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Abstract

Clustering is an important exploratory data analysis technique to group objects1

based on their similarity. The widely used K-means clustering method relies2

on some notion of distance to partition data into a fewer number of groups. In3

the Euclidean space, centroid-based and distance-based formulations of the K-4

means are equivalent. In modern machine learning applications, data often arise5

as probability distributions and a natural generalization to handle measure-valued6

data is to use the optimal transport metric. Due to non-negative Alexandrov7

curvature of the Wasserstein space, barycenters suffer from regularity and non-8

robustness issues. The peculiar behaviors of Wasserstein barycenters may make the9

centroid-based formulation fail to represent the within-cluster data points, while the10

more direct distance-based K-means approach and its semidefinite program (SDP)11

relaxation are capable of recovering the true cluster labels. In the special case12

of clustering Gaussian distributions, we show that the SDP relaxed Wasserstein13

K-means can achieve exact recovery given the clusters are well-separated under14

the 2-Wasserstein metric. Our simulation and real data examples also demonstrate15

that distance-based K-means can achieve better classification performance over16

the standard centroid-based K-means for clustering probability distributions and17

images.18

1 Introduction19

Clustering is a major tool for unsupervised machine learning problems and exploratory data analysis20

in statistics. Suppose we observe a sample of data points X1, . . . , Xn taking values in a metric21

space (X , ∥ · ∥). Suppose there exists a clustering structure G∗
1, . . . , G

∗
K such that each data point22

Xi belongs to exactly one of the unknown cluster G∗
k. The goal of clustering analysis is to recover23

the true clusters G∗
1, . . . , G

∗
K given the input data X1, . . . , Xn. In the Euclidean space X = Rp,24

the K-means clustering is a widely used method that achieves the empirical success in many25

applications [MacQueen, 1967]. In modern machine learning and data science problems such26

as computer graphics [Solomon et al., 2015], data exhibits complex geometric features and traditional27

clustering methods developed for Euclidean data may not be well suited to analyze such data.28

In this paper, we consider the clustering problem of probability measures µ1, . . . , µn into K groups.29

As a motivating example, the MNIST dataset contains images of handwritten digits 0-9. Normalizing30

the greyscale images into histograms as probability measures, a common task is to cluster the images.31

One can certainly apply the Euclidean K-means to the vectorized images. However, this would32

lose important geometric information of the two-dimensional data. On the other hand, theory of33

optimal transport [Villani, 2003] provides an appealing framework to model measure-valued data as34

probabilities in many statistical tasks [Domazakis et al., 2019, Chen et al., 2021, Bigot et al., 2017,35

Seguy and Cuturi, 2015, Rigollet and Weed, 2019, Hütter and Rigollet, 2019, Cazelles et al., 2018].36
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Background on K-means clustering. Algorithmically, the K-means clustering have two equivalent37

formulations in the Euclidean space – centroid-based and distance-based – in the sense that they38

both yield the same partition estimate for the true clustering structure. Given the Euclidean data39

X1, . . . , Xn ∈ Rp, the centroid-based formulation of standard K-means can be expressed as40

min
β1,...,βK∈Rd

n∑
i=1

min
k∈[K]

∥Xi − βk∥22 = min
G1,...,GK

{ K∑
k=1

∑
i∈Gk

∥Xi − X̄k∥22 :

K⊔
k=1

Gk = [n]
}
, (1)

where clusters {Gk}Kk=1 are determined by the Voronoi diagram from {βk}Kk=1, X̄k =41

|Gk|−1
∑
i∈Gk

Xi denotes the centroid of cluster Gk,
⊔

denotes the disjoint union and [n] =42

{1, . . . , n}. Heuristic algorithm for solving (1) includes Lloyd’s algorithm [Lloyd, 1982], which is43

an iterative procedure alternating the partition and centroid estimation steps. Specifically, given an44

initial centroid estimate β
(1)
1 , . . . , β

(1)
K , one first assigns each data point to its nearest centroid at the45

t-th iteration according to the Voronoi diagram, i.e.,46

G
(t)
k =

{
i ∈ [n] : ∥Xi − β

(t)
k ∥2 ⩽ ∥Xi − β

(t)
j ∥2, ∀j ∈ [K]

