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Abstract

Proteins are the main machinery of life and protein functions are largely deter-
mined by their 3D structures. The measurement of the pairwise proximity between
amino acids of a protein, known as inter-residue contact map, well characterizes
the structural information of a protein. Protein contact prediction (PCP) is an es-
sential building block of many protein structure-related applications. The prevalent
approach to contact prediction is based on estimating the inter-residue contacts
using hand-crafted coevolutionary features derived from multiple sequence align-
ments (MSAs). To mitigate the information loss caused by hand-crafted features,
some recently proposed methods try to learn residue co-evolutions directly from
MSAs. These methods generally derive coevolutionary features by aggregating
the learned residue representations from individual sequences with equal weights,
which is inconsistent with the premise that residue co-evolutions are a reflection
of collective covariation patterns of numerous homologous proteins. Moreover,
non-homologous residues and gaps commonly exist in MSAs. By aggregating
features from all homologs equally, the non-homologous information may cause
misestimation of the residue co-evolutions. To overcome these issues, we propose
an attention-based architecture, Co-evolution Transformer (CoT), for PCP. CoT
jointly considers the information from all homologous sequences in the MSA to
better capture global coevolutionary patterns. To mitigate the influence of the non-
homologous information, CoT selectively aggregates the features from different
homologs by assigning smaller weights to non-homologous sequences or residue
pairs. Extensive experiments on two rigorous benchmark datasets demonstrate
the effectiveness of CoT. In particular, CoT achieves a 51.6% top-L long-range
precision score for the Free Modeling (FM) domains on the CASP14 benchmark,
which outperforms the winner group of CASP14 contact prediction challenge by
9.8%.
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1 Introduction

Most in vivo biological processes are carried out by proteins, whose functions are mainly determined
by their 3D structures [1]. Structural information is crucial for understanding the functions of a
protein. The inter-residue contact map which measures the pairwise proximity between all amino
acid pairs well characterizes the structural information of a protein. Protein contact prediction (PCP)
is an important building block of many protein structure-related applications, such as protein structure
prediction [2, 3], protein complex assembly [4], and protein design [5]. It is so important that it is
one of the challenges of Critical Assessment of protein Structure Prediction (CASP), which is the
“world championship” of the computational structural biology field.

The prevalent PCP approaches were built atop the co-evolution principle that the spatially proximate
residues tend to co-evolve to maintain the functions of a protein [6–8]. The existing PCP methods
generally infer pairwise coevolutionary patterns from MSAs. Among them, direct coupling analy-
sis (DCA) [9] techniques are widely used to obtain coevolutionary features by fitting Potts models
or calculating precision matrix [10, 11]. Subsequently, a variety of deep-learning based methods
were proposed to leverage the DCA-based features to estimate inter-residue contacts [3, 12–15].
However, DCA techniques only consider single-residue and pairwise statistics of the sequences,
ignoring high-order interactions among the residues within a sequence.

To mitigate the information loss caused by hand-crafted features (e.g., DCA-based features), some
recently proposed methods try to learn residue co-evolutions directly from MSAs [2, 16, 17]. For
example, the SOTA of them, CopulaNet [2] learns residue representations from individual sequences
and then aggregates these features with equal weights to derive residue co-evolutions. This causes two
issues: 1) Inferring residue representations from individual sequences independently is inconsistent
with the premise that residue co-evolutions are a reflection of collective covariation patterns of
numerous homologs [18]; 2) Assigning equal weights to the features coming from different homologs
ignores the fact that, the quality of homologs varies a lot because of the existence of non-homologous
residues and gaps [19, 20].

In this paper, we propose an attention-based architecture, Co-evolution Transformer (CoT), to
address or mitigate the issues discussed above. The core component of CoT is the co-evolution
attention (CoA) module. Different from the previous methods that focus on extracting information
from individual sequences, CoA is capable of incorporating the residue co-evolution patterns derived
from all homologous sequences into an attention function to learn residue representations. Moreover,
the CoA learns to automatically weight the residue representations learned from different homologs,
and then selectively aggregates the features to construct the co-evolution attention map. This design
mitigates the influence of non-homologous information.

CoT dramatically outperforms the baseline methods on two rigorous benchmarks CASP14 [21] and
CAMEO (Continuous Automated Model EvaluatiOn) [22]. In particular, CoT achieves a 51.6%
top-L long-range precision score for the Free Modeling (FM) domains on the CASP14 benchmark,
which outperforms the winner group of CASP14 contact prediction challenge by 9.8%.

