s))−1.153

Conditions on true matrixMMM∗ From the conditions in Corollary 1, we can find desirable properties154

on the matrixMMM∗ as follows:155

• Incoherence ofMMM∗J,J , and coherence ofMMM∗Jc,J andMMM∗Jc,Jc : From the coherence parameter156

in (3) and those in (4), (5) and (6), we see that the sub-matrixMMM∗J,J and the sub-matrices157

MMM∗Jc,J andMMM∗Jc,Jc are expected to be incoherent and coherent, respectively. This is different158

from other problems involving incomplete matrices, such as matrix completion [Candès159

and Recht, 2009] and standard PCA on incomplete data [Cai et al., 2021], where the entire160

matrix, not a sub-matrix, is required to be incoherent.161

We can easily check the need of incoherence ofMMM∗Jc,J with an example that the sub-matrix162

has only one entry with a large magnitude while the other entries have relatively small163

values. Even if the true leading eigenvector of the sub-matrix is not sparse, the sparse PCA164

algorithm may produce a solution Ĵ which has a smaller size than that of the true support J .165

However, forMMM∗Jc,J andMMM∗Jc,Jc , coherence is preferable: intuitively speaking, whenMMM∗Jc,J166

and MMM∗Jc,Jc are the most coherent, that is, only one entry is nonzero in each sub-matrix,167
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and all other entries are zero, missing the entries inMMM∗Jc,J andMMM∗Jc,Jc does not change the168

leading eigenvector of MMM∗. On the other hand, when MMM∗Jc,J and MMM∗Jc,Jc are incoherent,169

that is, all the entries have comparable magnitudes, missing only a few entries changes the170

leading eigenvector and its sparsitency, so that sparse PCA is likely to fail to recover J . A171

simple illustration can be found in the Appendix A.172

• Large spectral gap λ̄(MMM∗J,J) (= λ1(MMM∗J,J) − λ2(MMM∗J,J)): This can be found in (4), (5)173

and (6). A sufficiently large spectral gap requirement has been also discussed in the work174

on sparse PCA on the complete matrix [Lei and Vu, 2015]. It ensures the uniqueness and175

identifiability of the orthogonal projection matrix with respect to the principal subspace. If the176

spectral gap of eigenvalues is nearly zero, then the top two eigenvectors are indistinguishable177

given the observational noise, leading to failure to recover the sparsity of the leading178

eigenvector.179

We also note that λ1(MMM∗J,J)−λ2(MMM∗J,J) ≥ λ1(MMM∗)−λ2(MMM∗) since λ1(MMM∗J,J) = λ1(MMM∗)180

and λ2(MMM∗J,J) ≤ λ2(MMM∗). Hence, a large λ1(MMM∗)− λ2(MMM∗) implies a large λ̄(MMM∗J,J).181

• Small magnitudes ofMMM∗Jc,J andMMM∗Jc,Jc : This can also be found in (4), (5) and (6). This182

condition is also natural: if the magnitudes are relatively small, missing the entries will not183

make a big impact to the result.184

Conditions on p (ratio of missing data) For simplicity, suppose that λ̄(MMM∗J,J) = O(s) and185

s = O(log d). Then from the conditions (4) and (5), we can write ‖MMM∗Jc,J‖max = ε1 ·min
{
µ2,

1
s

}
186

for some ε1 = o(1) and ‖MMM∗Jc,Jc‖max = ε2 ·min
{
sµ3,

s
log d

}
for some ε2 = o(1).187

With these notations, we can write the condition (6) as follows:√
1− p
p

= o

(
min

{
µ1

√
log s,

µ2

ε1
·

1√
sd

min
{
µ2,

1
s

} , µ3

ε2
· 1

min
{
µ3

√
log d, 1√

log d

}}).
From the above equation, we can see that the matrix coherence (µ1, µ2, µ3) and the matrix magnitudes188

(in terms of ε1 and ε2) affect the expected number of entries to be observed, as well as d and s. Let189

us consider two extreme cases where the coherence parameters are maximized and minimized. We190

discuss the bound of the sample complexity in each case.191

• The best scenario where the bound of the sample complexity is the lowest: Suppose that
µ1 = o( 1

log s ) and µ2 = µ3 = 1 (note that when µ0 = o
(

1√
s log s

)
, µ1 is upper bounded by

o
(

1
log s

)
.) Then the condition (6) can be written as:√

1− p
p

= o

(
min

{ 1√
log s

,
1

ε1
·
√
s

d
,

√
log d

ε2

})
= o

(
min

{ 1√
log s

,
1

ε1
·
√
s

d

})
.