}
, (2)

and then update the centroid for each cluster47

β
(t+1)
k =

1

|G(t)
k |

∑
i∈G(t)

k

Xi, (3)

where |G(t)
k | denotes the cardinality of G(t)

k . Step (2) and step (3) alternates until convergence.48

The distance-based (sometimes also referred as partition-based) formulation directly solves the49

following constrained optimization problem without referring to the estimated centroids:50

min
G1,...,GK

{ K∑
k=1

1

|Gk|
∑
i,j∈Gk

∥Xi −Xj∥22 :

K⊔
k=1

Gk = [n]
}
. (4)

Observe that (1) with nearest centroid assignment and (4) are equivalent for the clustering purpose51

due to the following identity, which extends the parallelogram law from two points to n points,52

n∑
i,j=1

∥Xi −Xj∥22 = 2n

n∑
i=1

∥Xi − X̄∥22, with X̄ =
1

n

n∑
i=1

Xi and Xi ∈ Rp. (5)

Consequently, the two criteria yield the same partition estimate for G∗
1, . . . , G

∗
K . The key identity (5)53

establishing the equivalence relies on two facts of the Euclidean space: (i) it is a vector space (i.e.,54

vectors can be averaged in the linear sense); (ii) it is flat (i.e., zero curvature), both of which are55

unfortunately not true for the Wasserstein space (P2(Rp),W2) that endows the space P2(Rp) of all56

probability distributions with finite second moments with the 2-Wasserstein metric W2 [Ambrosio57

et al., 2005]. In particular, the 2-Wasserstein distance between two distributions µ and ν in P2(Rp) is58

defined as59

W 2
2 (µ, ν) := min

γ

{∫
Rp×Rp

∥x− y∥22 dγ(x, y)
}
, (6)

where minimization over γ runs over all possible couplings with marginals µ and ν. It is well-known60

that the Wasserstein space is a metric space (in fact a geodesic space) with non-negative curvature in61

the Alexandrov sense [Lott, 2008].62

Our contributions. We summarize our main contributions as followings: (i) we provide evidence for63

pitfalls (irregularity and non-robustness) of barycenter-based Wasserstein K-means, both theoretically64

and empirically, and (ii) we generalize the distance-based formulation of K-means to the Wasserstein65

space and establish the exact recovery property of its SDP relaxation for clustering Gaussian measures66

under a separateness lower bound in the 2-Wasserstein distance.67

Existing work. Since the K-means clustering is a worst-case NP-hard problem [Aloise et al.,68

2009], approximation algorithms have been extensively studied in literature including: Llyod’s69

algorithm [Lloyd, 1982], spectral methods [von Luxburg, 2007, Meila and Shi, 2001, Ng et al.,70

2001], semidefinite programming (SDP) relaxations [Peng and Wei, 2007], non-convex methods via71
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low-rank matrix factorization [Burer and Monteiro, 2003]. Theoretic guarantees of those methods are72

established for statistical models on Euclidean data [Lu and Zhou, 2016, von Luxburg et al., 2008,73

Vempala and Wang, 2004, Fei and Chen, 2018, Giraud and Verzelen, 2018, Chen and Yang, 2021,74

Zhuang et al., 2022].75

To cluster probability measures in the Wasserstein space, the centroid-based Wasserstein K-means76

algorithm has been proposed in Domazakis et al. [2019], which replaced the Euclidean norm77

and sample means by the Wasserstein distance and barycenters respectively. More discussions of78

Wasserstein K-means using barycenters can be found in Section 2.1. Verdinelli and Wasserman79

[2019] proposed a modified Wasserstein distance for distribution clustering.80

2 Wasserstein K-means clustering methods81

In this section, we generalize the Euclidean K-means to the Wasserstein space. Our starting point is82

to mimic the standard K-means methods for Euclidean data. Thus we may define two versions of the83

Wasserstein K-means clustering formulations: centroid-based and distance-based. As we mentioned84

in Section 1, when working with Wasserstein space (P2(Rp),W2), the corresponding centroid-based85

criterion (1) and the distance-based criterion (4), where the Euclidean metric ∥ · ∥2 is replaced with86

the 2-Wasserstein metric W2, may lead to radically different clustering schemes. To begin with, we87

would like to argue that due to the irregularity and non-robustness of barycenters in the Wasserstein88

space, the centroid-based criterion may lead to unreasonable clustering schemes that lack physical89

interpretations and are sensitive to small data perturbations.90

2.1 Clustering based on barycenters91

The centroid-based Wasserstein K-means for extending the Lloyd’s algorithm into the Wasserstein92

space has been recently considered by Domazakis et al. [2019]. Specifically, it is an iterative93

algorithm proceeds as following. Given an initial centroid estimate ν
(1)
1 , . . . , ν