2 Related Work

Protein contact prediction is a binary classification task for amino acid residue pairs. A residue pair
is called a contact if their distance is less than or equal to a distance threshold, typically 8Å, i.e.,
8× 10−10m.

As widely acknowledged, co-evolution information is closely correlated to the contacts. In order
to extract the co-evolution patterns for residue pairs, multiple sequence alignments (MSAs) are
generated from raw protein sequences. For a target protein sequence, a generated alignment consists
of multiple sequences with each corresponding position being an aligned residue or a gap (annotated
by a dash), and these aligned sequences as a whole are called a multiple sequence alignment.
Many protein databases as well as various search schemes have been proposed to generate MSAs
efficiently [19, 20]. There are roughly three categories of methods for predicting contacts from MSAs,
namely, unsupervised methods, supervised methods, and pre-training based methods.

Unsupervised Methods To quantify the strength of the direct relation between the residue pairs of
a protein sequence while excluding effects from other residues, many statistical modeling methods
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based on direct coupling analysis (DCA) have been proposed to fit Potts models [10] or precision
matrix [11] to MSAs, e.g., mean-field DCA [9], sparse inverse covariance [11] and pseudo-likelihood
maximization [10, 23, 24], to name a few. These methods further exploit dedicated scores based on
DCA for contact prediction. However, they only consider single-residue and pairwise statistics of the
sequences, thus fail to capture high-order interactions among the multiple residues within a sequence.

Supervised Methods By taking DCA-derived scores as features, deep neural networks based
supervised methods significantly outperform the unsupervised methods [3, 12–15]. However, the
information lost by the DCA-based features from the sequences is still not recoverable. To mitigate
this issue, several models are proposed to learn residue co-evolution information directly from the
sequences in the MSAs [2, 16, 17, 25]. Among them, CopulaNet [2], the SOTA of the CASP13
benchmark, derives coevolutionary features differentially by aggregating the learned residue rep-
resentations from the sequences. However, although they are capable of modeling the high-order
interactions among the multiple residues within single sequence, the global information carried by the
MSAs is ignored because they still model the protein sequences independently. AlphaFold2 [25] is
claimed to be modeling the full MSAs, achieving an amazing performance on the CASP14 structure
prediction task. Although its performance on the structure prediction task is remarkable, they did
not participate in the CASP14 PCP task meanwhile no further details of their methods are publicly
available.

Pre-training Based Methods Following the pre-train and fine-tune paradigm, pre-trained language
models are adapted to representation learning for single protein sequences from the unlabeled
data [26–31]. Many of them take contact prediction as an important downstream task to validate
their performance. While these methods show another solution to this task, they are still at an early
stage thus cannot achieve comparable performance to the SOTA approaches currently. To further
improve the performance, a pre-trained language model named MSA Transformer is proposed to
learn a better MSA representation directly [29]. MSA Transformer did solid work on learning co-
evolution information from unlabeled MSAs. However, non-homologous subsequences are inevitably
introduced during the learning process.

To exploit the co-evolution information from the full MSAs effectively, our proposed CoT model
is built upon co-evolution attention, a novel attention mechanism dedicated to incorporate the co-
evolution information directly from MSAs in a supervised way.

3 Co-evolution Transformer

Co-evolution Transformer (CoT) is constructed by stacking several repeated CoT layers. Each CoT
layer is composed of two attention modules, i.e., a co-evolution attention (CoA) module and a
self-attention module, as shown in Figure 1. Given a prepared MSA, the stacked CoT layers are used
to learn the residue representations. Residue co-evolutions are derived from the representations of the
final layer and further employed to estimate the inter-residue contacts.

In this section, we first start with a brief introduction to the vanilla Transformer Encoder, followed
by the detailed descriptions of each CoT component. To better illustrate the co-evolution attention
mechanism, the proposed co-evolution attention mechanism and the self-attention mechanism are
discussed in the end.