As ε1 is smaller (i.e., the magnitudes of the entries ofMMM∗Jc,J are smaller,) the bound of p is192

allowed to be smaller. In the best case,
√

1−p
p = o((log s)−0.5), that is, p = ω

(
1

(log s)−1+1

)
.193

• The worst scenario where the bound of the sample complexity is the highest: Suppose that
µ1 = 1√

s
, µ2 = 1√

s(d−s)
and µ3 = 1

d−s . In this case, the condition (6) can be written as:√
1− p
p

= o

(
min

{√ log s

s
,

1

ε1
· 1√

sd
,

1

ε2
· 1√

log d

})
.

Suppose that ε1 and ε2 are not as small as 1√
s
. Then

√
1−p
p is at most o(d−0.5), that is,194

p = ω
(

1
d−1+1

)
.195

Next, we consider the second setting (s2) where the rank ofMMM∗ is assumed to be 1, that is,MMM∗ =196

λ1(MMM∗)uuu1uuu
>
1 (without loss of generality, we assume λ1(MMM∗) > 0.) Trivially,MMM∗Jc,J = MMM∗J,Jc =197

MMM∗Jc,Jc = 0 and Theorem 1 can be greatly simplified. Here, we focus on analyzing how much noise198

(parameters B and σ2) is allowed.199
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Corollary 2. Assume that p ≥ 0.5 and the rank of MMM∗ is 1, that is, MMM∗ = λ1(MMM∗)uuu1uuu
>
1 . Let200

λ1(MMM∗) > 0. Suppose that s and d satisfy 1√
s
≤ 12+ d−s

s +8
√

2a2−
√

(4− d−s
s −8

√
2a2)2+512a21(1+

√
s)2

4
√

2+
√

2· d−s
s +16a2−16

√
2a21(1+

√
s)2

201

where a1 = (2− 1
p ) · log d

8
√

2 log(2s)
+

√
max{d−s,s}·

√
log d

16s2
√
d−s and a2 = (2− 1

p ) · log(2(d−s))
8
√

2 log(2s)
+

√
log(2(d−s))

16s2 .202

If the following conditions hold:203

maxi,j∈J |u1,iu1,j |
mini∈J |u1,i|

≤ 1

16
√

2 log(2s)
,

maxi∈J |u1,i|
mini∈J |u1,i|

≤ 1

16
√

2
√

log(2s)
·
√

p

1− p
,

B ≤ (2p− 1)λ1(MMM∗) · max
i,j∈J

|u1,iu1,j |,

2
√

2 ·
√
pσ2s2(d− s) < ρ ≤ 1

8
√

2s
· pλ1(MMM∗) ·min

i∈J
|u1,i|,

then the optimal solution X̂XX to the problem (1) is unique and satisfies supp(diag(X̂XX)) = J with204

probability at least 1− s−1 − d−1 − (2s)−1 − (2(d− s))−1.205

Conditions on noise parameters B and σ2 For simplicity, let λ1(MMM∗) = O(s) and ∀|u1,i| =
Θ( 1√

s
). Then the above conditions in Corollary 2 imply that

B . p and σ2 .
p

s3(d− s)
.

The condition for B is relatively moderate while σ2 needs to be extremely small to satisfy the206

condition in Corollary 2. We comment this is only a sufficient condition, and the experimental results207

show that (1) can succeed even with σ2 larger than the aforementioned bound.208

4 Numerical Results209

We perform the SDP algorithm of (1) on synthetic and real data to validate our theoretic results210

and show how well the true support of the sparse principal component is exactly recovered. Our211

experiments were executed on MATLAB and standard CVX code was used, although very efficient212

scalable SDP solvers exist in practice [Yurtsever et al., 2021].213

4.1 Synthetic Data214

We perform two lines of experiments:215

1. With the spectral gap λ1(MMM∗) − λ2(MMM∗) and the noise parameters B and σ2 fixed, we216

compare the results for different s and d.217

2. With s and d fixed, we compare the results for different spectral gaps and noise parameters.218

In each experiment, we generate the true matrix MMM∗ as follows: the leading eigenvector uuu1 is set219

to have s number of non-zero entries. λ2(MMM∗), . . . , λd(MMM
∗) are randomly selected from a normal220

distribution with mean 0 and standard deviation 1, and λ1(MMM∗) is set to λ2(MMM∗) plus the spectral221

gap. The orthogonal eigenvectors are randomly selected, while the non-zero entries of the leading222

eigenvector uuu1 are made to have a value of at least 1
2
√
s
.223

When generating the observation MMM , we first add to MMM∗ the entry-wise noise which is randomly224

selected from a truncated normal distribution with support [−B,B]. The normal distribution to be225

truncated is set to have mean 0 and standard deviation σnormal. After adding the entry-wise noise,226

we generate an incomplete matrix MMM by selecting the observed entries uniformly at random with227

probability p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.228

In each setting, we run the algorithm (1) and verify if the solution exactly recovers the true support.229

We repeat each experiment 30 times with different random seeds, and calculate the rate of exact230

recovery in each setting.231
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Figure 1: Results of experiment 1 on synthetic data.