(1)
K , one first assigns94

each probability measure µ1, . . . , µn to its nearest centroid in the Wasserstein geometry at the t-th95

iteration according to the Voronoi diagram:96

G
(t)
k =

{
i ∈ [n] : W2(µi, ν

(t)
k ) ⩽ W2(µi, ν

(t)
j ), ∀j ∈ [K]

}
, (7)

and then update the centroid for each cluster97

ν
(t+1)
k = arg min

ν∈P2(Rd)

1

|G(t)
k |

∑
i∈G(t)

k

W 2
2 (µi, ν). (8)

Note that ν(t+1)
k in (8) is referred as barycenter of probability measures µi, i ∈ G

(t)
k , a Wasserstein98

analog of the Euclidean average or mean [Agueh and Carlier, 2011]. We will also ex-changeably99

use barycenter-based K-means to mean the centroid-based K-means in the Wasserstein space. Even100

though the Wasserstein barycenter is a natural notion of averaging probability measures, it may101

exhibit peculiar behaviours and fail to represent the within-cluster data points, partly due to the102

violation of the generalized parallelogram law (5) (for non-flat spaces) if the Euclidean metric ∥ · ∥2103

is replaced with the 2-Wasserstein metric W2.104

Example 1 (Irregularity of Wasserstein barycenters). Wasserstein barycenter has much less regu-105

larity than the sample mean in the Euclidean space [Kim and Pass, 2017]. In particular, Santambrogio106

and Wang [2016] constructed a simple example of two probability measures that are supported on line107

segments in R2, whereas the support of their barycenter obtained as the displacement interpolation108

the two endpoint probability measures is not convex (cf. left plot in Figure 1). In this example, the109

probability density µ0 and µ1 are supported on the line segments L0 = {(s, as) : s ∈ [−1, 1]} and110

L1 = {(s,−as) : s ∈ [−1, 1]} respectively. We choose a ∈ (0, 1) to identify the orientation of L0111

and L1 based on the x-axis. Moreover, we consider the linear density functions µ0(s) = (1− s)/2112

and µ1(s) = (1 + s)/2 for s ∈ [−1, 1] supported on L0 and L1 respectively. Then the optimal113

transport map T := Tµ0→µ1 from µ0 to µ1 is given by114

T (x, ax) =
(
− 1 +

√
4− (1− x)2, −a · (−1 +

√
4− (1− x)2)

)
, (9)

and the barycenter corresponds to the displacement interpolation µt = [(1 − t)id + tT ]♯µ0 at115

t = 0.5 [McCann, 1997]. Fig. 1 on the left shows the support of barycenter µ0.5 is not convex (in fact116
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part of an ellipse boundary) even though the supports of µ0 and µ1 are convex. This example shows117

that the barycenter functional is not geodesically convex in the Wasserstein space. As barycenters turn118

out to be essential in centroid-based Wasserstein K-means and irregularity of the barycenter may fail119

to represent the cluster (see more details in Example 3 and Remark 9 below), this counter-example is120

our motivation to seek alternative formulation. ■121
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Figure 1: Left: support of the Wasserstein barycenter as the displacement interpolation between µ0

and µ1 at t = 0.5 in Example 1. Right: non-robustness of the optimal transport map (arrow lines) and
Wasserstein barycenter w.r.t. small perturbation around a = 1 for the target measure in Example 2.

Example 2 (Non-robustness of Wasserstein barycenters). Another unappealing feature of the122

Wasserstein barycenter is its sensitivity to data perturbation: a small (local) change in one contributing123

probability measure may lead to large (global) changes in the resulting barycenter. See Fig. 1 on124

the right for such an example. In this example, we take the source measure as µ0 = 0.5 δ(−1,1) +125

0.5 δ(1,−1) and the target measure as µ1 = 0.5 δ(−1,−a) + 0.5 δ(1,a) for some a > 0. It is easy to see126

that the optimal transport map T := Tµ0→µ1 has a dichotomy behavior:127

T (−1, 1) =

{
(−1,−a) if 0 < a < 1
(1, a) if a > 1

and T (1,−1) =

{
(1, a) if 0 < a < 1

(−1,−a) if a > 1
. (10)