3.1 Vanilla Transformer Encoder

Transformer is a network architecture built on the attention mechanism for machine translation.
The Transformer encoder is widely adopted for machine learning tasks due to its excellent feature
extraction capability when modeling long-distance interactions in sequences [32–34]. Each Trans-
former encoder layer consists of two modules, i.e., a multi-head self-attention (MHSA) module and
a position-wise fully connected feed-forward (FFN) module. To connect these two modules, residual
connections [35] and layer normalization (LAYERNORM) [36] are applied as below:

x = LAYERNORM(x+ MHSA(x)), (1)
x = LAYERNORM(x+ FFN(x)), (2)

3



Input MSA

Residue 

Co-evolutionsEmbedding

Co-evolution 

Attention

Selective 

Pooling

Conv

Contact Map

𝑟𝑖 𝑟𝑗

×N

Outer Product

Self-attention

Residue 

Co-evolutions

Compatibility Function of Co-evolution Attention

Co-evolution Transformer Layer

Figure 1: An Overview of Co-evolution Transformer. Given an input MSA, several CoT layers
are stacked to learn residue representations, which are then used to derive residue co-evolutions to
estimate inter-residue contacts. Each CoT layer consists of a co-evolution Attention (CoA) module
and a self-attention module.

The multi-head self-attention module is also adopted by the CoT layer as a component to learn the
residue representations of different sequences in the MSA, however, iterating through the columns
instead of rows/sequences.

3.2 Co-evolution Attention Module

For a target protein sequence and its MSA, the goal of the Co-evolution Attention Module is
to leverage the whole MSA to derive pairwise inter-residue interaction features, namely residue
co-evolutions. Intuitively, the residue co-evolutions are analogous to the covariance matrix in
mathematics, depicting the correlations between any two residue positions (two columns in the MSA).
Then, these features are used as attention maps to guide representation learning of each sequence in
the MSA. To achieve this goal, a CoA module employs two consequent submodules, i.e. co-evolution
aggregation and co-evolution enhancement. The co-evolution aggregation submodule is designed to
generate the coevolutionary features by aggregating pairwise interactions from all homologs in the
MSA, while the co-evolution enhancement submodule further enhances the coevolutionary features
and derives the final co-evolution attention. The overview of the CoA module is illustrated in Figure 2.

Given the target protein sequence (r1, r2 . . . rL), where L is the length of the sequence, the corre-
sponding representation of its MSA is denoted as X ∈ RK×L×dmodel , where K is the number of
homologous sequences and dmodel is the hidden dimension of the residue representation. A detailed
representation schema of the MSA is described in Appendix.

For the k-th sequence in the MSA, the overall procedure of the CoA module in each layer can be
summarized as follows:

Xk = LAYERNORM(Xk + COATTN(X)), (3)

Xk = LAYERNORM(Xk + FFN(Xk)) (4)
where k ∈ [1 . . .K] and COATTN is defined as:

COATTN(X) = CONCAT(head1, . . . , headH), (5)

headh = ATTNh(X, A)Xk
h Wh, (6)

where h ∈ [1 . . . H] is the head index, A ∈ RL×L×dco is the co-evolution feature map generated
with dco as its feature dimension, ATTNh(X, A) ∈ RL×L is the h-th co-evolution attention head,
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Figure 2: Schema of Co-evolution Attention. Given a residue pair 〈ri, rj〉, we first learn K covariance
features and a set of pair-specific sequence weights Sk

ij , k = 1 · · ·K. The weights are used to
selectively aggregate the K features. Finally, the aggregated feature is fed to a convolutional module
to obtain the co-evolution attention map. For better visualization, we omit the feature channels and
the details about how co-evolution attention attend to residue embeddings.

Xk
h ∈ RL×dv is the h-th segment of Xk, and Wh ∈ Rdv×dv are learnable weights (dv = dmodel/H).

Note that the co-evolution attention ATTNh(X, A) is shared by all the K homologous sequences
within the same head.

Submodule 1: Co-evolution Aggregation To depict inter-residue interactions, the co-evolution
aggregation submodule exploits outer product on the residue representations. A selective pooling
operation is then applied to the aggregated outer products from all homologous sequences, the
disturbance of non-homologous information can be greatly reduced by this weighting mechanism.

Two tensors P, Q ∈ RK×L×dmodel , are generated from X by separate linear projections. For the
residue pair 〈ri, rj〉 in the k-th sequence of the MSA, the pair co-evolution features Aij are calculated
by:

Aij = PROJ

(
K∑

k=1

Sk
ij � (P k

i ⊗ P k
j )

)
, (7)

and

Sk
ij =

1

Z
exp(Qk

i ⊗Qk
j ), (8)

where ⊗ is the outer product operator, � is the element-wise multiplication operator, PROJ is a flatten
operation followed by a linear projection, converting the aggregated pair co-evolution features to
A ∈ RL×L×dco , and Z stands for the normalization factor. The weight for the pair representation is
denoted as Sk

ij , where Sk
ij ∈ Rdmodel×dmodel whose elements fall in the range of [0, 1]. The weights

are normalized over the k sequences, thus we have
∑

k S
k
ij = 1.