Experiment 1 In this experiment, we fix the spectral gap λ1(MMM∗)− λ2(MMM∗) as 20 and the noise232

parameters B and σ2 as 5 and 0.01. We use the tuning parameter ρ = 0.1. We try three different233

matrix dimensions d ∈ {20, 50, 100} and three different support sizes s ∈ {5, 10, 20}.234

To check whether the bound of the sample complexity obtained in Corollary 1 is tight, we calculate
the coherence parameters and the maximum magnitudes of the sub-matrices at each setting, and
calculate the following rescaled parameter:

√
p

1− p
·min

{
µ1

√
log s,

λ̄(MMM∗J,J)µ2

‖MMM∗Jc,J‖max
·min

{ 1

s2
√
s
,

1

s
√
s(d− s)

}
,
λ̄(MMM∗J,J)µ3

‖MMM∗Jc,Jc‖max
· 1√

log(d− s)

}
,

which is derived from (6). If the exact recovery rate versus this rescaled parameter is the same across235

different settings, then we empirically justify that the bound of the sample complexity we derive is236

"tight" in the sense that the exact recovery rate is solely determined by this rescaled parameter.237

Figure 1 shows the experimental results. The two plots above are the experimental results for different238

values of s when d = 100, and the two plots below are for different values of d when s = 10.239

The x-axis of the left graphs represents p, and the x-axis of the right graphs indicates the rescaled240

parameter.241

We can see from the two graphs on the right that the exact recovery rate versus the rescaled parameter242

is the same in different settings of d and s. This means that our bound of the sample complexity is243

tight.244

Another observation we can make is that the exact recovery rate is not necessarily increasing or245

decreasing as s or d increases or decreases. This is probably because coherences and maximum246

magnitudes of sub-matrices are involved in the sample complexity as well.247
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Figure 2: Results of experiment 2 on synthetic data.

Experiment 2 Here, we fix the matrix dimension d as 100 and the support size s as 50. We set248

B = 5. We try three different spectral gaps λ1(MMM∗) − λ2(MMM∗) ∈ {10, 30, 50} and three different249

standard deviations of the normal distribution, σnormal ∈ {0.1, 0.3, 0.5}. We try two different tuning250

parameters ρ ∈ {0.1, 0.01} and report the best result.251

Figure 2 demonstrates the experimental results. The three plots show the results when σnormal is252

0.1, 0.3 and 0.5, respectively. The red, green and blue lines indicate the cases where the spectral253

gap λ1(MMM∗)− λ2(MMM∗) is 50, 30 and 10, respectively. From the plots, we can observe that the exact254

recovery rate increases as σ2 is small and λ1(MMM∗)− λ2(MMM∗) is large, which is consistent with the255

conditions we have checked in Corollaries 1 and 2.256

4.2 Gene Expression Data257

We analyze a gene expression dataset (GSE21385) from the Gene Expression Omnibus website258

(https://www.ncbi.nlm.nih.gov/geo/.) The dataset examines rheumatoid arthritis synovial259

fibroblasts, which together with synovial macrophages, are the two leading cell types that invade and260

degrade cartilage and bone.261

The original data set contains 56 subjects and 112 genes. We compute its incomplete covariance262

matrix, where 87% of the matrix entries are observed since some subject/gene pairs are unobserved.263

With this incomplete covariance matrix, we solve the semidefinite program in (1) for sparse PCA264

with ρ = 2.265

By solving (1), we find that the support of the solution contains 3 genes: beta-1 catenin (CTNNB),266

hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) and semaphorin III/F (SEMA3F). Our267

result is consistent with prior studies on rheumatoid arthritis since CTNNB has been found to be268

upregulated [Iwamoto et al., 2018], SEMA3F has been found to be downregulated [Tang et al., 2018],269

and HPRT1 is known to be a housekeeping gene [Mesko et al., 2013].270

5 Concluding Remarks271

We have presented the sufficient conditions to exactly recover the true support of the sparse leading272

eigenvector by solving a simple semidefinite programming on an incomplete and noisy observation.273

We have shown that the conditions involve matrix coherence, spectral gap, matrix magnitudes, sample274

complexity and variance of noise, and provided empirical evidence to justify our theoretical results.275

To the best of our knowledge, we provide the first theoretical guarantee for exact support recovery276

with sparse PCA on incomplete data. While we currently focus on a uniformly missing at random277

setup, an interesting open question is whether it is possible to provide guarantees for a deterministic278

pattern of missing entries.279
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