Thus the Wasserstein barycenter determined by the displacement interpolation µt = [(1−t)id+tT ]♯µ0128

is a discontinuous function at a = 1. This non-robustness can be attribute to the discontinuity of129

the Wasserstein barycenter as a function of its input probability measures; in contrast, the Euclidean130

mean is a globally Lipchitz continuous function of its input points. ■131

Because of these pitfalls of the Wasserstein barycenter shown in Examples 1 and 2, the centroid-132

based Wasserstein K-means approach described at the beginning of this subsection may lead to133

unreasonable and unstable clustering schemes. In addition, an ill-conditioned configuration may134

significantly slow down the convergence of commonly used barycenter approximating algorithms135

such as iterative Bregman projections [Benamou et al., 2015]. Below, we give a concrete example of136

such phenomenon in the clustering context.137

Example 3 (Failure of centroid-based Wasserstein K-means). In a nutshell, the failure in this138

example is due to the counter-intuitive phenomenon illustrated in the right panel of Fig. 2, where139

some distribution µ3 in the Wasserstein space may have larger W2 distance to Wasserstein barycenter140

µ∗
1 than every distribution µi (i = 1, 2) that together forms it. As a result of this strange configuration,141

even though µ3 is closer to µ1 and µ2 from the first cluster with barycenter µ∗
1 than µ4 coming from142

a second cluster with barycenter µ∗
2, it will be incorrectly assigned to the second cluster using the143

centroid-based criterion (7), since W2(µ3, µ
∗
1) > W2(µ3, µ

∗
2) > max

{
W2(µ3, µ1), W2(µ3, µ2)

}
.144

In contrast, for Euclidean spaces due to the following equivalent formulation of the generalized145

parallelogram law (5),146

n∑
i=1

∥X −Xi∥22 = n∥X − X̄∥22 +
n∑
i=1

∥Xi − X̄∥22 ⩾ n∥X − X̄∥22, for any X ∈ Rp,

there is always some point Xi† satisfying ∥X −Xi†∥2 ⩾ ∥X − X̄∥2, that is, further away from X147

than the mean X̄; thereby excluding counter-intuitive phenomena as the one shown in Fig. 2.148

Concretely, the first cluster G∗
1 is shown in the left panel of Fig. 2 highlighted by a red circle,149

consisting of m copies of (µ1, µ2) pairs and one copy of µ3); the second cluster G∗
2 containing150
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Figure 2: Left: visualization of Example 3 in R2 and Wasserstein space. Right: the black curve
connecting µ1 and µ2 depicts the geodesic between them.

copies of µ4 is highlighted by a blue circle. Each distribution assigns equal probability mass to two151

points, where the two supporting points are connected by a dashed line for easy illustration. More152

specifically, we set153

µ1 = 0.5 δ(x,y) + 0.5 δ(−x,−y), µ2 = 0.5 δ(x,−y) + 0.5 δ(−x,y),

µ3 = 0.5 δ(x+ϵ1,y) + 0.5 δ(x+ϵ1,−y), and µ4 = 0.5 δ(x+ϵ1+ϵ2,y) + 0.5 δ(x+ϵ1+ϵ2,−y),

where δ(x,y) denotes the point mass measure at point (x, y), and (x, y, ϵ1, ϵ2) are positive constants.154

The property of this configuration can be summarized by the following lemma.155

Lemma 4 (Configuration characterization). If (x, y, ϵ1, ϵ2) satisfies156

y2 < min{x2, 0.25∆ϵ1,x} and ∆ϵ1,x < ϵ22 < ∆ϵ1,x + y2,

where ∆ϵ1,x := ϵ21 + 2x2 + 2xϵ1, then for all sufficiently large m (number of copies of µ1 and µ2),157

W2(µ3, µ
∗
2) < W2(µ3, µ

∗
1) and max

k=1,2
max
i,j∈Gk

W2(µi, µj)︸ ︷︷ ︸
largest within-cluster distance

< min
i∈G1,j∈G2

W2(µi, µj),︸ ︷︷ ︸
least between-cluster distance

where µ∗
k denotes the Wasserstein barycenter of cluster Gk for k = 1, 2.158

Note that the condition of Lemma 4 implies y < x. Therefore, the barycenter between µ1 andµ2159

is µ̃∗
1 := 0.5 δ(x,0) + 0.5 δ(−x,0) lying on the horizontal axis. By increasing m, the barycenter µ∗