Submodule 2: Co-evolution Enhancement To model the high-order interactions among multiple
residues, the co-evolution map A is concatenated with A′ from the previous CoT layer, the values are
fed into a convolutional module (CONV) to generate an enhanced co-evolution map by:

A = CONV([A′;A]). (9)
In practice, we adopt a ResNet [35] as the convolution module. Note that we simply assign A′ an
all-zero tensor for the first layer when A′ does not exist.

The h-th co-evolution attention head is projected from A by
ATTNh(X, A) = SOFTMAX(AMh), (10)

where Mh ∈ Rdco×1 are learnable weights.
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3.3 Why Co-evolution Attention

A straightforward way to model the co-evolution is by applying self-attention to individual sequences
in the MSA. In this case, for a residue pair 〈ri, rj〉 in the k-th homolog, self-attention measures their
compatibility (attention weight, Ak

ij) by:

Ak
ij ∝ SOFTMAX{(UXk

i )
>(V Xk

j )}, (11)

where U, V are learnable weights.

In comparison, the attention weight of COA, calculated by the co-evolution aggregation module
(AGGREGATE) and the co-evolution enhancement module (ENHANCE), can be summarized as:

Aij = AGGREGATE(Xi ⊗Xj), (12)
Aij = ENHANCE(Aij , NEIGHBOR(i, j)), (13)

Ak
ij ∝ SOFTMAX{Aij} (14)

Compare with self-attention, co-evolution attention is more expressive at three aspects: 1) COA
leverages the global information from all the homologs instead of single homolog to derive the
attention, which fits better to the residue co-evolution insight; 2) COA handles the non-homologous
information naturally by the selective pooling operation during aggregation, providing a solution
to a widely existed but inevitable dilemma for MSAs; 3) COA enhances the co-evolution signal by
propagating information from the neighbors, making it easier to capture the high-order interactions
among multiple residues.

4 Experimental Evaluation

We have conducted extensive experiments and analyses to evaluate the effectiveness of CoT.

4.1 Experiment Setup

Benchmark Two standard benchmarks are used for the model evaluation in the conducted ex-
periments, i.e., CASP14 and CAMEO. 1) CASP14 is the latest and most important benchmark
for protein contact prediction [21]. This benchmark includes three kinds of protein domains, i.e.,
FM (22 domains), FM/TBM (14 domains), and TBM (50 domains), where a domain is a protein
sequence prepared by the CASP organizers. The first protein among them was released on May. 18,
2020. 2) CAMEO is another benchmark to evaluate weekly-updated protein structure submissions
continuously [22]. The proteins are classified into three categories: easy, medium, and hard. Among
them, 176 hard targets, released in the last year (from 2020-04-17 to 2021-04-10), are selected for
model evaluation.

Dataset All models are trained on 96, 167 protein structures (chains) collected from PDB [37]
(before Apr. 1, 2020), which are split into train and validation sets (95, 667 and 500 proteins,
respectively). For each protein sequence, we generate its MSA by searching UniRef30 (version
2020-02), UniRef90 (version 2020-02), BFD30 (version 2019-03), MGnify90 (version 2019-05) with
HHblits (version 3.3.0) and HMMER (version 3.3.2). The details of the MSA generation procedure
are described in Appendix.

Evaluation Following the procedure of trRosetta [15], the contact prediction task is converted
into a multi-class classification task. The inter-residue distance range is divided into 37 bins, i.e.,
(0Å, 2.5Å], (2.5Å, 3.0Å], · · · , (20.0Å, +∞), while the models are trained with the bin labels. For
contact, the summed probability value of the bins with distance less than 8Å are used as the final
prediction.

Metrics For the evaluation criterion, the prevalent metrics are employed, which are Precision@L,
Precision@L/2, and Precision@L/5 of long-range residue contacts, where Precision@n stands for
the precision score for the pairs with top-n probability scores in the predicted contact map. Here,
L refers to the length of protein sequence and long-range means there are at least 23 other residues
between these two residues in the sequence.
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Table 1: Comparison on CASP14 and CAMEO (Precision@L )
CASP14 CAMEO

Methods FM (22) FM/TBM (14) TBM (50) Hard (176)

RaptorX [14] 33.9 58.1 63.1 53.2
trRosetta [15] 31.3 57.6 61.1 50.1
CopulaNet [2] 38.5 62.2 65.5 56.5

CoT-SA (ours) 41.8 59.2 67.9 59.8
CoT (ours) 48.2 66.7 75.6 66.6

Table 2: Comparison on CASP14. Gr. 368, Gr. 488, and Gr. 010 are the results of the top-3 groups in
the CASP14 challenge. CoT† refers to the results of CoT with MSA selection.