1160

of cluster G∗
1 can be made arbitrarily close to µ̃∗. The second inequality in Lemma 4 shows that161

all within-cluster distances are strictly less than the between-cluster distances; therefore, clustering162

based on pairwise distances is able to correctly recover the cluster label of µ3. However, since µ3163

is closer to the barycenter µ∗
2 of cluster G∗

2 according to the first inequality in Lemma 4, it will164

be mis-classified into G∗
2 using the centroid-based criterion. We emphasize that cluster positions165

in this example are generic and do exist in real data; see Remark 9 and Section 4.3 for further166

discussions on our experiment results on MNIST data. Moreover, similar to Example 2, a small167

change in the orientation of distribution µ1 may completely alter the clustering membership of µ3168

based on the centroid criterion. Specifically, if we slightly increase x to make it exceed y, then169

the barycenter between µ1 and µ2 becomes µ̄∗
1 := 0.5 δ(0,y) + 0.5 δ(0,−y) that lies on the vertical170

axis. Correspondingly, if based on centroids, then µ3 should be clustered into G∗
1 as it is closer to171

the barycenter µ∗
1 of G∗

1 than the barycenter µ∗
2 of G∗

2. Therefore, the centroid-based criterion can172

be unstable against data perturbations. In comparison, a pairwise distances based criterion always173

assigns µ3 into cluster G∗
2 no matter x < y or x > y. ■174

2.2 Clustering based on pairwise distances175

Due to the irregularity and non-robustness of centroid-based Wasserstein K-means, we instead176

propose and advocate the use of distance-based Wasserstein K-means below, which extends the177

Euclidean distance-based K-means formulation (4) into the Wasserstein space,178

min
G1,...,GK

{ K∑
k=1

1

|Gk|
∑
i,j∈Gk

W 2
2 (µi, µj) :

K⊔
k=1

Gk = [n]
}
. (11)

Correspondingly, we can analogously design a greedy algorithm resembling the Wasserstein Lloyd’s179

algorithm described in Section 2.1 that solves the centroid-based Wasserstein K-means. Specifically,180
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the greedy algorithm proceeds in an iterative manner as following. Given an initial cluster membership181

estimate G
(1)
1 , . . . , G

(1)
K , one assigns each probability measure µ1, . . . , µn based on minimizing the182

averaged squared W2 distances to all current members in every cluster, leading to an updated cluster183

membership estimate184

G
(t+1)
k =

{
i ∈ [n] :

1

|G(t)
k |

∑
s∈G(t)

k

W 2
2 (µi, µs) ⩽

1

|G(t)
j |

∑
s∈G(t)

j

W 2
2 (µi, µs), ∀j ∈ [K]

}
. (12)

We arbitrarily select among the least W2 distance clusters in the case of a tie. We highlight that185

the center-based and distance-based Wasserstein K-means formulations may not necessarily be186

equivalent to yield the same cluster labels (cf. Example 3). Below, we shall give some example187

illustrating connections to the standard K-means clustering in the Euclidean space.188

Example 5 (Degenerate probability measures). If the probability measures are Dirac at point189

Xi ∈ Rp, i.e., µi = δXi
, then the Wasserstein K-means is the same as the standard K-means since190

W2(µi, µj) = ∥Xi −Xj∥2. ■191

Example 6 (Gaussian measures). If µi = N(mi, Vi) with positive-definite covariance matrices192

Σi ≻ 0, then the squared 2-Wasserstein distance can be expressed as the sum of the squared Euclidean193

distance on the mean vector and194

d2(Vi, Vj) = Tr
[
Vi + Vj − 2

(
V

1/2
i VjV

1/2
i

)1/2]
, (13)

the squared Bures distance on the covariance matrix [Bhatia et al., 2019]. Here, we use V 1/2 to195

denote the unique symmetric square root matrix of V ≻ 0. That is,196

W 2
2 (µi, µj) = ∥mi −mj∥22 + d2(Vi, Vj). (14)

Then the Wasserstein K-means, formulated either in (7) or (11), can be viewed as a covariance-197

adjusted Euclidean K-means by taking account into the shape or orientation information in the198

(non-degenerate) Gaussian inputs. ■199

Example 7 (One-dimensional probability measures). If µi are probability measures on R with200

cumulative distribution function (cdf) Fi, then the Wasserstein distance can be written in terms of the201

quantile transform202

W 2
2 (µi, µj) =

∫ 1

0

[F−
i (u)− F−

j (u)]2 du, (15)

where F− is the generalized inverse of the cdf F on [0, 1] defined as F−(u) = inf{x ∈ R : F (x) >203

u} (cf. Theorem 2.18 [Villani, 2003]). Thus the one-dimensional probability measures in Wasserstein204

space can be isometrically embedded in a flat L2 space, and we can bring back the equivalence of the205

Wasserstein and Euclidean K-means clustering methods. ■206

3 SDP relaxation and its theoretic guarantee207

Note that Wasserstein Lloyd’s algorithm requires to use and compute the barycenter in (7) and (8)208

at each iteration, which can be computationally expensive when the domain dimension d is large209

or the configuration is ill-conditioned (cf. Example 2). On the other hand, it is known that solving210

the distance-based K-means (4) is worst-case NP-hard for Euclidean data. Thus we expect solving211

the distance-based Wasserstein K-means (11) is also computationally hard. A common way is212

to consider convex relaxations to approximate the solution of (11). It is known that certain SDP213

relaxation is information-theoretically tight for (4) when the data X1, . . . , Xn ∈ Rp are generated214

from a Gaussian mixture model with isotropic known variance [Chen and Yang, 2021]. In this paper,215

we extend the idea into Wasserstein setting for solving (11).216

A typical SDP relaxation for Euclidean data uses pairwise inner products to construct an affinity matrix217

for clustering [Peng and Wei, 2007]; unfortunately, due to the non-flatness nature, a globally well-218

defined inner product does not exist for Wasserstein spaces with dimension higher than one. Therefore,219

we will derive a Wasserstein SDP relaxation to the combinatorial optimization problem (4) using220

the squared distance matrix An×n = {aij} with aij = W 2
2 (µi, µj). Concretely, we can one-to-one221

reparameterize any partition (G1, . . . , GK) as a binary assignment matrix H = {hik} ∈ {0, 1}n×K222
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such that hik = 1 if i ∈ Gk and hik = 0 otherwise. Then (11) can be expressed as a nonlinear 0-1223

integer program,224

min
{
⟨A,HBH⊤⟩ : H ∈ {0, 1}n×K , H1K = 1n

}
, (16)

where 1n is the n× 1 vector of all ones and B = diag(|G1|−1, . . . , |GK |−1). Changing of variable225

to the membership matrix Z = HBH⊤, we note that Zn×n is a symmetric positive semidefinite226

(psd) matrix Z ⪰ 0 such that Tr(Z) = K,Z1n = 1n, and Z ⩾ 0 entrywise. Thus we obtain the227

SDP relaxation of (11) by only preserving these convex constraints:228

min
Z∈Rn×n

{
⟨A,Z⟩ : Z⊤ = Z, Z ⪰ 0, Tr(Z) = K, Z1n = 1n, Z ⩾ 0

}
. (17)

To theoretically justify the SDP formulation (17) of Wasserstein K-means, we consider the scenario229

of clustering Gaussian distributions in Example 6, where the Wasserstein distance (14) contains230

two separate components: the Euclidean distance on mean vector and the Bures distance (13)231

on covariance matrix. Without loss of generality, we focus on mean-zero Gaussian distributions232

since optimal separation conditions for exact recovery based on the Euclidean mean component233

have been established in [Chen and Yang, 2021]. Suppose we observe Gaussian distributions234

νi ∼ N(0, Vi), i ∈ [n] from K groups G∗
1, · · · , G∗

K , where cluster G∗
k contains nk members, and235

the covariance matrices have the following clustering structure: if i ∈ G∗
k, then236

Vi = (I + tXi)V
(k)(I + tXi) with X1, . . . , Xn

i.i.d.∼ SymN(0, 1), (18)
where the psd matrix V (k) is the center of the k-th cluster, SymN(0, 1) denotes the symmetric random237

matrix with i.i.d. standard normal entries, and t is a small perturbation parameter such that (I+tXi) is238

psd with high probability. For zero-mean Gaussian distributions, we have W2(N(0, V ), N(0, U)) =239

d(V,U) according to (14). Note that on the Riemannian manifold of psd matrices, the geodesic240

emanating from V (k) in the direction X as a symmetric matrix can be linearized by V = (I +241

tX)V (k)(I+ tX) in a small neighborhood of t, thus motivating the parameterization of our statistical242

model in (18). The next theorem gives a separation lower bound to ensure exact recovery of the243

clustering labels for Gaussian distributions.244

Theorem 8 (Exact recovery for clustering Gaussians). Let ∆2 := mink ̸=l d
2(V (k), V (l)) denote245

the minimal pairwise separation among clusters, n̄ := maxk∈[K] nk (and n := mink∈[K] nk) the246