FM (22) FM/TBM (14) TBM (50)

Method L L/2 L/5 L L/2 L/5 L L/2 L/5

Gr. 368 41.8 55.7 66.6 64.5 78.6 87.4 73.1 87.1 94.5
Gr. 488 40.4 52.9 65.0 63.6 78.8 88.5 72.0 86.9 93.7
Gr. 010 39.6 53.4 63.8 61.5 77.0 86.8 66.1 80.9 89.5

CoT† (ours) 51.6 68.2 79.9 66.8 82.2 90.5 77.9 91.0 96.1

Implementations Given an MSA, 256 sequences are randomly sampled and cropped by length 200.
The CoT model is equipped with 6 CoT layers with hidden size as 128 and the attention head number
as 8. All models are trained with Adam optimizer [38] via a cross-entropy loss for 100k iterations.
The learning rate, the weight decay, and the batch size are set to 10−4, 0.01, and 16 respectively. The
hyperparameters of the CoT model is selected according to the performance on the validation set, and
a detailed comparison of different hyperparameter settings are summarized in Appendix. The total
training cost of the CoT model is about 30 hours on 4 Tesla V100 GPU cards.

4.2 Evaluation Results

For the sake of fairness, CoT is compared with three SOTA methods for contact prediction, including
RaptorX [14], trRosetta [15] and CopulaNet [2], on the identical MSAs by searching BFD30 using
HHblits with default parameters. As shown in Table 1, CoT outperforms the baselines, while
surpassing CopulaNet, the best of the SOTAs, by 9.7%, 4.5%, 10.1% and 10.1% for Precision@L
scores on four kinds of targets, respectively. MSA Transformer [29] is not included in the comparison
due to the different task settings (pretrained vs. supervised) and the unavailability of its code.
Nevertheless, we rerun the CoT model on the CASP13-FM dataset to compare with it, obtaining
a 65.0% Precision@L score, which is better than 57.1% reported in MSA Transformer. A detailed
discussion is described in Appendix.

(a) Self-attention (b) CoA w/o Enhan. (c) CoA (d) Ground-truth Contacts

Figure 3: Comparison of the extracted attention maps for 4q2z_H. (a) CoT-SA model; (b) CoT model
w/o co-evolution enhancement; (c) CoT model; (d) Ground-truth contact map. The red circle covers
typical long-range contacts.
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Table 3: Ablations for CoA on CASP14 (Precision@L). AGGRE., ENHAN. and SA refer to the
co-evolution aggregation submodule, the co-evolution enhancement submodule, and the self-attention
module, respectively.

CASP14 CAMEO

AGGRE. ENHAN. SA FM (22) FM/TBM (14) TBM (50) Hard (176)

Selective Pooling X X 48.2 66.7 75.6 66.6
Average Pooling X X 42.7 62.2 73.6 64.2
Selective Pooling X 41.6 61.2 70.3 61.8
Selective Pooling X 46.4 66.9 74.8 66.3

Methods used by the groups participated in the CASP14 challenge are considered to the best for the
benchmark due to their deep optimization towards MSA generation and model ensemble strategy.
To further evaluate the performance of the proposed method, the top-3 winner groups/methods on
CASP14 are compared with CoT. Different groups use different data sources to build their MSAs. To
eliminate the variance of different data sources, the most confident prediction (the prediction with
the highest probability scores) of CoT on 12 MSAs from different databases with different search
settings, denoted as CoT†, is selected as the final prediction.

As shown in Table 2, CoT† outperforms the best method. On the hardest domains (CASP14-FM),
CoT† even increases 9.8%, 12.5%, 13.3% scores for all the three metrics, compared with Gr. 368,
the best group on this benchmark.

4.3 Comparison with Self-attention

To compare co-evolution attention with self-attention, a CoT model variant where the COA module
is replaced by the self-attention module is implemented (denoted as CoT-SA). Both CoT and CoT-SA
are evaluated on the CASP14 and CAMEO benchmarks. As shown in Table 1, the CoT outperforms
CoT-SA by 6.4%, 7.5%, 7.7%, and 6.8% Precision@L scores on four kinds of targets, indicating
that CoA is much better than self-attention for this task. To further understand the co-evolution
attention, the two attention matrices for both models are visualized. As shown in Figure 3 (a) and (c),
the co-evolution attention patterns are much closer to the ground-truth contact map than that of
self-attention, illustrating that CoA is more effective in extracting contact patterns.