maximum (minimum) cluster size, and m := mink ̸=l
2nknl

nk+nl
the minimal pairwise harmonic mean247

of cluster sizes. Suppose the covariance matrix Vi of Gaussian distribution νi = N(0, Vi) is248

independently drawn from model (18) for i = 1, 2, . . . , n. Let β ∈ (0, 1). If the separation ∆2249

satisfies250

∆2 > ∆̄2 : =
C1t

2

min{(1− β)2, β2}
V p2 log n, (19)

then the SDP (17) achieves exact recovery with probability at least 1− C2n
−1, provided that

n ≥ C3 log
2 n, t ≤ C4

√
log n/

[
(p+ log n̄)V1/2T 1/2

v

]
, n/m ≤ C5 log n,

where V = maxk
∥∥V (k)

∥∥
op, Tv = maxk Tr

[(
V (k)

)−1]
, and Ci, i = 1, 2, 3, 4, 5 are constants.251

Remark 9 (Further insight on pitfalls of barycenter-based Wasserstein K-means). Theorem 8252

suggests that different from Euclidean data, distributions after centering can be clustered if scales and253

rotation angles vary (i.e., covariance-adjusted). We further illustrate the rotation and scale effects on254

the MNIST data that may mislead the centroid-based Wasserstein K-means, thus providing a real255

data support for Example 3. Here we randomly sample two unbalanced clusters with 200 numbers of256

"0" and 50 numbers of "5". Fig. 3 shows the clustering results for the centroid-based Wasserstein257

K-means and its oracle version where we replace the estimated barycenters µ1, µ2 with the true258

barycenters µ∗
1, µ

∗
2 computed on the true labels. Comparing the Wasserstein distances W2(µ0, µ

∗
1)259

and W2(µ0, µ
∗
2), we see that the image µ0 (containing digit "0") is closer to µ∗

2 (true barycenter of260

digit "5") and thus it cannot be classified correctly based on the nearest true barycenter (cf. Fig. 3 on261

the left). Moreover, Wasserstein K-means based on estimated barycenters µ1, µ2 yields two clusters262

of mixed "0" and "5". In both cases, the misclassification error is characterized by grouping similar263

degrees of angle and/or stretch. Since there are two highly unbalanced clusters of distributions,264

Wasserstein K-means is likely to enforce larger cluster to separate into two clusters and absorb those265

around centers (cf. Fig. 3 on the right), leading to larger classification errors. We shall see that266

in Section 4.3 the distance-based Wasserstein K-means and its SDP relaxation have much smaller267

classification error rate on MNIST for the reason that we explained in Example 3 (cf. Lemma 4). ■268
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Figure 3: Visualization of misclassification for the barycenter-based Wasserstein K-means (B-WKM)
on a randomly sampled subset from MNIST (200 digit "0" and 50 digit "5"). The plot at the bottom
is a example of misclassified image. The right plot is the abstraction of the images in the Wasserstein
space. The color depth indicates the frequency of the distributions. Red and blue colors stand for
distributions belong to true clusters "0" and "5".

4 Experiments269

4.1 Counter-example in Example 3 revisited270

Our first experiment is to back up the claim about the failure of centroid-based Wasserstein K-271

means in Example 3 through simulations. Instead of using point mass measures that may results272

in instability for computing the barycenters, we use Gaussian distributions with small variance273

as a smoothed version. We consider K = 2, where cluster G∗
1 consists of m1 many copies of274

(µ1, µ2) pairs and m2 many µ3, and cluster G∗
2 consists of m3 many copies of µ4. We choose275

µi as the following two-dimensional mixture of Gaussian distributions µi = 0.5N(ai,1,Σi,1) +276

0.5N(ai,2,Σi,2) for i = 1, 2, 3, 4. Due to the space limit, detailed simulation setups and parameters277

are given in Appendix A. From Table 1, we can observe that Wasserstein SDP has achieved exact278

recovery for all cases while barycenter-based Wasserstein K-means has only around 40% exact279

recovery rate among all repetitions. In addition, Wasserstein SDP is more stable than distance-280

based Wasserstein K-means. Denote ∆k := W 2(µ3, µ
∗
k) as the squared distance between µ3 and281

µ∗
k for k = 1, 2, where µ∗

k is the barycenter of G∗
k. Let ∆∗ := maxk=1,2 maxi,j∈Gk

W2(µi, µj)282

and ∆∗ := mini∈G1,j∈G2
W 2(µi, µj) be the maximum within-cluster distance and the minimum283

between-cluster distance respectively. From Table 5 in the Appendix, we can observe that ∆∗ < ∆∗,284

from which we can expect Wasserstein SDP to correctly cluster all data points in the Wassertein285

space. Moreover, Table 1 shows that about 25% times that the distributions (as µ3) in G∗
1 satisfy286