4.4 Ablation Study

To evaluate the contribution of each model component, we set up ablative configurations for the
co-evolution aggregation submodule, the enhancement submodule, and the self-attention module.

Experiments with various ablative configurations are conducted as listed in Table 3. For the co-
evolution aggregation submodule, an average pooling is implemented as an alternative of selective
pooling, where the features of different sequences are aggregated equally. The result shows that
selective pooling obviously plays a critical role in the model, as the Precision@L score of the models
with selective pooling on FM domains increased from 42.7% to 48.2% compared with that with
average pooling.

Figure 4 (a) is an MSA for the CASP14 target T1061-D1. Since the model is not sensitive to MSA
sequence order, we rearrange the MSA for better visualization. Then we visualize the sequence
weights CoT learned from the MSA for two selected residue pairs 〈r44, r55〉 and 〈r105, r127〉.
Figure 4 (b) and (c) show that selective pooling assigns larger weights to more homologous sequences
as expected. Meanwhile, the difference between two sequence weight distributions of the two pairs
demonstrates that the model is able to learn pair-specific weights.

The co-evolution enhancement is a convolutional module to learn correlations among multiple
residues, and the overall performance reduces significantly on FM domains from 48.2% to 41.6%
when removing this module, as compared in Table 3. These results illustrate that the high-order
residue interaction is very important for contact prediction, as the interaction might reflect some
structure patterns (e.g, structure motifs) [14, 39]. Moreover, as illustrated in Figure 3, by applying
co-evolution enhancement, long-range residue interactions can be better extracted.
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Figure 4: Learned sequence weights for T1061-D1. (a) Part of MSA for T1061-D1 (residue 40-130),
where the purple region represents aligned residues and ‘-’ stands for a gap. (b) The sequence weight
distribution for the pair 〈r44, r55〉. (c) The sequence weight distribution for the pair 〈r105, r127〉.

By ablating the self-attention module, the overall model performance drops slightly, indicating that
the CoA module is the main contributor to achieve the performance.

4.5 Model Analysis

The Effect of MSA Quality The quality of predicted contacts is highly related to Meff [40], which
is the number of the non-redundant sequence homologs in the MSA (sequences of more than 70%
identity is considered redundant). For the CASP14 FM domains, the correlation coefficients between
the logarithm of Meff and the Precision@L scores is 0.68, demonstrating that the performance of
contact prediction is strongly correlated to MSA quality. CoT cannot predict the contact maps of
some proteins very well (e.g., the Precision@L score of T1093-D1 is only 20.6%). For most of these
proteins, the Meff is as small as less than 20, indicating that low-quality MSAs are still a bottleneck
for contact prediction.

The Effect of Training Data Most methods generate the training data from the same data sources,
i.e., public protein sequence databases (UniProt, Metagenome database) and structure databases
(PDB). However, different method customizes the data processing pipelines (e.g., MSA generation
strategies) differently, causing slightly different training data (e.g., data size) for the models. To
study the effect of training data, we train another model CoT∗ on a smaller training dataset but of
comparable size to that used by CopulaNet [2], i.e., PDB30. The performance of CoT∗ is slightly
lower than CoT, e.g., 46.3% vs. 48.2% for Precision@L on the CASP14 FM domains and 66.1% vs.
66.6% on the CAMEO hard targets. But it still outperforms CopulaNet a lot, for example, 46.3% vs.
38.2% for Precision@L on CASP14 FM domains. These results demonstrate that the performance
gain of CoT is not mainly achieved by the larger size of the training data.
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5 Conclusion

We propose an attention-based architecture (CoT) to learn residue coevolutions from multiple
sequence alignments (MSAs). As the core component of CoT, co-evolution attention (CoA) leverages
the full information of an MSA to learn residue representations by treating coevolutionary patterns
as attention. Moreover, it employs a selective pooling operation to mitigate the influence of non-
homologous information. The experimental results on two rigorous benchmarks demonstrate the
effectiveness of CoT.

On the other hand, the experimental results also reveal a failure case of CoT, i.e., CoT cannot
accurately predict the contacts of proteins with low-depth MSAs. This is an issue shared by other
existing approaches as well. How to address the issue caused by low-quality MSAs remains an open
problem. We believe pretrained protein models may be a potential solution to it [26–30].
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