∆1 > ∆2, implying those µ3 to be likely assigned to the wrong cluster, which is consistent with287

Example 3. The experiment results also show that any copy of µ3 is misclassified whenever exact288

recovery fails for B-WKM, which means the misclassified rate for µ3 equals to (1− γ), where γ is289

the exact recovery rate for B-WKM shown in Table 1. Table 4 in the appendix further reports the290

run time comparison, from which we see that distance-based approaches are more computationally291

efficient than the barycenter-based one in our settings.292

Table 1: Exact recovery rates and frequency of ∆1 > ∆2 for B-WKM among total 50 repetitions in
the counter example. W-SDP: Wasserstein SDP, D-WKM: Distance-based Wasserstein K-means,
B-WKM: Barycenter-based Wasserstein K-means. n: total number of distributions.

n W-SDP D-WKM B-WKM Frequency of ∆1 > ∆2

101 1.00 0.82 0.40 0.32
202 1.00 0.84 0.34 0.26
303 1.00 0.72 0.46 0.20

8



4.2 Gaussian distributions293

Next, we simulate random Gaussian measures from model (18) with K = 4 and all cluster size294

equal. We set the centers of each cluster of Gaussians such that all pairwise distances among the295

barycenters are all equal, i.e., W 2
2 (N(0, V (k1)), N(0, V (k2))) ≡ D for all k1, k2 ∈ {1, 2, 3, 4}296

with V = maxk ∥V (k)∥op ∈ [4.5, 5.5]. We fix the dimension p = 10 and vary the sample size297

n = 200, 400, 600. And we set the perturbation parameter t = 10−3 on the covariance matrix. The298

simulation results are reported over 100 times in each setting. Fig. 4 shows the misclassification299

rate (log-scale) versus the squared distance D between centers. We observe that when the distance300

between centers of clusters are larger than certain threshold (squared distance D > 10−3 in this case),301

then Wasserstein SDP can achieve exact recovery for different n, while the misclassification rate302

for the two Wasserstein K-means are stably around 10%. But when the distance between centers of303

clusters are relatively small, the two Wasserstein K-means behave similarly or even slightly better304

than SDP.305

Figure 4: Mis-classification error versus squared distance D from Wasserstein SDP (W-SDP) and
barycenter/distance-based Wasserstein K-means (B-WKM and D-WKM) for clustering Gaussians
under n ∈ {200, 400, 600}. Due to the log-scale, 10−6 corresponds to exact recovery.

4.3 A real-data application306

Finally, we run our Wasserstein SDP algorithm against Wasserstein K-means on the MNIST dataset.307

We choose two clusters: G∗
1 containing the number "0" and G∗

2 containing the number "5", so308

that the number of clusters is K = 2 in the algorithms. The cluster sizes are unbalanced with309

|G∗
1|/|G∗

2| = 4, where we randomly choose 200 number "0" and 50 number of "5" for each repetition.310

The results are shown in Table 2 based on 10 replicates. Here we used the Bregman projection311

with 100 iterations for computing the barycenters, which is efficient and stable for non-degenerate312

case in practice. For both Wasserstein K-means methods, we use the initialization method in313

analogue to the K-means++ for Euclidean data, i.e., the first cluster barycenter is chosen uniformly314

at random as one of the distributions, after which each subsequent cluster barycenter is chosen from315

the remaining distributions with probability proportional to its squared Wasserstein distance from the316

distribution’s closest existing cluster barycenter. From Table 2 we can see that the performances for317

Wasserstein SDP (W-SDP) and distance-based Wasserstein K-means (D-WKM) are better compared318

with barycenter-based Wasserstein K-means (B-WKM).319

Table 2: Results of three methods for clustering "0" and "5" in MNIST with unbalanced cluster sizes.

W-SDP D-WKM (Distance-based) B-WKM (Barycenter-based)
Error rate (SD) 0.097 (0.013) 0.167 (0.094) 0.399 (0.031)

The visualization of the clustering results has been shown in Fig. 3. From this figure we can find that320

the classification criterion for B-WKM will end up with the closeness to certain shape of "0", which is321

characterized by certain angle or the degree of stretch. And this will lead to the high misclassification322

error for barycenter-based or centroid-based Wasserstein K-means.323
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